纳米结构二硫化钼(钨)的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构二硫化钼(钨)除了在润滑和催化领域具有广泛应用之外,在锂电池、储氢、光电学、机械、化工等领域也有巨大的应用前景。由于其结构的各向异性,不同形貌结构对性能的影响十分显著,因此,通过改进现有方法与工艺,同时不断开发新方法和新工艺,进一步拓展纳米结构二硫化钼(钨)的制备技术,实现微结构的调控制备,可大幅提升其应用性能,使之在更广泛的领域得到应用,具有重要的理论和实践意义。本文主要致力于纳米结构二硫化钼(钨)新技术的开发,并围绕所得产物的形貌结构,研究其形成机理,同时拓展其潜在的应用价值。
     采用表面活性剂促助法,分别选用不同类型的表面活性剂,包括阴离子型的SDBS,非离子型的PEG和阳离子型的CTAC,用于制备各种不同形貌的二硫化钼纳米结构,同时研究了各种活性剂对最终产物形貌的影响;采用液相还原法,阴离子型的SDBS可以促助生成粒度约100nm的二硫化钼六方颗粒,而非离子型的PEG通过构建脚手架,促助形成二硫化钼空心微球,阳离子型的CTAC则直接参与化学反应,得到具有中空结构的二硫化钼纳米球,而阴离子型的SDBS和非离子型的PEG作为复配活性剂时,产物为长约200-400nm的二硫化钼纳米杆;采用高浓度的PEG作为包覆剂,借助“空间位阻效应”,得到前驱体三硫化钼纳米球,再经后续高温氢还原,可以制备出直径约为100nm的实心纳米球。
     首次采用机械化学法,基于机械球磨过程中的瞬时高温高压效应,以三硫化钼为前驱体,成功制备出二硫化钼纳米颗粒,并研究了转速和球磨时间的影响;同时,研究了机械球磨预处理对普通微米颗粒及其加氢脱氧催化性能的影响。转速为400rpm以上,且球磨时间超过24h才能使前驱体完全分解;机械球磨预处理会碾碎原先的大块微米颗粒,创造大量多空配位键,使之具有很高的反应频率因子,从而极大提高催化活性,但球磨预处理并未改变其反应路径选择性。
     首次采用固相微区反应法,借助机械球磨实现微米粒子的超细匀态分布,成功制备出二硫化钼纳米片,系统研究了硫化温度,硫化时间和机械球磨预处理对产物的影响,讨论其形成机制,并探讨其在高温煅烧下的固相自组装过程。在600℃下硫化时间超过10min即可完成反应,而硫化温度则在400-700℃为宜;机械预处理实现了超细粒子的匀态分布,创造出大量“反应微区”,有利于最终纳米片的形成;二硫化钼纳米片通过粘结和堆垛,在高温煅烧下可以形成尺寸更大的规则六方纳米板结构。
     采用四球摩擦实验机,综合对比了二硫化钼纳米片与商用二硫化钼超细颗粒的润滑性能,同时研究了添加剂含量和分散剂对摩擦性能的影响。二硫化钼纳米片由于表面活性较高,能形成牢固的润滑膜,表现出较低的摩擦系数,更好的减磨和抗负荷能力,其最佳添加量为1.5wt%,而分散剂Span-80能有效改善添加剂在基础油中的分散,增强抗磨能力。
     通过改变硫化温度获得具有不同堆垛层数的纳米片结构,然后研究硫化温度对二硫化钼纳米片催化剂的影响及其堆垛结构随加氢脱硫反应性能之间的变化关系。随着硫化温度的升高,无助剂催化剂的比表面积和金属分散性均不断下降;而其堆垛结构-催化性能变化关系,则遵循"Rim-Edge"模型,但是在临界值(7.7nm),其变化趋势发生逆转。
     系统研究了镍和钻助剂的添加对二硫化钼纳米片催化剂的影响,包括结构及其催化性能。镍和钴助剂的添加都会明显减小孔径,但会提高金属分散性;镍助剂会促进二硫化钼的晶体生长,而钴助剂则会在较低温度下抑制其生长;镍和钴的添加,都会提高活性,且倾向于DDS反应路径,但随着硫化温度的升高,两者对催化活性和选择性的影响却大不一样;NiMo催化剂的活性不断下降而其HYD选择性则不断升高;CoMo催化剂的活性先是不断增加,直到700℃达到最大值,而后才会因烧结相的形成而急剧下降,其HYD选择性则呈现与之相反的变化趋势;
     首次采用固相微区反应法,成功制备出单分散二硫化钨纳米片和无机富勒烯结构,考察了硫化温度,硫化时间及机械球磨对产物形成的影响,并测试了其制氢反应催化性能。只有在600-700℃下硫化,才能制得二硫化钨纳米片,而在800℃硫化,可以制得二硫化钨无机富勒烯结构;在600℃下硫化,反应时间必须持续30min以上,才能保证反应完全;机械球磨预处理的机械活化效应不仅使整个反应过程更加直接快速,没有任何中间反应产物,还促使氧化钨外层迅速硫化,起到模板导向作用,引导纳米片和富勒烯结构的形成;基于纳米片结构较为疏松的堆垛结构,其制氢催化活性是二硫化钼催化剂的8.6倍,其制氢反应遵循Volmer-Heyrovsky机制,速控步为电化学脱附过程。
Besides in the field of lubrications and catalysts, molybdenum/tungsten disulfide nanomaterials were also widely used in lithium batteries, hydrogen storage, photoelectricity, engine and chemical industry. Due to the structural anisotropy, the differences of morphology and structure will affect the performances significantly. Therefore, it is necessary to improve the current preparation technologies and explore novel methods, which can control the preparation of microstructures, enhancing the final performances. And then, they can be used in more fields, which is very important for developments of theory and applications. The current thesis is focused on exploring novel methods to prepare molybdenum/tungsten disulfide nanomaterials, discussing the formation mechanism of the products'morphologies and structures, and exploring their potential applications.
     Molybdenum disulfide nanostructures with different morphologies were prepared by a surfactant-assisted method, adopting surfactants with different types, including anionic SDBS, non-ionic PEG and cationic CTAC. And the influences of various surfactants on the morphologies of final products were studied. It was shown that molybdenum disulfide hexagonal nanoparticles with a size of100nm was prepared via a liquid phase reduction method, adopting anionic SDBS, and hollow molybdenum disulfide microspheres were obtained using non-ionic PEG as a template. However, the cationic CTAC would attend the chemical reaction and promote the formation of hollow molybdenum disulfide nanospheres. If anionic SDBS and non-ionic PEG were used together, the final products were molybdenum disulfide nanorods with a length of200-400nm. Moreover, molybdenum disulfide solid nanosperes with a diameter of100nm could be synthesized by a hydrogen reduction process adopting PEG as the covering agent, in which molybdenum trisulfide nanopsheres were used as precursors and then reduced in an atmosphere of hydrogen at high temperatures.
     Based on the effect of instantaneous high-temperature and high-pressure during ball milling process, molybdenum disulfide nanoparticles were successfully prepared by a mechanochemical method, adopting molybdenum trisulfide as precursors, and the effects of ball-milling speed and time were also studied. Moreover, the influence of the ball milling pretreatment on general microparticles and their hydrodeoxygenation performances was discussed. It was shown that the precursors could be decomposed completely only at a rotation speed of over400rpm for more than24h, and the pretreatment of ball milling would crash the previous huge microparticles, creating a lot of multiple coordinatively unsaturated vacancies, which would rise the TOFs (turnover frequencies) and enhance the final catalytic activity. However, the pretreatment of ball milling did not change the selectivity of reaction route at all.
