聚酰亚胺基介电复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺(PI)具有其它高聚物无法比拟的优异的热、机械和电性能,在微电子领域和航空航天领域有着广泛的应用。随着材料的不断向高性能化、多功能化和低成本化方向发展,聚酰亚胺自身的一些缺点(如吸湿性和热膨胀系数较高)单纯的聚酰亚胺材料不能满足市场对其偏高(低)介电、低吸水率和良好的力学性能的要求。为了提高P1的应用性能,拓展聚酰亚胺材料的应用领域,以PI为基体的复合材料的开发与应用一直是学术界和工业界研究与开发的热点。本论文改善PI/无机纳米复合材料的制备方法,考察无机纳米粒子含量对复合材料的结构、形貌、性质的影响,可为PI/无机复合材料的制备和性能研究提供数据和理论参考。
     研究中,采用纳米粒子原位法或原位溶胶凝胶法,分别将二氧化硅(Si02)、多壁碳纳米管(MWNTs)与PI或含氟聚酰亚胺(FPI)复合制备聚酰亚胺基合材料,分别采用原位溶胶凝胶法和纳米粒子原位法制备了PI/TiO2和PI/TNTs复合材料,期望得到综合性能优异的复合材料,全面考察了各种复合材料的结构、形貌及其与性能的关系。
     论文采用纳米粒子原位法和原位溶胶凝胶法两种工艺制备了掺杂二氧化硅聚酰亚胺复合材料。研究发现采用原位溶胶凝胶法制备的复合薄膜相比纳米粒子原位法制备的材料具有更好的热稳定、透光性、电阻性和介电性能(介电常数可达3.0以下)、具有更大的储能模量(ε)和更高的玻璃化转变温度(Tg)。两种方法制备的复合薄膜的5wt%质量损失温度高于540℃,其热稳定性可很好满足它在众多器件中作为介电材料使用的要求。
     采用原位溶胶凝胶法制备了掺杂二氧化硅的FPI复合材料,该复合薄膜保持了纯FPI良好的热稳定性,复合薄膜的介电常数随二氧化硅含量的增加先略微增大再减小,在二氧化硅含量为10wt%时达到最大值,所有的复合薄膜拥有很低的介电常数。
     聚酰亚胺基体中加入MWNTs能保持很好的热稳定性。制备的PI/MWNTs和FPI/MWNTs纳米复合材料璃化转变温度分别在280℃和360℃以上,分解温度分别在550℃以上和约在500℃。碳纳米管本身良好的热稳定性和在基体中良好的相容性使得制备PI/MWNTs和FPI/MWNTs纳米复合材料具有很好的动态力学性能,其动态力学性能随着碳纳米管含量的增大而增强,50℃时MWNTs含量为10wt%的PI复合材料的储能模量为2.03Gpa,较纯PI提高了23.1%。PI和FPI的介电常数都随着掺杂碳纳米管含量的增大而增加。在1MHz PI中加入10wt%的碳纳米管时其介电常数为66.7,是纯PI的18.6倍,说明少量的加入量就可使材料的介电性能有很大的提高。含碳纳米管聚酰亚胺基纳米复合材料是一种具有良好热学和动态力学性能的高介电材料。
     在PI/TiO2和PI/TNTs两种复合薄膜中的无机相以无定型的状态均匀分散在PI基体中,但其透光性有所下降。两种复合薄膜在有无紫外光照射下具有不同的吸水趋势。在无紫外光照射下复合薄膜的吸水率随着TiO2含量的增大而减少,TiO2含量为20wt%时复合薄膜相比纯PI薄膜可降低吸湿水量0.3个百分点。复合薄膜在有紫外光(λ=365nm)照射下的吸水率随着TiO2的质量分数的增大而增大。PI/TNTs有与PI/TiO2同样的吸水特性,并且在有无紫外光照射下PI/TNTs均比PI/TiO2较高的吸水率。
     在PI/TNTs复合材料中TNTs由于外壁大量的羟基的作用使其与基体相互交联起来,具有较PI/TiO2更优异的热学和力学性能。TNTs质量分数为3%的复合薄膜的5%失重温度达到了535.4℃,较纯PI提高了64.2℃。TiO2和TNTs对复合薄膜的导电性影响比较小,复合膜的电阻率相比纯P1只下降了3个数量级。复合膜的介电常数也只得到了略微的提高,但复合膜的介电常数具有一定的紫外响应性。在波长365nm的紫外光照射下其介电常数,尤其是PI/TNTs薄膜,得到了一定的升高。
Polyimides (PI) are widely used in the fileld of microelectronics and aerospace industry because of their favorable electric and mechanical properties, superior thermal stability and high strength that can not be compared by other polymer materials. With the materials continuously developing towards performance-enhancing multi functions and cost degradation, pure PI with some shortcomings of its own (such as moisture absorption and thermal expansion coefficient is higher) does not meet market requirement of low water absorption, slightly higher (or lower) dielectric constant and good mechanical properties. In order to improve application performance and expand the applications of polyimide materials, the PI matrix composites for the development and application in academic and industry has been a hot research focus. The purpose of this paper is to improve the preparation method of PI/inorganic nanocomposites. In this paper, the structure, morphology and properties of the composites influenced by the levels of inorganic nanoparticles were investigated. It shoule offer reference for prepare and properties study of PI/inorganic composites.
     In this paper, the methods of in situ polymerization with nanoparticle and in situ prepared by sol-gel process have been adopted to prepared composites of PI/SiO2, FPI/SiO2, PI/MWNTS, FPI/MWNTs, PI/TiO2and PI/TNTs. The relationship between properties of resulting materials and their structure, morphology have been further studied.
     In this paper, PI/SiO2nanocomposites were prepared by two methods, i.e., in situ prepared with nanopartocle and in situ prepared by sol-gel process. Study results indicated that composite film in situ prepared by sol-gel process,compareing to method of in situ prepared with nanoparticle, had better thermal stability, light transmittance, resistance and dielectric properties (dielectric constant less than3.0), higher storage modulus(ε) and glass transition temperature(Tg).5wt%mass loss temperature of composite thin films prepared by two methods all above540℃, this can be good to meet requirements of materials used as a dielectric material in nurmuous devices.
     FPI/SiO2composites in situ prepared by sol-gel process. The composite films maintained good thermal stability, and the water absorption rate decreased with the incorporation of silica nanoparticles increasing. The dielectric constants of composite films increased and then slightly decreased with the increased of silica contents, reaching to maximum when the content of silica reached to10wt%. All the composite films beared low dielectric constants.
     Other two PI composites, PI/MWNTs and FPI/MWNTs, successfully prepared by two-step method. The storage modulus and Tg continuously increased with increasing of MWNTs level. Tg of PI/MWNTs and FPI/MWNTs composites were above280℃and360℃, respectively, and decomposition temperature (Td), above550℃and about500℃. Because of MWNTs itself has excellent thermal stability and after modified hold good compatibility with PI matrix,PI/MWNTs possesed favorable dynamic mechanical properties. The dynamic mechanical properties improved with increasing of the mass fraction of MWNTs. The value of storage modulus was2.03GPa at50℃when the fraction of MWNTs was10wt%. Compared with that of pure PI, the storage modulus increased23.1%. The dielectric properties enhanced sharply with the increasing of mass fraction of MWNTs. For the nanocomposites containing10wt%of MWNTs, the dielectric constant reached to66.7at1MHz, which came up to18.6times of3.6for pure polyimide, indicating the dielectric of PI composites can be increased greatly by adding small amount of MWNT. Therefore, the PI/MWNTs is a kind of nanocomposite material with favorable properties of thermal properties, dynamic mechanical properties, dielectric properties.
     PI/TiO2and PI/TNTs films were prepared. The inorganic reinforcing phase TiO2or TNTs dispersed in the PI matrix homogeneously as amorphous state which caused transmittance of composite films decreased. The water absorption rate of two types of composite films had different trends with or without irradiation of UV. Water absorption rate of PI composite films decreased with increasing TiO2content without UV irradiation. Water absorption rate of the20wt% TiO2/PI film decreaed0.3percentage points compared to that of pure PI film, water absorption rate increased with the increase of TiO2content with UV irradiation (λ=365nm). PI/TNTs composite films had the same water absorption feature with PI/TiO2, and PI/TNTs had higher water absorption than PI/TiO2with or without UV irradiation.
     Massive Hydroxy (-OH) existed on exine of TNTs can act with matrix PI, then crosslinking between them was produced. Compered with PI/TiO2, PI/TNTs composites had better properties of thermal and mechanical properties. Temperature of5%weight loss of PI composite film with3wt%TNTs reched to535.4℃, increasing64.2℃compared to that of pure PI. Effect of TNTs and TiO2on the conductivity of composite film was relatively little.Compared to pure PI, the resistivities of composite films fell by only3orders of magnitude. Dielectric constants of the composite films had been only slightly improved but had a responsiveness to the UV. Under UV irradiation with a wavelength of365nm the dielectric constant of composite film, especially in PI/TNTs film, had a certain increase.
引文
[1]Frank S, Poncharal, P.; Wang, Z. L.; Heer, W. A. d.Carbon nanotube quantum resistors. Science,1998,280(5370):1744.