     Molybdenum disulfide nanosheets were successfully prepared by a solid micro-domain method, in which microparticles could be crashed into ultrafine particles and distributed homogeneously. The effects of annealing temperature, annealing time and the pretreatment of ball milling on the final products were also discussed. The formation mechanism of nanosheets and their solid self-assembly process at high temperatures were also studied. It was found that the nanosheets could be obtained at400-700℃, and it took only10min to finish the reaction at600℃. The pretreatment of ball milling helped distribute the ultrafine particles homogeneously and create lots of "micro-domains", which promoted the formation of the final nanosheets. Moreover, the molybdenum disulfide nanosheets would transform into larger regular hexagonal nanoplates through cohering and stacking at high temperatures.
     The lubricating properties of molybdenum disulfide nanosheets were tested by a four-ball tribometer, and compared with that of commercial ultrafine particles. The influences of dispersant and additive content on tribological performances were also investigated. The results showed that the molybdenum disulfide nanosheets could form stable lubricating films due to high surface activity, and showed lower friction factor, better anti-attrition and load-carrying capacity. The optimized content of additive was1.5wt%and the dispersant of Span-80could improve the dispersion of additives in basal oils, enhancing their antiwear capacity.
     Nanosheets with various stacking heights were obtained by adjusting the annealing temperatures. Then, the effect of annealing temperatures on molybdenum disulfide nanosheet catalysts and the relation bwteen the stacking height and hydrodesulfurization function were studied. It was found that the surface area and metal dispersion would decrease with the increasing of annealing temperatures and the relation between stacking structures and catalytic function could be explained by "Rim-Edge" model with a slight modification that there was a crucial value (7.7nm) reversing the trend.
     The influences of assistants (Ni and Co) on molybdenum disulfide nanosheet catalysts were investigated systematically, including their structures and catalytic functions. The results showed that the addition of Ni and Co would reduce the pore diameter significantly but improve their metal dispersion, and the addition of Ni would promote the crystal growth of molybdenum disulfide but Co would suspend it at relatively low temperatures. Both of them enhanced the final activity and preferred the reaction route of DDS. However, the effects of them on catalytic activity and selectivity were quite different with increasing annealing temperatures:the activity of NiMo catalysts would be decreased and their HYD selectivity would be increased; While, the activity of CoMo catalysts was increased consistantly and reached the maximum value at700℃, then decreased sharply due to the formation of segregations, but the HYD selectivity showed the reverse trend.
     Tungsten disulfide monodisperse nanosheets and inorganic fullerene structures were successfully synthesized by a solid micro-domain reaction method, and the effects of annealing temperatures, annealing time and the pretreatment of ball milling on the formation of final products were investigated. And their catalytic function for hydrogen evolution reaction (HER) was also tested. It was found that the tungsten disulfide nanosheets could only be obtained at600-700℃, and inorganic fullerene structures was prepared at800℃. The reaction must be kept for more than30min at600℃, or the final products could not be sulfurized completely. The pretreatment of ball milling not only made the whole reaction process faster and more direct, but also promoted the sulfurization of outer layers of tungsten oxide, inducing the formation of nanosheets and inorganic fullerene structures as a template. Due to the loosely stacking structures of nanosheets, their catalytic activity for hydrogen evolution reaction was much better (8.6times) than that of common molybdenum disulfide catalysts. The rate-limiting step was electrochemical desorption and the Volmer-Heyrovsky HER mechanism was operative in the HER catalyzed by the tungsten disulfide nanosheets.
引文
[1]张文钲,康泰成,黄宪法.钼冶炼[M],第一版.陕西:西安交通大学出版社,1991:181.
    [2]武存喜,杨海滨,李享,等.无机富勒烯二硫化钼的减摩抗磨特性[J].润滑与密封,2007,32(7):118-121.
    [3]宋也黎,李国伟,晋跃,等.水热法合成花状MoS2纳米粉及其摩擦学性能[J].机械工程材料,2011,35(6):49-52.
    [4]张泽抚,刘维民,薛群基,等.钼化合物润滑材料的摩擦学应用与研究发展现状[J].摩擦学学报,1998,18(4):377-382.
    [5]胡坤宏,胡献国,田明,等.纳米二硫化钼制备工艺及其润滑性能研究[J].哈尔滨工业大学学报,2006,38(增刊):201-204.
    [6]Wu Z Z, Wang D Z, Wang Y, et al. Preparation and Tribological Properties of MoS2 Nanosheets [J]. Advanced Engineering Materials,2010,12(6):534-538.
    [7]葛晖,李学宽,樊卫斌,等.氮气热处理对硫代硫酸铵预硫化的Mo/Al2O3催化剂的影响[J].催化学报,2009,30(2):111-118.
    [8]王亚男,李广学.二硫化钼催化剂的制备与应用[J].广东化工,2009,36(3):30-34.
    [9]马祟乐,金鑫,丁玲,等.高比表面积二硫化铝的制备及其对喹啉选择加氢反应的催化性能[J].催化学报,2009,30(1):78-82.
    [10]Valle M D, Cruz-Reyes J, Avalos-Borja M, et al. Hydrodesulfurization activity of MoS2 catalysts modified by chemical exfoliation [J]. Catalysis Letters,1998, 54(1-2):59-63.
    [11]Zhu Y Q, Sekine T, Li Y H, et al. WS2 and MoS2 Inorganic Fullerenes-Super Shock Absorbers at Very High Pressures [J]. Adv. Mater.,2005,17(12): 1500-1503.
    [12]Homyonfer M, Alperson B, Rosenberg Y, et al. Intercalation of Inorganic Fullerene-like Structures Yields Photosensitive Films and New Tips for Scanning Probe Microscopy [J]. J. Am. Chem. Soc.,1997,119(11):2693-2698.
    [13]Rothschild A, Cohen S R, Tenne R. WS2 nanotubes as tips in scanning probe microscopy [J]. Applied Physics Letters,1999,75(25):4025-4027.
    [14]Chen J, Kuriyama N, Yuan H T, et al. Electrochemcial Hydrogen Storage in MoS2 Nanotubes [J]. J. Am. Chem. Soc.,2001,123(47):11813-11814.
    [15]Chen J, Li S L, Tao Z L. Novel hydrogen storage properties of MoS2 nanotubes [J]. Journal of Alloys and Compounds,2003,356-357:413-417.
    [16]Chen J, Wu F. Review of hydrogen storage in inorganic fullerene-like nanotubes [J]. Appl. Phys. A,2004,78(7):989-994.
    [17]Xiao J, Choi D, Cosimbescu L, et al. Exfoliated MoS2 Nanocomposites as an Anode Materials for Lithium Ion Batteries [J]. Chem. Mater.,2010,22(16): 4522-4524.
    [18]Sana Ana M A, Mirabal N, Benavente E, et al. Electrochemical behavior of lithium intercalated in a molybdenum disulfide-crown ether nanocomposites [J]. Electrochemical Acta,2007,53(4):1432-1438.
    [19]Chang K, Chen W X, Ma L, et al. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries [J]. J. Mater. Chem.,2011,21(17):6251-6257.
    [20]Chang K, Chen W X. Singer-layer MoS2/grapheme dispersed in amorphous carbon:towards high electrochemical performances in rechargeable lithium ion batteries [J]. J. Mater. Chem.,2011,21(17):17175-17184.
    [21]Feng C Q, Ma J, Li H, et al. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications [J]. Materials Research Bulletin,2009,44(9): 1811-1815.
    [22]Feng C Q, Huang L F, Guo Z P, et al. Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application [J]. Electrochemistry Communications,2007,9(1):119-122.
    [23]Hwang H, Kim H, Cho J. MoS2 Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials [J]. Nano Lett.,2011,11(11):4826-4830.
    [24]Ding S J, Zhang D Y, Chen J S, et al. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their storage properties [J]. Nanoscale,2012,4(1):95-98.
    [25]Karunadasa H I, Montalvo E, Sun Y, et al. A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation [J]. Science,2012,335(6069):698-702.
    [26]Zong X, Yan H, Wu G, et al. Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Coatalyst under Visible Light Irradiation [J]. J.Am.Chem.Soc,2008,130(23):7176-7177.
    [27]Rapoport L, Fleischer N, Tenne R. Fullerene-like WS2 Nanoparticles Superior Lubricants for Harsh Conditions [J]. Adv. Mater.,2003,15(7-8):651-655.
    [28]Rapoport L, Billk Y. Feldman Y, et al. Hollow nanoparticles of WS2 as potential solid-state lubricants [J]. Nature,1997,387(6635):791-793.
    [29]Rapoport L, Nepomnyashchy O, Lapsker I, et al. Behavior of the fullerene-like WS2 nanoparticles under severe contact conditions [J].2005,259(1-6):703-707.
    [30]Vrinat M, Breysse M, Geantet C, et al. Effect of MoS2 morphology on the HDS activity of hydrotreating catalysts [J]. Catalysis Letters,1994,26(1-2):25-35.
    [31]Rueda N, Bacaud R, Vrinat M. Highly Dispersed, Nonsupported Molybdenum Sulfides [J]. J. Catal.,1997,169(1):404-406.
    [32]Boone W P, Ekerdt J G. Hydrodesulfurization Studies with a Single-Layer Molybdneum Disulfide Catalyst [J]. J. Catal.,2000,193(1):96-102.
    [33]Alonso G, Berhault G, Aguilar A, et al. Characterization and HDS Activity of Mesoporous MoS2 Catalysts Prepared by in Situ Activation of Tetraalkylammonium Thiomolybdates [J]. J. Catal.,2002,208(2):359-369.
    [34]Wang A J, Wang Y, Kabe T, et al. Hydrodesulfurization of Dibenzothiophene over Siliceous MCM-41-Supported Catalysts:II.Sulfided Ni-Mo Catalysts [J]. J. Catal., 2002,210(2):319-327.
    [35]Dhar G M, Ramakrishna H, Rao T S R P. Effect of sintering on the catalytic functionalities of MoS2/Al2O3 catalysts [J]. Catalysis Letters,1993,22(4): 351-359.
    [36]Ge H, Li X K, Qin Z F, et al. Highly active Mo/Al2O3 hydrodesulfurization catalyst presulfided with ammonium thiosulfate [J]. Catalysis. Communications, 2008,9(15):2578-2582.
    [37]Okamoto Y, Hioka K, Arakawa K, et al. Effect of sulfidation atmosphere on the hydrodesulfurization activity of SiO2-supported Co-Mo sulfide catalysts:Local structure and intrinsic activity of the active sites [J]. J. Catal.,2009,268(1): 49-59.
    [38]Wang H M, Prins R. Hydrodesulfurization of dibenzothiophene,4, 6-dimethyldibenzothiophene, and their hydrogenated intermediates over Ni-MoS2/λ-Al2O3 [J]. J. Catal.,2009,264(15):31-43.
    [39]Sun Y Y, Prins R. Mechanistic studies and kinetics of the hydrodesulfurization of dibenzothiophene on Co-MoS2/λ-Al203 [J]. J. Catal.,2009,267(2):193-201.
    [40]Pashigreva A V, Bukhtiyarova G A, Klimov O V, et al. Activity and sulfidation behavior of the CoMo/Al2O3 hydrotreating catalyst:The effect of drying conditions [J]. Catalysis Today,2010,149(1-2):19-27.
    [41]Viljava T R, Komulainen R S, Krause A O I. Effect of H2S on the stability of CoMo/Al203 catalysts during hydrodeoxygenation [J]. Catalysis Today,2000, 60(1-2):83-92.
    [42]Ferrari M, Maggi R, Delmon B, et al. Influences of the Hydrogen Sulfide Partial Pressure and of a Nitrogen Compound on the Hydrodeoxygenation Activity of a CoMo/Carbon Catalyst [J]. J. Catal.,2001,198(1):47-55.
    [43]Bunch A Y, Ozkan U S. Investigation of the Reaction Network of Benzofuran Hydrodeoxygenation over Sulfided and Reduced Ni-Mo/Al2O3 Catalysts [J]. J. Catal.,2002,206(2):177-187.
    [44]Romero Y, Richard F, Brunet S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfide Mo-based catalysts:Promoting effect and reaction mechanism [J]. Applied Catalysis B:Environmental,2010,98(3-4): 213-223.
    [45]Dupont C, Lemeur R, Daudin A, et al. Hydrodeoxygenation pathways catalyzed by MoS2 and NiMoS active phases:A DFT study [J]. J. Catal.,2011,279(2): 276-286.
    [46]Prins R, Zhao Y, Sivasankar N, et al. Mechanism of C-N bond breaking in hydrodenitrogenation [J]. J. Catal.,2005,234(2):509-512.
    [47]Prins R, Egorova M, Rothlisberger A, et al. Mechanisms of hydrodesulfurization and hydrodenitrogenation [J]. Catalysis Today,2006,111(1-2):84-93.
    [48]Valdevenito F, Garcia R, Escalona N, et al. Ni/Mo synergism via hydrogen spillover, in pyridine hydrodenitrogenation [J]. Catalysis Communications,2010, 11(14):1154-1156.
    [49]Abu I I, Smith K J. Hydrodenitrogenation of carbazole over a series of bulk NixMoP catalysts [J]. Catalysis Today,2007,125(3-4):248-255.
    [50]Song C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalysis Today,2003,86(1-4):211-263.
    [51]Lumbreras J A, Huirache-Acuna R, Rivera-Munoz E M, et al. Unsupported Ni/Mo(W)S2 Catalysts from Hexamethylenediammonium Thiometallates Precursors:In Situ Activation During the HDS of DBT [J]. Catalysis Letters, 2010,134(1-2):138-146.
    [52]Olivas A, Galvan D H, Alonso G, et al. Trimetallic NiMoW unsupported catalysts for HDS [J]. Applied Catalysis A:General,2009,352(1-2):10-16.
    [53]张乐,龙湘云,陈若雷,等.高活性非负载型加氢催化剂的研究[J].石油炼制与化工,2008,39(8):30-35.
    [54]郭金涛,田然,张志华,等.新型体相柴油加氢精制催化剂的研制[J].石油炼制与化工,2010,41(6):26-29.
    [55]Olivas A, Zepeda T A, Villapando I, et al. Performance of unsupported Ni(Co, Fe)/MoS2 catalysts in hydrotreating reactions [J]. Catalysis Communications, 2008,9(6):1317-1328.
    [56]宋君护,罗长江.二硫化钼润滑剂生存现状及市场[J].中国铝业,1997,21(2-3):127-130.
    [57]Muijsers J C, Weber T, Vanhardeveld R M, et al. Sulfidation Study of Molybdenum Oxide Using MoO3/SiO2/Si(100) Model Catalysts and Mo-Ⅳ3-Sulfur Cluster Compounds [J]. J. Catal,1995,157(2):698-705.
    [58]Feldman Y, Wasserman E, Tenner R, et al. High-rate, gas-phase growth of nested inorganic fullerences and nanotubes [J]. Science,1995,267(5195):222-225.
    [59]高宾,许启明,赵鹏,等.化学气相反应合成MoS2纳米管的研究[J].功能材 料与器件学报,2006,12(2):143-146.
    [60]Eggertsen F T, Roberts R M. Molybdenum Disulfide of High Surface Area [J]. J. Am. Chem. Soc.,1959,63 (11):1981-1982.
    [61]Brito J L, Ilija M, Hernandez P. Thermal and reductive decomposition of ammonium thiomolybdates [J]. Thermochim. Acta.,1995,256 (2):325-338.