    [2]段春燕.聚酰亚胺/无机纳米复合材料的制备及表征:[硕士学位论文].天津:天津大学,2005.
    [3]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社,2003.
    [4]朱维平,王兴仁,戴干策.纳米塑料研究进展.现代塑料加工应用,2002(4):50-53.
    [5]张立德,牟季美.纳米材料和纳米结构.北京:国防工业出版社,2001.
    [6]曾戎,章明秋,曾汉民.高分子纳米复合材料研究进展(Ⅰ)—高分子纳米复合材料的制备、表征和应用前景.宇航材料工艺,1999,29(2):6-8,11.
    [7]Demjen, Z.; Pukanszky, B.Effect of surface coverage of silane treated CaCO3 on the tensile properties of polypropylene composites. Polymer Composites,1997, 18(6):741-747.
    [8]Pukanszky B, Demjen Z. Silane treatment in polypropylene composites: Adsorption and coupling. Macromolecular Symposia,1999,139(1):93-105.
    [9]Guo Zhao-xia, Y. J., Yu Jian. Surface modification of manometer silica by N,N'-dicyclohexylcarbodiimide mediated amidation. Chinese Chemical Letters, 2001,12(10):933-934.
    [10]柯扬船.聚合物纳米复合材料.北京:科学出版社,2009.
    [11]Zhu Z.-K,Yang Y, Yin J,et al. Preparation and properties of organosoluble polyimide/silica hybrid materials by sol-gel process. Journal of Applied Polymer Science,1999,73(14):2977-2984.
    [12]许蕾.无机纳米—聚酰亚胺薄膜制备及在高压力下松驰特性研究:[硕士学位论文].哈尔滨:哈尔滨理工大学,2003
    [13]张维国.高压力下无机纳米杂化聚酰亚胺薄膜的热激电流谱特性:[硕士学位论文].哈尔滨:哈尔滨理工大学,2004
    [14]Hsiue G.-H, Chen J.-K,Liu Y.-L. Synthesis and characterization of nanocomposite of polyimide-silica hybrid from nonaqueous sol-gel process. Journal of Applied Polymer Science,2000,76(11):1609-1618.
    [15]刘卫东,朱宝库.聚酰亚胺/二氧化硅杂化膜和复合膜的制备与结构研究.山 东师范大学学报(自然科学版),2007,22(3):65-68.
    [16]Huang Y, Gu Y. New polyimide-silica organic-inorganic hybrids. Journal of Applied Polymer Science,2003,88(9):2210-2214.
    [17]Kausch, H. H.; Beguelin, P. Deformation and fracture mechanisms in filled polymers. Macromolecular Symposia,2001,169(1):79-87.
    [18]杨阳.聚酰亚胺/SiO2-TiO2杂化薄膜的制备与表征:[硕士学位论文].哈尔滨:哈尔滨理工大学,2007.
    [19]李峰,白朔,成会明.纳米碳管.新型炭材料,2000,(03):79-80.
    [20]胡文平,刘云圻,曾鹏举,等.纳米碳管.化学通报,2000,63(2):2-6.
    [21]成会明.纳米碳管制备、结构、物性及应用.北京:化学工业出版社,2002.
    [22]Saito R, Fujita M, Dresselhaus G, et al. S.Electronic structure and growth mechanism of carbon tubules. Materials science & engineering. B, Solid-state materials for advanced technology,1993, B19(Compendex:185-191.
    [23]Huang Y, Okada M, Tanaka K, et al. Estimation of superconducting transition temperature in metallic carbon nanotubes. Physical Review B,1996, 53(9):5129.
    [24]Garg A, Han J, Sinnott S B. Interactions of Carbon-Nanotubule Proximal Probe Tips with Diamond and Graphene. Physical Review Letters,1998,81(11): 2260.
    [25]Frackowiak E., Khomenko V., Jurewicz K., et al. Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources,2006, 153(Copyright 2006, The Institution of Engineering and Technology):413-418.
    [26]Star A., Steuerman D. W., Heath J. R., et al. Starched Carbon Nanotubes. Angewandte Chemie International Edition,2002,41(14):2508-2512.
    [27]Chen J., Hamon M.A. Solution Properties of Single-Walled Carbon Nanotubes. Science,1998,282(5386):95.
    [28]Wang Y, Wu J., Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon,2003,41(15):2939-2948.
    [29]丁孟贤,何天白.聚酰亚胺—化学、结构与性能的关系及材料.北京:科学出版社,2006.
    [30]秦家强.聚酰亚胺/二氧化硅杂化材料微相结构的形成、演化及结构与性能的关系的研究:[博士学位论文].成都:四川大学,2006.
    [31]廖学明,宋志祥,佘万能,等.聚酰亚胺的合成和应用.粘接,2008,(10): 32-37.