    [62]Afanasiev P, Bezverkhyy I. Ternary transition metals sulfides in hydrotreating catalysis [J]. Appl. Catal. A:General,2007,322 (16):129-141.
    [63]Walton R I, Dent A J, Hibble S J. In Situ Investigation of the Thermal Decomposition of Ammonium Tetrathiomolybdate Using Combined Time-Resolved X-ray Absorption Spectroscopy and X-ray Diffraction [J]. Chem. Mater.,1998,10(11):3737-3745.
    [64]Genuit D, Afanasiev P, Vrinat M. Solution syntheses of unsupported Co(Ni)-Mo-S hydrotreating catalysts [J]. J. Catal.,2005,235(2):302-317.
    [65]Muller A, Diemann E, Branding A, et al. New method for the preparation of hydrodesulphurization catalysts:Use of the molybdenum sulphur cluster compound (NH4)2[Mo3ⅣS13] [J]. Appl. Catal,1990,62 (1):L13-L17.
    [66]Leist A, Stauf S, Loken S, et al. Semiporous MoS2 obtained by the decomposition of thiomolybdate precursors [J]. J. Mater. Chem.,1998,479(1):241-244.
    [67]Afanasiev P. Synthetic approaches to the molybdenum sulfide materials [J]. Comptes Rendus Chimie,2008,11(1-2):159-182.
    [68]Devers E, Afanasiev P, Jouguet B, et al. Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides [J]. Catal. Lett,2002,82(1-2): 13-17.
    [69]Peng Y Y, Meng Z Y, Zhong C, et al. Hydrothermal Synthesis of MoS2 and Its Pressure-Related Crystallization [J]. J. Solid State Chem.,2001,159(1):170-173.
    [70]Bokhimi X, Toledo J A, Navarrete J, et al. Thermal evolution in air and argon of nanocrystalline MoS2 synthesized under hydrothermal conditions [J]. Int. J. Hydrogen Energy,2001,26(12):1271-1277.
    [71]Li W J, Shi E W, Ko J M, et al. Hydrothermal synthesis of MoS2 nanowires [J]. J. Cryst. Grouth,2003,250(3-4):418-422.
    [72]Tian Y, He Y, Zhu Y F. Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods [J]. Mater. Chem. Phys.,2004, 87(1):87-90.
    [73]Li Q, Li M, Chen Z, et al. Simple solution route to uniform MoS2 particles with randomly stacked layers [J]. Mater. Res. Bull.,2004,39(7-8):981-986.
    [74]Peng Y Y, Meng Z Y, Zhong C, et al. Tube-and ball-like amorphous MoS2 prepared by a solvothermal method [J]. Mater. Chem. Phys.,2002,73(2-3): 327-329.
    [75]田野,朱永法,王威,等.MoS2的水热合成及其润滑性能[J].物理化学学报,2003,19(11):1044-1048.
    [76]田野,尚静,朱永法,等.水热法合成MoS2层状材料及其结构表征[J].化学学报,2004,18(62):1807-1810.
    [77]Bezverkhy I, Afanasiev P, Lacroix M. Aqueous Preparation of Highly Dispersed Molybdenum Sulfide [J]. Inorg. Chem.,2000,39(24):5416-5417.
    [78]Bezverkhy I, Afanasiev P, Geantet C, et al. Highly Active (Co)MoS2/Al203 Hydrodesulfurization Catalysts Prepared in Aqueous Solution [J]. J. Catal.,2001, 204(2):495-497.
    [79]Bezverkhy I, Afanasiev P, Lacroix M. Promotion of highly loaded MOS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution [J]. J. Catal.,2005, 230(1):133-139.
    [80]Afanasiev P, Geantet C, Thomazeau C, et al. Molybdenum polysulfide hollow microtubules grown at room temperature from solution [J]. Chem.Commun,2000, (12):1001-1002.
    [81]Afanasiev P, Bezverkhy I. Genesis of Vesicle-Like and Tubular Morphologies in Inorganic Precipitates:Amorphous Mo Oxysulfides [J]. J. Phys. Chem. B,2003, 107(12):2678-2683.
    [82]Tian Y M, Zhao J Z, Fu W Y, et al. A facile route to synthesis of MoS2 nanorods [J]. Mater. Lett.,2005,59(27):3452-3455.
    [83]Liao H W, Wang Y F, Zhang S Y, et al. A Solution Low-Temperature Route to MoS2 Fiber [J]. Chem. Mater.,2001,13(1):6-8.
    [84]Wu Z Z, Wang D Z, Sun A K. Surfactant-assisted preparation of hexagonal molybdenum disulfide nanoparticles [J]. Mater. Lett.,2009,63(29):2591-2593.
    [85]Afanasiev P, Xia G F, Berhault G, et al. Surfactant-Assisted Synthesis of Highly Dispersed Molybdenum Sulfide [J]. Chem. Mater.,1999,11(11):3216-3219.
    [86]Genuit D, Bezverkhyy I, Afanasiev P. Solution preparation of the amorphous molybdenum oxysulfide MoOS2 and its use for catalysis [J]. J. Solid State Chem., 2005,178(9):2759-2765.
    [87]Xiong Y, Xie Y, Li Z, et al. Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres [J]. Chem. Phys. Lett.,2003,382(1-2):180-185.
    [88]Bezverkhy I, Afanasiev P, Lacriox M. Preparation and chemical transformation of surfactant-templated hybrid phase containing [MoS4]2- anions [J]. Mater. Res. Bull.,2002,37(1):161-168.
    [89]Trikalities P N, Kerr T A, Kanatzidis M G. Mesostructured cobalt and nickel molybdenum sulfides [J]. Microporous Mesoporous Mater.,2005,88(1-3): 187-190.
    [90]Flores-Qrtiz L F, Cortes-Jacome M A, Angeles-Chavez C, et al. Synthesis and structural characterization of molybdenum sulfide tubulenes [J]. Sol. Energy Mater. Sol. Cells.,2006,90(6):813-824.
    [91]邹同征,涂江平,夏正志,等.聚乙二醇为分散剂的沉淀法制备IF-MoS2[J].无机化学学报,2005,8(21):1170-1174.
    [92]Albu-Yaron A, Levy-Clement C, Hutchison J L. A Study on MoS2 Thin Films Electrochemically Deposited in Ethylene Glycol at 165℃ [J]. Electrochem. Solid-State Lett.,1999,2(12):627-630.
    [93]Catherine M Z, Peter K D. Template Synthesis of Near-Monodisperse Microscale Nanofibers and Nanotubules of MoS2 [J]. J. Am. Chem. Soc.,1998,120(4): 734-742.
    [94]Zheng X W, Zhu L Y, Yan A H, et al. Ultrasound-assisted cracking process to prepare MoS2 nanorods [J]. Ultrasonics Sonochemistry,2004,11(2):83-88.
    [95]Chu G S, Bian G Z, Fu Y L, et al. Preparation and structural characterization of nano-sized amorphous powders of MoS2 by y-irradiation method [J]. Mater. Lett., 2000,43(3):81-86.
    [96]Afanasiev P, Rawas L, Vrinat M. Synthesis of dispersed Mo sulfides in the reactive fluxes containing liquid sulfur and alkali metal carbonates [J]. Mater. Chem. Phys.,2002,73(2-3):295-300.
    [97]Tan X L, Fang M, Chen C L, et al. Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution [J]. Carbon,2008,46(13):1741-1750
    [98]Li X L, Li Y D. MoS2 Nanostructures:Synthesis and Electrochemical Mg2+ Intercalation [J]. J. Phys. Chem. B.,2004,108(37):13893-13900.
    [99]王莉,贾殿赠,刘浪,等.室温固相化学反应合成表面修饰的碘化铅纳米棒[J].化学学报,2005,63(6):503-506.