    [32]曹红葵.聚酰亚胺性能及合成方法.化学推进剂与高分子材料,2008,(03):24-26.
    [33]张占文,王朝阳,钟发春,等.聚酰胺酸合成工艺研究.强激光与粒子束,2002,(02):261-264.
    [34]刘业,丁孟贤,徐纪平.聚酰胺酸化学环化的研究.高分子材料科学与工程,1994,10(1):24-28.
    [35]薛书凯,姜昱.聚酰亚胺/无机纳米杂化材料的研究.化工新型材料,2006(05):5-7.
    [36]Bershtein V. A., Egorova L. M., Yakushev P. N., et al. Molecular dynamics in nanostructured polyimide-silica hybrid materials and their thermal stability. Macromolecular Symposia,1999,146(1):9-15.
    [37]Nye, Susan Adams. Acetylene bis-phthalic compounds and polyimides made therefrom. European Patent, EP411304,1994-06-15
    [38]Mayer A. B. R., Mark J. E. Poly(2-hydroxyalkyl methacrylates) as stabilizers for colloidal noble metal nanoparticles. Polymer,2000,41(4):1627-1631.
    [39]Wen J., Wilkes G. L. Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach. Chemistry of Materials,1996,8(8):1667-1681.
    [40]Charlier Y., Hedrick J. L., Russell T. P., et al. High temperature polymer nanofoams based on amorphous, high Tg polyimides. Polymer,1995,36(5): 987-1002.
    [41]王立新.溶胶-凝胶法制备聚酰亚胺/二氧化硅纳米尺寸复合材料.河北工业大学学报,1998,(4):18-22.
    [42]徐一琨,詹茂盛.纳米二氧化硅目标杂化聚酰亚胺复合材料膜的制备与性能研究.航空材料学报,2003,23(2):35-37.
    [43]Xie S.-H., Zhu B.-K., Li J.-B, et al. Preparation and properties of polyimide/aluminum nitride composites. Polymer Testing,2004,23(7):797-801.
    [44]Wang H., Zhong W., Xu P., et al. Properties of Polyimide/Silica Nanohybrids from Silicic Acid Oligomer. Macromolecular Materials and Engineering,2004, 289(9):793-799.
    [45]Wu J., Yang S., Gao S., et al. Preparation, morphology and properties of nano-sized Al2O3/polyimide hybrid films. European Polymer Journal,2005, 41(1):73-81.
    [46]Li L., Qinghua L., Jie Y, et al. Photosensitive polyimide (PSPI) materials containing inorganic nano particles (I)PSPI/TiO2 hybrid materials by sol-gel process. Materials Chemistry and Physics,2002,74(2):210-213.
    [47]陈运法,金联明.溶胶-凝胶法制备无机-有机复合材料:Ⅰ.无机-有机复合材料的分类及制备方法.功能材料,1999,30(5):449-451.
    [48]徐庆玉,范和平,井强山,等.聚酰亚胺纳米杂化材料的制备、结构和性能.功能高分子学报,2002(02):207-213,218.
    [49]马向辉,孙淑清,段春燕.聚酰亚胺/TiO2-SiO2纳米复合材料的制备及表征.化学工业与工程,2008(01):36-39.
    [50]Landry CTT, C. B., Wesson TA, et al. In-situ polymerization of tetraethoxysilane in polymers-chemical nature of the interactions. Polymer,1992,33(7):1496-1506.
    [51]谢曙辉.聚酰亚胺基高介电常数复合材料的设计、制备与性能研究:[博士学位论文].杭州:浙江大学,2005.
    [52]Matsuura T., Hasuda Y., Nishi S., et al. Polyimide derived from 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl.1. Synthesis and characterization of polyimides prepared with 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride or pyromellitic dianhydride. Macromolecules,1991,24(18): 5001-5005.
    [53]Baughman R.H., Zakhidov A. A., de Heer W. A. Carbon Nanotubes—the Route Toward Applications. Science,2002,297(5582):787.
    [54]Ajayan P. M. Nanotubes from Carbon. Chemical Reviews,1999,99(7): 1787-1800.
    [55]Kovtyukhova N. I., Mallouk T. E., Pan L., et al. Individual Single- Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon Nanotube Ropes. Journal of the American Chemical Society,2003,125(32):9761-9769.
    [56]Chen R. J., Zhang Y., Wang D., et al. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. Journal of the American Chemical Society,2001,123(16): 3838-3839.
    [57]Star A., Stoddart J. F., Steuerman D., et al. Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes. Angewandte Chemie International Edition,2001,40(9):1721-1725.
    [58]Dalton A. B., Collins S., Munoz, E., et al. Super-tough carbon-nanotube fibres. Nature,2003,423(6941):703.