    [100]Mcdonald J W, Friesen G D, Rosenhein L D, et al. Syntheses and characterization of ammonium and tetraalkylammonium thiomolybdates and thiotungstates [J]. Inorg. Chem. Acta.,1983,72:205-210.
    [101]Li L S, Wang H Z, Liu Y C, et al. Room temperature synthesis of HgTe nanocrystals [J]. J. Colloid Interface Sci.,2007,308(1):254-257.
    [102]王纯荣,方云,李波.在SDS-PVP团簇软模板中组装多脚状金纳米粒子[J].物理化学学报,2008,24(1):183-186.
    [103]陶新永,张孝彬,孔凡志,等.PEG辅助氧化锌纳米棒的水热法制备[J].化学学报,2004,62(17):1658-1662.
    [104]杨琪,刘磊,沈彬,等.以汞为反应介质制备氧化锌纳米空心球[J].无机材料学报,2008,23(1):39-42.
    [105]吴壮志,王德志,徐兵.以聚乙二醇为模板剂制备MoS2空心微球[J].物理 化学学报,2008,24(10):1927-1931.
    [106]Srolovitz D J, Safran S A, Homyonfer M, et al. Morphology of Nested Fullerenes [J]. Phys. Rev. Lett.,1995,74(10):1779-1782.
    [107]Berdinsky A S, Chadderton L T, Yoo J B, et al. Structural changes of MoS2 nano-powder in dependence on the annealing temperature [J]. Applied Physics A, 2005,80(1):61-67.
    [108]Chang L X, Yang H B, Fu W Y, et al. Simple synthesis of MoS2 inorganic fullerene-like nanomaterials from MoS2 amorphous nanoparticles [J]. Mater. Res. Bull,2008,43(8-9):2427-2433.
    [109]Xie Y, Huang J, Li B, et al. A Novel Peanut-like Nanostructure of II-VI Semiconductor CdS and ZnS [J]. Adv. Mater.,2000,12(20):1523-1526.
    [110]Bellamy L J. The Infra-red Spectra of Complex Molecules [M]. London: Methuen,1958:318-319.
    [111]Bezverkhyy I, Afanasiev P, Lacroix M. Preparation and chemical transformation of surfactant-templated hydrid phase containing [MoS4]2- anions [J]. Mater. Res. Bull.,2002,37(1):161-168.
    [112]肖奇,王平华,纪玲玲,等.分散剂CTAB对碳纳米管悬浮液分散性能的影响[J].无机材料学报,2007,22(6):1122-1126.
    [113]Tian Y M, Zhao X, Shen L C, et al. Synthesis of amorphous MoS2 nanospheres by hydrothermal reaction [J]. Mater. Lett.,2006,60(4):527-529.
    [114]Pan W H, Leonowicz M E, Stifel E I. Facile syntheses of new molybdenum and tungsten sulfido complexes. Structure of Mo3S92-[J]. Inorg. Chem.,1983,22(4): 672-678.
    [115]柴立元,程明明,彭兵,等.十二烷基苯磺酸钠对抗菌陶瓷釉料分散稳定性的影响[J].中南大学学报:自然科学版,2006,37(6):1107-1111.
    [116]刘秀兰,李佳,赵晓鹏,等.ZnO纳米棒的低温湿化学制备[J].功能材料,2005,36(4):636-638.
    [117]Pettersson E, Topgaard D, Stilbs P, et al. Surfactant/nonionic polymer interaction, a NMR diffusometry and NMR electrophoretic investigation [J]. Langmuir,2004, 20(4):1138-1143.
    [118]Cabane B, Duplessix R. Organization of surfactant micelles adsorbed on a polymer molecule in water:a neutron scattering study [J]. J. Phys.,1982,43(10): 1529-1542.
    [119]Chianelli R R, Berhault G, Torres B. Unsupported transition metal sulfide catalysts:100 years of science and application [J]. Catalysis Today,2009, 147(3-4):275-286.
    [120]Hu K H, Liu M, Wang Q J, et al. Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additive in liquid paraffin [J]. Tribology International,2009,42(1):33-39.
    [121]Li H, Li W J, Chen W X, et al. Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route [J]. Journal of Alloys and Compounds,2009,471(1-2): 442-447.
    [122]Feng C Q, Ma J, Li H, et al. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications [J]. Mater. Res. Bull.,2009,44(9):1811-1815.
    [123]Garadkar K M, Patil A A, Hankare P P, et al. MoS2:Preparation and their characterization [J]. Journal of Alloys and Compounds,2009,487(1-2):786-789.
    [124]Huang W Z, Xu Z D, Liu R, et al. Tungstenic acid induced assembly of hierarchical flower-like MoS2 spheres [J]. Mater. Res. Bull.,2008,43(10): 2799-2805.
    [125]Luo H, Xu C, Zou D B, et al. Hydrothermal synthesis of hollow MoS2 microspheres in ionic liquids/water binary emulsions [J]. Mater. Lett.,2008, 62(20):3558-3560.
    [126]Yin G L, Huang P H, Yu Z, et al. Spray drying process to synthesize multiple fullerene-like MoS2 particles [J]. Mater. Lett.,2007,61(6):1303-1306.
    [127]Pol V G, Pol S V, George P P, et al. Combining MoS2 or MoSe2 nanoflakes with carbon by reacting Mo(CO)6 with S or Se under their autogenic pressure at elevated temperature [J]. J. Mater. Sci.,2008,43(6):1966-1973.
    [128]Whiffen V M L, Smith K J. Hydrodeoxygenation of 4-Methylphenol over Unsupported MoP, MoS2, and MoOx Catalysts [J]. Energy Fuels,2010,24(9): 4728-4737.
    [129]Mohan D, Pittman C U, Steele P H. Pyrolysis of Wood/Biomass for Bio-oil:A Critical Review [J]. Energy Fuels,2006,20(3):848-889.
    [130]Furimsky E. Catalytic hydrodeoxygenation [J]. Appl. Catal. A.,2000,199(2): 147-190.
    [131]Kouzu M, Uchida K, Kuriki Y, et al. Micro-crystalline molybdenum sulfide prepared by mechanical milling as an unsupported model catalyst for the hydrodesulfurization of diesel fuel [J]. Appl. Catal. A.,2004,276(1-2):241-249.
    [132]Polyakov M, Indris S, Schwamborn S, et al. Mechanochemical activation of MoS2-Surface properties and catalytic activities in hydrogenation and isomerization of alkenes and in H2/D2 exchange [J]. J. Catal.,2008,260(2): 236-244.
    [133]Kuriki Y, Uchida K, Sekreta E, et al. Mechanical milling of metal sulfide particles and their catalytic activity-hydrogenation of 1-methylnaphthalene with molybdenum sulfide [J]. Fuel Processing Technology,1999,59(2-3): 189-200.
    [134]Farag H, Sakanishi K, Kouzu M, et al. Dibenzothiophene hydrodesulfurization over synthesized MoS2 catalysts [J]. Journal of Molecular Catalysis A:Chemical, 2003,206(1-2):399-408.
    [135]Bunch A Y, Ozkan U S. Investigation of the Reaction Network of Benzofuran Hydrodeoxygenation over Sulfided and Reduced Ni-Mo/Al2O3 Catalysts [J]. J. Catal.,2002,206(2):177-187.
    [136]Massoth F E, Politzer P, Concha M C, et al. Catalytic Hydrodeoxygenation of Methyl-Substituted Phenols:Correlations of Kinetic Parameters with Molecular Properties [J]. Journal of Physical Chemistry B,2006,110(29):14283-14291.
    [137]Yang Y Q, Tye C T, Smith K J. Influence of MoS2 catalyst morphology on the hydrodeoxygenation of phenols [J]. Catal. Commun.,2008,9(6):1364-1368.