    [59]Andrews R., Jacques D., Qian D., et al. Multiwall Carbon Nanotubes: Synthesis and Application. Accounts of Chemical Research,2002,35(12): 1008-1017.
    [60]Sun Y.-P., Fu K., Lin Y, et al. W.Functionalized Carbon Nanotubes: Properties and Applications. Accounts of Chemical Research,2002,35(12): 1096-1104.
    [61]Zhou B., Lin Y, Hill D. E., et al. Polymeric nanocomposite films from functionalized vs suspended single-walled carbon nanotubes. Polymer,2006, 47(15):5323-5329.
    [62]Delozier D. M., Watson K. A., Smith J. G., et al. Investigation of Aromatic/Aliphatic Polyimides as Dispersants for Single Wall Carbon Nanotubes. Macromolecules,2006,39(5):1731-1739.
    [63]Shigeta M., Komatsu M., Nakashima N. Individual solubilization of single-walled carbon nanotubes using totally aromatic polyimide. Chemical Physics Letters,2006,418(1-3):115-118.
    [64]Wise K. E., Park C., Siochi E. J., et al. Stable dispersion of single wall carbon nanotubes in polyimide:the role of noncovalent interactions. Chemical Physics Letters,2004,391(4-6):207-211.
    [65]Valentini L., Puglia D., Armentano I., et al. Sidewall functionalization of single-walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines. Chemical Physics Letters,2005,403(4-6):385-389.
    [66]Jiang X., Bin Y., Matsuo M. Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization. Polymer,2005,46(18):7418-7424.
    [67]Ge J. J., Zhang D., Li Q., et al. Multiwalled Carbon Nanotubes with Chemically Grafted Polyetherimides. Journal of the American Chemical Society,2005,127(28):9984-9985.
    [68]Qu L., Lin Y, Hill D. E., et al. Polyimide-Functionalized Carbon Nanotubes: Synthesis and Dispersion in Nanocomposite Films. Macromolecules,2004, 37(16):6055-6060.
    [69]Kasuga T., Hiramatsu M., Hoson A., et al. Titania Nanotubes Prepared by Chemical Processing. Advanced Materials,1999,11(15):1307-1311.
    [70]Ou H.-H., Lo S.-L. Review of titania nanotubes synthesized via the hydrothermal treatment:Fabrication, modification, and application. Separation and Purification Technology,2007,58(1):179-191.
    [71]Wei M., Konishi Y., Zhou H., et al. Formation of nanotubes TiO2 from layered titanate particles by a soft chemical process. Solid State Communications,2005,133(8):493-497.
    [72]Yuan Z.-Y., Su B.-L. Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,241(1-3):173-183.
    [73]Einsla B. R., Yu S. K., Hickner M. A., et al. Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells:Ⅱ. Membrane properties and fuel cell performance. Journal of Membrane Science,2005,255(Compendex):141-148.
    [74]Banerjee S. M., Mukesh Kumar, Salunke Arun Kashinath, et al. Gerhard.Synthesis and properties of fluorinated polyimides.1. Derived from novel 4,4-bis(aminophenoxy)-3,3-trifluoromethyl terphenyl. Journal of Polymer Science, Part A:Polymer Chemistry,2002,40(8):1016-1027.
    [75]Watanabe Y., Shibasaki Y., Ando S., et al. Synthesis and characterization of polyimides with low dielectric constants from aromatic dianhydrides and aromatic diamine containing phenylene ether unit. Polymer,2005,46(16): 5903-5908.
    [76]Suzuki T., Yamada Y, Itahashi K.6FDA-TAPOB hyperbranched polyimide- silica hybrids for gas separation membranes. Journal of Applied Polymer Science,2008,109(2):813-819.
    [77]Rubal M., Wilkins C. W., Cassidy P. E., et al. Fluorinated polyimide nanocomposites for CO2/CH4 separation. Polymers for Advanced Technologies,2008,19(8):1033-1039.
    [78]Liang T., Makita Y., Kimura S. Effect of film thickness on the electrical properties of polyimide thin films. Polymer,2001,42(11):4867-4872.
    [79]Jiang L. Y., Leu C.M., Wei K. H. Layered silicates/fluorinated polyimide nanocomposites for advanced dielectric materials applications. Advanced Materials,2002,14(Compendex):426-429.
    [80]Chin-Ping, Y, Sheng-Huei H., Kuei-Hung C. Organosoluble and optically transparent fluorine-containing polyimides based on 4,4'-bis(4-amino-2-trifluoromethylphenoxy)-3,3',5,5'-tetramethylbiphenyl. Polymer,2002,43 (Copyright 2002, IEE):5095-5104.