    [138]Wang W Y, Yang Y Q, Bao J G, et al. Characterization and catalytic properties of Ni-Mo-B amorphous catalysts for phenol hydrodeoxygenation [J]. Catal. Commun.,2009,11(2):100-105.
    [139]Wang W Y, Yang Y Q, Luo H A, et al. Amorphous Co-Mo-B catalyst with high activity for the hydrodeoxygenation of bio-oil [J]. Catal. Commun.,2011,12(6): 436-440.
    [140]Uzcanga I, Bezverkhyy I, Afanasiev P, et al. Sonochemical Preparation of MoS2 in Aqueous Solution:Replication of the Cavitation Bubbles in an Inorganic Materials Morphology [J]. Chem. Mater.,2005,17(14):3575-3577.
    [141]Wu Z Z, Wang D Z, Sun A K. Surfactant-assisted fabrication of MoS2 nanospheres [J]. Journal of Materials Science,2010,45(1):182-187.
    [142]Daage M, Chianelli R R. Structure-Function Relations in Molybdenum Sulfide Catalysts:The "Rim-Edge" Model [J]. J. Catal.,1994,149(2):414-427.
    [143]Hensen E J M, Kooyman P J, Meer Y V D, et al. The Relation between Morphology and Hydrotreating Activity for Supported MoS2 Particles [J]. J. Catal.,2001,199(2):224-235.
    [144]Iwata Y, Araki Y, Honna K, et al. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils [J]. Catal. Today., 2001,65(2-4):335-341.
    [145]Kochubey D I, Babenko V P. Structure of MoS2-based catalysts for hydrodesulfurization prepared via exfoliation [J]. Reaction Kinetics and Catalysis Letters,2002,77(2):237-243.
    [146]Kochubei D I, Rogov V A, Babenko V P, et al. Structure and Thiophene Hydrodesulfurization Activity of MOS2/Al2O3 Catalysts [J]. Kinetics and Catalysis,2003,44(1):135-140.
    [147]Tye C T, Smith K J. Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst [J]. Catal. Today.,2006,116(4):461-468.
    [148]Chianelli R R, Prestridge E B, Pecoraro T A, et al. Molybdenum Disulfide in the Poorly Crystalline "Rag" Structure [J]. Science.,1979,203(4385):1105-1107.
    [149]Skralak S E, Suslick K S. Porous MoS2 Synthesized by Ultrasonic Spray Pyrolysis [J]. J. Am. Chem. Soc.,2005,127(28):9990-9991.
    [150]Li Y B, Bando Y, Golberg D, et al. MoS2 nanoflowers and their field-emission properties [J]. Appl. Phys. Lett.,2003,82(12):1962-1964.
    [151]Therese H A, Zink N, Kolb U, et al. Synthesis of MoO3 nanostructures and their facile conversion to MoS2 fullerenes and nanotubes [J]. Solid State Sci.,2006, 8(10):1133-1137.
    [152]Li X L, Li Y D. Formation of MoS2 Inorganic Fullerenes (IFs) by the Reaction of MoO3 Nanobelts and S [J]. Chem. Eur. J.,2003,9(12):2726-2731.
    [153]Chang L X, Yang H B, Li J X, et al. Simple synthesis and characteristics of Mo/MoS2 inorganic fullerene-like and actinomorphic nanospheres with core-shell structure [J]. Nanotechnology,2006,17(15):3827-3831.
    [154]Seo J W, Jun Y W, Parh S W, et al. Two-dimensional nanosheets crystals [J]. Angew. Chem. Int. Ed.,2007,46(46):8828-8831.
    [155]Park J C, Song H. Synthesis of Polycrystalline Mo/MoOx Nanoflakes and Their Transformation to MoO3 and MoS2 Nanoparticles [J]. Chem. Mater.,2007, 19(11):2706-2708.
    [156]Pol V G, Pol S V, Gedanken A. Micro to Nano Conversion:A One-Step, Environmentally Friendly, Solid State, Bulk Fabrication of WS2 and MoS2 Nanoplates [J]. Cryst. Growth Des.,2008,8(4):1126-1132.
    [157]Li Y D, Li X L, He R R, et al. Artificial Lamellar Mesostructures to WS2 Nanotubes [J]. J. Am. Chem. Soc.,2002,124(7):1411-1416.
    [158]Zak Z, Feldman Y, Alperovich V, et al. Growth Mechanism of MoS2 Fullerene-like Nanoparticles by Gas-Phase Synthesis [J]. J. Am. Chem. Soc., 2000,122(45):11108-11116.
    [159]Werner V S, Hugo M O. Mechanisms of the hydrogen reduction of molybdenum oxides [J]. Int. J. Refract. Met. Hard. Mater.,2002,20(4):261-269,
    [160]Feldman Y, Frey G L, Homyonfer M, et al. Bulk Synthesis of Inorganic Fullerene-like MS2 (M-Mo, W) from the Respective Trioxides and the Reaction Mechanism [J]. J. Am. Chem. Soc.,1996,118(23):5362-5367.
    [161]Tang Z, Kotov N A, Giersig M, et al. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires [J]. Science,2002,297(5579): 237-240.
    [162]Colfen H, Mann S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures [J]. Angew. Chem. Int. Ed.,2003, 42(21):2350-2365.
    [163]Huang H D, Tu J P, Gan L P, et al. An investigation on tribological properties of graphite nanosheets as oil additive [J]. Wear,2006,261(2):140-144.
    [164]Plantenga F L, Leviveld R G. Sulfur in fuels:more stringent sulfur specifications for fuels are driving innovation [J]. Appl. Catal. A:Gen.,2003,248(1-2):1-7.
    [165]Iwata Y, Sato K, Yoneda T, et al. Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods [J]. Catal. Today., 1998,45(1-4):353-359.
    [166]Roxlo C B, Daage M, Ruppert A F, et al. Optical absorption and catalytic activity of molybdenum sulfide edge surfaces [J]. J. Catal.,1986,100(1): 176-184.
    [167]Massoth F E, Muralidhar G, Shabtai J. Catalytic functionalities of supported sulfides:Ⅱ. Effect of support on Mo dispersion [J]. J. Catal.,1984,85(1):53-62.
    [168]Zmierczak. W, Muralidhar G, Massoth F E. Studies on molybdena catalysts:Ⅺ. Oxygen chemisorption on sulfide catalysts [J]. J. Catal.,1982,77(2):432-438.
    [169]Bocarando J, Huirache-Acuna R, Bensch W, et al. Unsupported Ni-Mo-W sulphide HDS catalysts with the varying nickel concentration [J]. Appl. Catal. A: Gen.,2009,363(1-2):45-51.
    [170]Farag H, EI-Hendawy A A, Skanishi K, et al. Catalytic activity of synthesized nanosized molybdenum disulfide for the hydrodesulfurization of dibenzothiophene:Effect of H2S partial pressure [J]. Appl. Catal. B.,2009, 91(1-2):189-197.
    [171]Afanasiev P. The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts [J]. J. Catal.,2010,269(2): 269--280.
    [172]Yoosuk B, Kim J H, Song C, et al. Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4,6-dimethyl-dibenzothiophene [J]. Catal. Today.,2008, 130(1):14-23.
    [173]Yoosuk B, Song C, Kim J H, et al. Effects of preparation conditions in hydrothermal synthesis of highly active unsupported NiMo sulfide catalysts for simultaneous hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene [J]. Catal, Today.,2010,149(1-2):52-61.
    [174]Siadati M H, Alonso G, Torres B, et al. Open flow hot isostatic pressing assisted synthesis of unsupported MoS2 catalysts [J]. Appl. Catal. A:Gen.,2006,305(2): 160-168.
    [175]Mahajan D, Marshall C L, Castagnola N, et al. Sono synthesis and characterization of nano-phase molybdenum-based materials for catalytic hydrodesulfurization [J]. Appl. Catal. A:Gen.,2004,258(1):83-91.