    [81]Madhra M. K., Salunke A. K., Banerjee S., et al. Synthesis and properties of fluorinated polyimides,2. Derived from novel 2,6-bis(3-trifluoromethyl-p-aminobiphenyl ether)pyridine and 2,5-bis(3-trifluoromethyl-p- aminobiphenyl ether)thiophene. Macromolecular Chemistry and Physics,2002,203(9):1238-1248.
    [82]Hamciuc E., Hamciuc C., Olariu M. Thermal and electrical behavior of polyimide/silica hybrid thin films. Polymer Engineering and Science,2010, 50(Compendex):520-529.
    [83]Komarov P. C., Yu-Tsung, Chen Shih-Ming, et al. Investigation of Thermal Expansion of Polyimide/SiO2 Nanocomposites by Molecular Dynamics Simulations. Macromolecular Theory and Simulations,2010,19(1):64-73.
    [84]Tang J. C. L. G.L., Yang H.C., Jiang G.J, et al. Polyimide-Silica Nanocomposites Exhibiting Low Thermal Expansion Coefficient and Water Absorption from Surface-Modified Silica. Journal of Applied Polymer Science, 2007,104(6):4096-4105.
    [85]W.-D. L., B.-K. Z, J. Z., et al. Preparation and dielectric properties of polyimide/silica nanocomposite films prepared from sol-gel and blending process. Polymers for Advanced Technologies,2007,18(7):522-528
    [86]Yang-Yen Y, Wen-Chen C., Chiung-Lin L. Synthesis and optical properties of photosensitive polyimide/silica hybrid thin films. Materials Chemistry and Physics,2009,113(Copyright 2009, The Institution of Engineering and Technology):567-573.
    [87]Beecroft L. L., Johnen N.A., Ober C. K. Covalently Linked, Transparent Silica-Poly(imide) Hybrids. Polymers for Advanced Technologies,1997,8(5): 289-296.
    [88]Park S.-J., Cho K.-S., Kim S.-H. A study on dielectric characteristics of fluorinated polyimide thin film. Journal of Colloid and Interface Science,2004, 272(2):384-390.
    [89]Srisuwan S. T., Supakanok, Praserthdam Piyasan. Synthesis and characterization of low-dielectric photosensitive polyimide/silica hybrid materials. Journal of Applied Polymer Science,2010,117(4):2422-2427.
    [90]Chen K.-Y., Kuo J.-F. Synthesis and properties of novel fluorinated aliphatic polyurethanes with fluoro chain extenders. Macromolecular Chemistry and Physics,2000,201(18):2676-2686.
    [91]贺国文,李衡峰.含氟聚酰亚胺/纳米二氧化硅复合薄膜的制备与性能研究. 第七届中国功能材料及其应用学术会议论文集第六分册,湖南长沙.2010:167-171.
    [92]Snyder R. W., Thomson B., Bartges B., et al. FTIR studies of polyimides. Thermal curing. Macromolecules,1989,22(Compendex):4166-4172.
    [93]Pryde C. A. IR studies of polyimides. I. Effects of chemical and physical changes during cure. Journal of Polymer Science Part A:Polymer Chemistry,1989,27(2):711-724.
    [94]Kreuz, J. A.; Endrey, A. L.; Gay, F. P.; Sroog, C. E.Studies of thermal cyclizations of polyamic acids and tertiary amine salts [J] Journal of Polymer Science Part A-1:Polymer Chemistry,1966,4(10):2607-2616.
    [95]Kusakabe K., Ichiki K., Hayashi J.-i., et al. Preparation and characterization of silica-polyimide composite membranes coated on porous tubes for CO2 separation. Journal of Membrane Science,1996,115(Compendex):65-75.
    [96]Katz M., Theis R. J. New high temperature polyimide insulation for partial discharge resistance in harsh environments. IEEE Electrical Insulation Magazine,1997,13(Copyright 1997, IEE):24-30.
    [97]Bin Y., Kitanaka M., Zhu D., et al. Development of Highly Oriented Polyethylene Filled with Aligned Carbon Nanotubes by Gelation/Crystallization from Solutions. Macromolecules,2003,36(16):6213-6219.
    [98]Drabik M., Kousal J., Pihosh Y., et al. Composite plasma polymer films prepared by RF magnetron sputtering of SiO2 and polyimide. Vacuum,2007, 81(7):920-927.
    [99]刘卫东,朱宝库.聚酰亚胺/二氧化硅杂化膜的制备与介电性能的研究.浙江化工,2007,(07):12-15,14.
    [100]Al-Kandary S., Ali A. A. M., Ahmad Z. New polyimide-silica nano-composites from the sol-gel process using organically-modified silica network structure. Journal of Materials Science,2006,41(10):2907-2914.