    [176]Cho A, Koh J H, Lee S, et al. Activity and thermal stability of sonochemically synthesized MoS2 and Ni-promoted MoS2 catalysts [J]. Catal. Today.,2010, 149(1-2):47-51.
    [177]Lee J J, Kim H, Moon S H, et al. Preparation of highly loaded, dispersed MOS2/Al2O3 catalysts for the deep hydrodesulfurization of dibenzothiophenes [J]. Appl. Catal. B:Environ.,2003,41(1-2):171-180.
    [178]Okamoto Y, Ochiai K, Kawano M, et al. Effect of support on the activity of Co-Mo sulfide model catalysts [J]. Appl. Catal. A:Gen.,2002,226(1-2): 115-127.
    [179]Lee J J, Kim H, Kim J H, et al. Performances of CoMoS/Al203 prepared by sonochemical and chemical vapor deposition methods in the hydrodesulurization of dibenzothiophene and 4,6-dimethyldibenzothiophene [J]. Appl. Catal. B: Environ.,2005,58(1-2):89-95.
    [180]Cho A, Lee J J, Koh J H, et al. Performances of NiMoS/Al2O3 prepared by somochemical vapor deposition methods in the hydrodesulfurization of dibenzothiophene and 4,6-dimethyl dibenzothiophene [J]. Green Chem.,2007, 9(6):620-625.
    [181]Byskov L S, Hammer B, Norskov J K, et al. Sulfur bonding in MoS2 and Co-Mo-S structures [J]. Catal. Lett.,1997,47(3-4):177-182.
    [182]Chianelli R R, Ruppert A F, Behal S K, et al. The reactivity of MoS2 single crystal edge planes [J]. J. Catal.,1985,92(1):56-63.
    [183]Eijsbouts S, Van den Oetelaar L C A, Van Puijenbroek R R. MoS2 morphology and promoter segregation in commercial Type 2 Ni-Mo/Al2O3 and Co-Mo/Al2O3 hydroprocessing catalysts [J]. J. Catal.,2005,229(2):352-363.
    [184]Camacho-Bragado G A, Elechiguerra J L, Olivas A, et al. Structure and catalytic properties of nanostructured molybdenum sulfides [J]. J. Catal.,2005,234(1): 182-190.
    [185]Elizondo-Villarreal N, Velazquez-Castillo R, Galvan D H, et al. Structure and catalytic properties of molybdenum sulfide nanoplates [J]. Appl. Catal. A:Gen., 2007,328(1):88-97.
    [186]Muller A. Coordination chemistry of Mo-and W-S compounds and some aspects of hydrodesulfurization catalysis [J]. Polyhedron,1986,5(1-2):323-340.
    [187]Topsoe H, Clausen B S, Topsoe N, et al. Inorganic cluster compounds as models for the structure of active sites in promoted hydrodesulphurization catalysts [J]. J. Chem. Soc. Faraday Trans.,1987,83(7):2157-2167.
    [188]Topsoe H, Clausen B S. Importance of Co-Mo-S Type Structures in Hydrodesulfurization [J]. Catal. Rev. Sci. Eng.,1984,26(3-4):395-420.
    [189]Bouwens S M A M, Van Zon F B M, Van Dijk M P, et al. On the Structure Differences Between Alumina-Supported Type Ⅰ and Alumina-, Silica-, and Carbon-Supported Comos Type Ⅱ Phases Studied by XAFS, MES, and XPS [J]. J. Catal.,1994,146(2):375-393.
    [190]Topsoe H. The role of Co-Mo-S type structures in hydrotreating catalysts [J]. Appl. Catal. A:Gen.,2007,322:3-8.
    [191]Okamoto Y, Kato A, Usman, et al. Effect of sulfidation temperature on the intrinsic activity of Co-MoS2 and Co-WS2 hydrodesulfurization catalysts [J]. J. Catal.,2009,265(2):216-228.
    [192]Bataille F, Lemberton J L, Michaud P, et al. Alkyldibenzothiophene Hydrodesulfurization-Promoter Effect, Reactivity, and Reaction Mechanism [J]. J. Catal.,2000,191(2):409-422.
    [193]Breysse M, Berhault G, Kasztelan S, et al. New aspects of catalytic functions on sulfide catalysts [J]. Catal. Today.,2001,66(1):15-22.
    [194]Kabe T, Aoyama Y, Wang D H, et al. Effects of H2S on hydrodesulfurization of dibenzpthiophene and 4,6-dimethyldibenzothiphene on alumina-supported NiMo and NiW catalysts [J]. Appl. Catal. A:Gen.,2001,209(1-2):237-247.
    [195]Mijoin J, Thevenin V, Garcia N, et al. Thioreduction of cyclopentanone and hydrodesulfurization of dibenzothiophene over sulfide nickel or cobalt-promoted molybdenum on alumina catalysts [J]. Appl. Catal. A:Gen.,1999,180(1-2): 95-104.
    [196]Yin H L, Zhou T N, Liu Y Q, et al. Synthesis and hydrodesulfurization activity of unsupported Ni-Mo sulfide from nickel/cetyltrimethylammonium thiomolybdates [J]. Reac. Kinet. Mech. Cat.,2011,102(2):405-416.
    [197]Alvarez L, Berhault G, Alonso-Nunez G. Unsupported NiMo Sulfide Catalysts Obtained from Nickel/Ammonium and Nickel/Tetraalkylammonium Thiomolybdates:Synthesis and Application in the Hydrodesulfurization of Dibenzothiophene [J]. Catal. Lett.,2008,125(1-2):35-45.
    [198]Zhou T N, Yin H L, Liu Y Q, et al. Synthesis, Characterization and HDS Activity of Carbon-Containing Ni-Mo Sulfide Nano-Spheres [J]. Catal. Lett., 2010,134(3-4):343-350.
    [199]Karroua M, Matralis H, Sham E, et al. Synergy between the CoMoS Phase and Supported or Unsupported Cobalt Sulfide. Existence of a Remote Control effect [J]. Bull. Chem. Soc. Jap.,1995,68(1):107-119.
    [200]Karroua M, Matralis H, Grange P, et al. Unsupported NiMo Catalysts. Influence of the Sulfinding Temperature and Evolution of the Unsupported NiMoS Phase during Reaction [J]. Bull. Soc. Chim. Belg.,1995,104(1):11-18.
    [201]Karroua M, Matralis H, Grange P, et al. Synergy between "NiMoS" and Co3S8 in the Hydrogenation of Cyclohexene and Hydrodesulfurization of Thiophene [J]. J. Catal.,1993,139(2):371-374.
    [202]Borup R, Meyers J, Pivovr B, et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation [J]. Chem. Rev.,2007,107(10): 3904-3951.
    [203]Tian N, Zhou Z Y, Sun S G, et al. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity [J]. Science.,2007,316(5825):732-735.
    [204]Fang B Z, Chaudhari N K, Kim M S, et al. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell [J]. J. Am. Chem. Soc.,2009,131(42):15330-15338.
    [205]Fang B Z, Kim J H, Kim M S, et al. Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalysts Support in Proton Exchange Membrane Fuel Cell [J]. Chem. Mater.,2009,21(5):789-796.
    [206]Fang B Z, Kim J H, Kim M S, et al. Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell [J]. Phys. Chem. Chem. Phys.,2009,11(9): 1380-1387.
    [207]Fang B Z, Kim M S, Kim M W, et al. High Pt loading on functionalized multiwall carbon nanotubes as a highly efficient cathode electrocatalyst for proton exchange membrane fuel cells [J]. J. Mater. Chem.,2011,21(22): 8066-8073.
    [208]Service R. Shrinking Fuel Cells Promise Power in Your Pocket [J]. Science., 2002,296(5571):1222-1224.