    [101]Zhang J., Zhu B.-K., Chu H.-J., et al. Silica/polyimide hybrids and their dielectric properties. I. Preparation with an improved sol-gel process with poly(amic acid) as the precursor. Journal of Applied Polymer Science,2005, 97(1):20-24.
    [102]Xie K., Liu J. G., Zhou H. W., et al. Soluble fluoro-polyimides derived from 1,3-bis(4-amino-2-trifluoromethyl- phenoxy) benzene and dianhydrides. Polymer,2001,42(17):1261-1214.
    [103]Kramarenko V. Y. S. T.A., Karpova, I.L., Dragan K.S., et al. polyimide reinforced with the sol-gel derived organosilicon nanophase as low dielectric permittivity materials. Polymers for Advanced Technologies,2004,15(3): 144-148.
    [104]Ce-Wen N. Physics of inhomogeneous inorganic material physics. Progress in Materials Science,1993,37(Copyright 1992, IEE):1-116.
    [105]Ahmad Z., Mark J. E. Polyimide-Ceramic Hybrid Composites by the Sol-Gel Route. Chemistry of Materials,2001,13(10):3320-3330.
    [106]Park C., Ounaies Z., Watson K. A., et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chemical Physics Letters,2002,364(3-4):303-308.
    [107]Xue P., Park K. H.,Tao X. M, et al. Y.Electrically conductive yarns based on PVA/carbon nanotubes. Composite Structures,2007,78(2):271-277.
    [108]Mo T.-C., Wang H.-W., Chen S.-Y., et al. Synthesis and characterization of polyimide/multi-walled carbon nanotube nanocomposites. Polymer Composites,2008,29(4):451-457.
    [109]胡爱军,吴俊涛,王德生,等.功能性聚酰亚胺薄膜的制备.宇航材料工艺,2006,36(2):23-26.
    [110]Goswami M. G., Singh R., Tiwari A., et al. In situ generated diphenylsiloxane-polyimide adduct-based nanocomposites. Polymer Engineering & Science,2005,45(1):142-152.
    [111]Bhuvana S., Saroja Devi, M. Bisphenol containing novel polyimides/glass fiber composites. Polymer Composites,2007,28(3):372-380.
    [112]Yuen S.-M., Ma C.-C. M., Chiang C.-L., et al. Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite. Journal of Polymer Science Part A:Polymer Chemistry,2007,45(15):3349-3358.
    [113]Gao L., Zhou X., Ding Y. Effective thermal and electrical conductivity of carbon nanotube composites. Chemical Physics Letters,2007,434(4-6):297-300.
    [114]Deshmukh S., Ounaies Z. Single walled carbon nanotube (SWNT)-polyimide nanocomposites as electrostrictive materials. Sensors and Actuators A:Physical, 2009,155(2):246-252.
    [115]Chou W.-J., Wang C.-C., Chen C.-Y. Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes. Composites Science and Technology,2008,68(10-11):2208-2213.
    [116]Treacy M. M. J., Ebbesen T. W., Gibson J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature,1996,381(6584): 678-680.
    [117]Wong E. W. S. Paul E. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nonotubes. Science,1997,277(5334):1971-1975.
    [118]Qing S., Dong Y., Yanlei S., et al. Covalent functionalization of multi-walled carbon nanotubes by lipase. Journal of Nanoparticle Research,2007, 9(Copyright 2009, The Institution of Engineering and Technology):1205-1210.
    [119]Sham M.-L., Kim J.-K. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon,2006,44(4):768-777.
    [120]Shen J., Huang W., Wu L., et al. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Composites Part A:Applied Science and Manufacturing,2007, 38(5):1331-1336.
    [121]Zhang B.-b., Shen J.-f., Hu Y.-z., et al. Functionalization of multi-walled carbon nanotubes using diamines. Journal of Fudan University (Natural Science),2008,47(Copyright 2009, The Institution of Engineering and Technology):454-460.
    [122]Hu Y.,Wu L.,Shen J., et al. Amino-functionalized multiple-walled carbon nanotubes-polyimide nanocomposite films fabricated by in situ polymerization. Journal of Applied Polymer Science,2008,110(2):701-705.
    [123]Pompeo F., Resasco D. E. Water Solubilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine. Nano Letters,2002,2(4): 369-373.
    [124]Azamian B. R., Davis J. J., Coleman K. S., et al. Bioelectrochemical Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2002,124(43):12664-12665.
    [125]Bao-Ku Z., Shu-Hui X., Zhi-Kang X., et al. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Composites Science and Technology,2006,66(Copyright 2006, IEE):548-554.
    [126]Sahoo N. G., Jung Y. C., Yoo H. J., et al. Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites. Macromolecular Chemistry and Physics,2006,207(19): 1773-1780.
    [127]Gao C., Vo C.D., Jin Y. Z., et al. Multihydroxy Polymer-Functionalized Carbon Nanotubes:Synthesis, Derivatization, and Metal Loading. Macromolecules,2005,38(21):8634-8648.
    [128]贺国文,谢玲,李衡峰,等.聚酰亚胺/碳纳米管纳米复合材料的制备及动态力学性能和介电性能研究.中国有色金属学报,2011,21(5):1123-1130.
    [129]Hu N., Zhou H., Dang G., et al. Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization. Polymer International,2007,56(5): 655-659.
    [130]Ajayan P. M., Stephan O., Colliex C., et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science,1994, 265(Compendex):1212-1214.
    [131]Barrau S., Demont P., Peigney A., et al. DC and AC Conductivity of Carbon Nanotubes-Polyepoxy Composites. Macromolecules,2003,36(14): 5187-5194.
    [132]Smith J. G., Connell J. W., Delozier D. M., et al. Space durable polymer/carbon nanotube films for electrostatic charge mitigation. Polymer, 2004,45(3):825-836.
    [133]Xie K., Liu J. G., Zhou H. W., et al. Soluble fluoro-polyimides derived from 1,3-bis(4-amino-2-trifluoromethyl-phenoxy) benzene and dianhydrides. Polymer,2001,42(Compendex):1261-1214.
    [134]Liu T., Tong Y., Zhang W.-D. Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Composites Science and Technology,2007,67(3-4):406-412.
    [135]Kong H., Gao C., Yan, D. Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization. Journal of the American Chemical Society,2003,126(2):412-413.
    [136]Li F., Fang S., Ge J. J., et al. Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films. Polymer,1999,40(16):4571-4583.
    [137]Morikawa A., Iyoku Y, Kakimoto M.-a., et al. Preparation of a new class of polyimide-silica hybrid films by sol-gel process. Polymer Journal,1992, 24(Compendex):107-113.
    [138]Ogasawara T., Ishida Y., Ishikawa T. Properties of vapor grown carbon nano fiber/phenylethynyl terminated polyimide composite. Advanced Composite Materials:The Official Journal of the Japan Society of Composite Materials, 2004,13(Compendex):215-226.
    [139]Shaffer M.S. P., Windle A. H. Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites. Advanced Materials,1999,11(11): 937-941.
    [140]Sandler J., Shaffer M. S. P., Prasse T., et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer,1999,40(21):5967-5971.
    [141]Tsangaris, G. M.; Kouloumbi, N.; Kyvelidis, S.Interfacial relaxation phenomena in particulate composites of epoxy resin with copper or iron particles[J].Materials Chemistry and Physics,1996,44(3):245-250.
    [142]Zois H., Apekis L., Omastova M. Electrical properties of carbon black-filled polymer composites. Macromolecular Symposia,2001,170(1): 249-256.
    [143]Brosseau C., Boulic F. Dielectric and microstructure properties of polymer carbon black composites. Journal of Applied Physics,1997,81(2):882.
    [144]Xiao M., Sun, L., Liu J., et al. Synthesis and properties of polystyrene/graphite nanocomposites. Polymer,2002,43(8):2245-2248.
    [145]Ounaies Z., Park C., Wise K. E., et al. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology,2003,63(Compendex):1637-1646.
    [146]何恩广,刘学忠.纳米TiO2填料对变频电机耐电晕电磁线绝缘性能的影响.电工技术学报,2008,18(1):72-76,42.
    [147]黄毅,彭兵,柴立元.纳米TiO2的有机表面改性及其在环保功能涂料中的应用.涂料工业,2005,35(3):49-53.
    [148]李传峰,钟顺和.溶胶凝胶法合成聚酰亚胺二氧化钛杂化膜.高分子学报,2002(03):326-330.
    [149]Tong Y., Li, Y., Xie F., et al. Preparation and characteristics of polyimide-TiO2 nanocomposite film. Polymer International,2000,49(11): 1543-1547.
    [150]翟宝清,王铎.TiO2改性聚酰亚胺功能材料的研制.化工新型材料,2008, 36(12):103-105.
    [151]王保玉,张景会,刘湛望.Ti02纳米管的制备与表征.精细化工,2003,20(6):333-336.
    [152]Zhang J., Wang B.-j., Ju X., et al. New observations on the optical properties of PPV/TiO2 nanocomposites. Polymer,2001,42(8):3697-3702.
    [153]Barbe C. J. A. Francine, Comte Pascal, Jirousek Marie, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society 1997,80(12):3157-3171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700