    [209]Huang Y Q, Wang A Q, Li L, et al. "Ir-in-ceria":A highly selective catalyst for preferential CO oxidation [J]. J. Catal.,2008,255(2):144-152.
    [210]Dresselhaus M S, Thomas I L. Alternative energy technologies [J]. Nature.,2001, 414(6861):332-337.
    [211]Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells [J]. Chem. Rev.,2010,110(11):6446-6473.
    [212]Li Y G, Wang H L, Xie L M, et al. MoS2 Nanoparticles Growth on Graphene:An Advanced Catalyst for the Hydrogen Evolution Reaction [J]. J. Am. Chem. Soc., 2011,133(19):7296-7299.
    [213]Bartak D E, Kazee B, Shimazu K, et al. Electrodeposition and characterization of platinum microparticles in poly (4-vinylpyridine) film electrodes [J]. Anal. Chem.,1986,58(13):2756-2761.
    [214]Millet P, Andolfatto F, Durand R. Design and performance of a solid polymer electrolyte water electrolyzer [J]. Int. J. Hydrogen Energy.,1996,21(2):87-93.
    [215]Jaramillo T F, Jorgensen K P, Bonde J, et al. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts [J]. Science.,2007, 317(5834):100-102.
    [216]Goff A L, Artero V, Jousselme B, et al. From Hydrogenases to Noble Metal-Free Catalytic Nanomaterials for H2 Production and Uptake [J]. Science.,2009, 326(5958):1384-1387.
    [217]Bonde J, Moses P G, Jaramillo T F, et al. Hydrogen evolution on nano-particulate transition metal sulfides [J]. Faraday Discuss.,2009,140(0): 219-231.
    [218]Winther-Jensen B, Fraser K, Ong. C, et al. Conducting Polymer Composite Materials for Hydrogen Generation [J]. Adv. Mater.,2010,22(15):1727-1730.
    [219]Tran P D, Le Goff A, Heidkamp J, et al. Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes:Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake [J]. Angew. Chem. Int. Ed.,2011,50(6):1371-1374.
    [220]Hinnemann B, Moses P G, Bonde J, et al. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution [J]. J. Am. Chem. Soc., 2005,127(15):5308-5309.
    [221]Merki D, Fierro S, Vrubel H, et al. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water [J]. Chem. Sci.,2011, 2(7):1262-1267.
    [222]Merki D, Hu X L. Recent developments of molybdenum and tungsten sulfide as hydrogen evolution catalysts [J]. Energy Environ. Sci.,2011,4(10):3878-3888.
    [223]Sobczynski A, Yildiz A, Bard A J, et al. Tungsten disulfide:a novel hydrogen evolution catalyst for water decomposition [J]. J. Phys. Chem.,1988,92(8): 2311-2315.
    [224]Sobczynski. Molybdenum disulfide as a hydrogen evolution catalyst for water photodecomposition on semiconductors [J]. J. Catal.,1991,131(1):156-166.
    [225]Di Paola A, Palmisano L, Derrigo M, et al. Preparation and Characterization of Tungsten Chalcogenide Photocatalysts [J]. J. Phys. Chem. B.,1997,101(6): 876-883.
    [226]Ho W, Yu J, Lin J, et al. Preparation and Photocatalytic Behavior of MoS2 and WS2 Nanocluster Sensitized TiO2 [J]. Langmuir.,2004,20(14):5865-5869.
    [227]Holt C M B, Murphy S, Gray M R, et al. Electrocatalytic hydrogenation of 2-cyclohexen-l-one in a high sulfur environment using a carbon-supported nanostructured tungsten sulfide catalyst [J]. Catal. Commun.,2010,12(4): 314-317.
    [228]Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide [J]. Nature.,1992,360(6403):444-446.
    [229]Ellmer K. Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells [J]. Phys. Stat. Sol.,2008,245(9): 1745-1760.
    [230]Zelenski C M, Dorhout P K. Template Synthesis of Near-Monodisperse Microscale Nanofibers and Nanotubules of MoS2 [J]. J. Am. Chem. Soc.,1998, 120(4):734-742.
    [231]Bastide S, Duphil D, Borra J P, et al. WS2 Closed Nanoboxes Synthesized by Spray Pyrolysis [J]. Adv. Mater.,2006,18(1):106-109.
    [232]Hu J J, Zabinski J S, Sanders J H, et al. Pulsed laser syntheses of layer-structured WS2 nanomaterials in water [J]. J. Phys. Chem. B.,2006, 110(18):8914-8916.
    [233]Margolin A, Deepak F L, Popovitz-Biro R, et al. Fullerene-like WS2 nanoparticles and nanotubes by the vapor-phase synthesis of WCln and H2S [J]. Nanotechnology.,2008,19(9):095601.
    [234]Zink N, Pansiot J, Kieffer J, et al. Selective Synthesis of Hollow and Filled Fullerene-like WS2 Nanoparticles via Metal-Organic Chemical Vapor Deposition [J]. Chem. Mater.,2007,19(26):6391-6400.
    [235]Zink N, Therese H A, Pansiot J, et al. In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD [J]. Chem. Mater.,2008, 20(1):65-71.
    [236]Dhas N A, Suslick K S. Sonochemical Preparation of Hollow Nanospheres and HollowNanocrystals [J]. J. Am. Chem. Soc,2005,127(8):2368-2369.
    [237]Therese H A, Li J X, Kolb U, et al. Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route [J]. Solid State. Sci.,2005,7(1):67-72.
    [238]Wu J F, Fu X. A low-temperature solvothermal method to prepare hollow spherical WS2 nanoparticles modified by TOA [J]. Mater. Lett.,2007,61(21): 4332-4335.
    [239]Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater.,2007,6(3): 183-191.
    [240]Li P G, Lei M, Wang X F, et al. Thermal conversion of tungsten oxide nanorods to tungsten disulfide nanoflakes [J]. J. Alloys. Compd.,2009,474(1-2):463-467.
    [241]Tenne R. Inorganic nanotubes and fullerene-like nanoparticles [J]. Nat. Nanotechnology.,2006,1(2):103-111.
    [242]Vojvodic A, Hinnemann B, Norskov J K. Magnetic edge states in MoS2 characterized using density-functional theory [J]. Phys. Rev. B.,2009,80(12): 125416.
    [243]Yella A, Mugnaioli E, Panthofer M, et al. Mismatch strain versus dangling bonds: formation of "coin-roll nanowires" by stacking nanosheets [J]. Angew. Chem. Int. Ed.,2010,49(19):3301-3305.
    [244]Wu Z Z, Wang D Z, Sun A K. Preparation of MoS2 nanoflakes by a novel mechanical activation method [J]. J. Cryst. Growth.,2010,312(2):340-343.
    [245]Wu Z Z, Wang D Z, Zan X Q, et al. Synthesis of WS2 nanosheets by a novel mechanical activation method [J]. Mater. Lett.,2010,64(7):856-858.
    [246]Li X L, Ge J P, Li Y D. Atmospheric pressure chemical vapor deposition:an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers [J]. Chem. Eur. J.,2004,10(23):6163-6171.
    [247]Yang H B, Liu S K, Li J X, et al. Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance [J]. Nanotechnology,2006,17(5): 1512.
    [248]Feldman Y, Lyakhovitskaya V, Tenne R. Kinetics of Nested Inorganic Fullerene-like Nanoparticle Formation [J]. J. Am. Chem. Soc.,1998,120(17): 4176-4183.
    [249]Sloan J, Hutchison J L, Tenne R, et al. Defect and ordered oxides encapsulated 2H-WX2 (X=S and Se) fullerene-related structures [J]. J. Solid. State. Chem., 1999,144(1):100-117.
    [250]Conway B E, Tilak B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H [J]. Electrochim. Acta.,2002,47(22-23):3571-3594.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700