分布式风电并网系统的暂态稳定及电能质量改善研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对可持续发展和降低环境污染的重视,分布式发电(DG)技术以其独有的环保性和经济性引起人们越来越多的关注。
     DG中的风能受自然条件的影响不能持续稳定地输出电能,因此风电并入电网势必对电力系统的稳定运行产生影响,尤其在系统发生故障时。由于风电场多处于偏远地区,常接于电网的末端,这会使并网后系统的潮流发生改变,影响电网的稳定性和电能质量。
     本文围绕分布式风电并网系统产生的暂态稳定及电能质量问题,分别从不同风力电机类型、储能系统、微分进化(DE)算法、同步扰动随机逼近(SPSA)算法、电力系统稳定器(PSS)、自动电压调节器(AVR)以及灵活柔性交流输电系统(FACTS)设备等方面开展了较系统、深入的研究,以探求其更为有效的解决方案。本文的主要研究成果如下:
     (1)提出基于模糊逻辑控制的超级电容器储能系统(SCESS)和双馈感应发电机(DFIG)相结合的解决方案。为提高能源利用率和改善系统的稳定可靠性,常在DG中加入储能装置,而使用SCESS能够同时控制有功功率和无功功率,故它能补偿功率波动;因模糊逻辑器可以有效应用于非线性系统,它能稳定系统;其次DFIG可以调节无功功率,也可以提高电力系统的暂态稳定性。为此本文提出采用DC-DC降压/升压变换器的模糊逻辑控制和电压源变流器的脉冲宽度调制控制相结合的SCESS-DFIG方案,利用Matlab/Simulink软件对并网系统进行了建模仿真分析。研究结果表明该方案能改善风电并网系统的稳定性和电能质量。
     (2)提出基于同步扰动随机逼近(SPSA)算法的最大风能功率追踪控制策略。为使风力发电系统在变动风速下,不受外界干扰,易使风力机保持在最大功率点运行,本文提出采用SPSA算法进行风力发电系统最大功率追踪。该算法通过调节电源转换器的工作周期,间接控制风力发电机转速,使风力发电系统在任何风速下皆可运行在最大功率点,从而将最大功率输出至负载,并避免实际运行时使用风力计和转速计。研究结果表明无论风速如何变化,SPSA算法皆能有效提高风力发电系统输出功率,并使叶尖速比和效能指数维持在最佳值附近。
     (3)提出基于电压源变流器的静止同步补偿器(STATCOM)和基于同步发电机(SG)的PSS相结合的解决方案。STATCOM并联于电网中,相当于一个可控的无功电流源,其无功电流可以快速地跟随负荷无功电流的变化而变化,自动补偿电网系统所需无功功率,对电网无功功率实现动态无功补偿。但当电力系统中没有励磁控制器时,即使增加STATCOM系统也不一定能保持稳定,故可考虑在同步发电机上配置PSS并对其参数进行适当调节。为保证风电并网系统的暂态稳定性和电能质量不降低,本文提出研究使用STATCOM-PSS控制方案来改善并网风电场发出的电能质量和故障穿越能力。研究结果表明STATCOM-PSS控制策略能有效恢复风电并入点故障后的电压,提高风电场的故障穿越能力,改善风电并网系统的暂态稳定性和风力发电机组的电能质量。
     (4)提出基于微分进化(DE)法的AVR-PSS协同控制策略。为解决风电并网系统的稳定性问题,本文从经济性出发,考虑在风电并网系统的SG中安装PSS。但PSS以牺牲AVR为代价来提供阻尼和振荡稳定性,AVR以牺牲鲁棒性振荡稳定来提供暂态稳定性,因此要获得系统较好电压调节和振荡阻尼,AVR和PSS的同步调节是必需的。为此本文提出利用DE算法来解决SG中AVR和PSS参数的最优调节问题,并利用仿真软件在有、无PSS以及是否使用DE算法的各种情况下对风电并网系统稳定性进行了仿真研究分析,研究结果表明基于DE算法的AVR-PSS的协同调节能改善风电并网系统的稳定性。
     (5)提出基于DFIG-FMAC-PSS的控制策略。针对含有风力发电的系统,在SG的AVR中安装PSS的解决方案可能不再提供额外阻尼,若装有这些装置的SG被切断来调节风力,其阻尼作用明显丧失。为此本文考虑在DFIG装设PSS,提出了DFIG转子磁链幅值和相角控制(FMAC)加PSS的另一种控制方案。选用DFIG定子电功率作为PSS输入信号,通过调节DFIG转子磁链矢量的幅值和相角对发电机的端电压和输出功率进行控制,对大扰动的情况下的并网系统稳定性研究表明,所提DFIG-FMAC-PSS的控制方案经济可行,其提供电压控制、促进阻尼作用和提高风电并网系统的稳定性等性能均优于比SG加PSS的解决方案。
With people placing more attention on sustainable development and reducingenvironmental pollution, distributed generation (DG) technology based on renewableenergy for its unique environmental protection and economical efficiency is attractingmore and more attention. But wind energy among DG is affected by natural conditionsso as to can not output power continuously and steadily, so wind energy generationincorporated into the electric power system will bring a series of issues for its steadyoperation, especially when wind power integrated system is fault. Because of windfarms mostly are in remote areas and often are at the most endings of the grid, it willinevitably make power flow of wind power integrated system change, and has aninfluence on electrical energy quality and stability of the grid.
     Therefore, several solutions are proposed to improve transient stability andpower quality of wind power integrated system in this dissertation. Distributed windpower integrated system is analyzed systematically and deeply in this dissertation,respectively from these aspects including different type of wind generator, energystorage system, differential evolution (DE) method, simultaneous perturbationstochastic approximation (SPSA) algorithm, electric power system stabilizer (PSS),automatic voltage regulator (AVR) and flexible AC transmission systems (FACTS)equipment, the main research results are as follows:
     (1)The combined scheme of super capacitor energy storage system (SCESS)based on fuzzy logic control and doubly-fed induction generator (DFIG) is proposed.In order to improve energy efficiency and stability and reliability of system, usuallyenergy storage device is used in DG, using SCESS is able to control active power andreactive power at the same time, so it can compensate power fluctuations; The fuzzylogic controller can be used in the stable system, DFIG can also be used to adjustreactive power and improve transient stability of power system. For this reason, thecombined scheme of fuzzy logic control based on DC-DC step-down/boost converterand voltage source inverter control based on PWM is put forward, modeling andsimulation analysis of the wind power integrated system are done by usingMatlab/Simulink software. The study results show that this scheme can improvestability and power quality of wind power integrated system.
     (2) The maximum wind power point tracing control strategy based on SPSAalgorithm is proposed. In order to make wind power generation system being freefrom outside interference, and easily operating at maximum power point underfluctuant wind speeds, using SPSA algorithm to track system maximum power isproposed in this dissertation. SPSA algorithm indirectly controls wind turbine speedby adjusting duty cycle of power converter, makes system operate at the maximumpower point under any wind speed, and avoids using anemometer and tachometer inpractical applications. As shown in the simulation results, no matter how wind speedchanges, SPSA algorithm can effectively improve power output of wind powergeneration system, and make tip speed ratio and coefficient power be near optimumvalue.
     (3) The combined scheme of static synchronous compensator (STATCOM) basedon voltage source converter (VSC) and PSS based on synchronous generator (SG) isproposed. STATCOM is in parallel with the power grid, it is equivalent to acontrollable reactive current source, the reactive current can quickly vary with theload reactive current, it can automaticly compense the required reactive power ofsystem and realize dynamic reactive power compensation for the grid. But when thesystem is without excitation controller, even increases STATCOM, the system may notbe able to remain stable, so it is considered that PSS is installed in SG and itsparameters is adjusted appropriately. In order to ensure that transient stability andpower quality of wind power integrated system is not decreased, usingSTATCOM-PSS scheme to improve power quality and fault through ability of theintegrated wind farm is studied in this dissertation.The research results show thatSTATCOM-PSS can effectively restore voltage after fault at the point of commoncoupling in wind farm, enhance the fault through ability of wind farms, improvetransient stability and power quality of wind power integrated system.
     (4) The AVR-PSS coordinated control strategy based on DE algorithm isproposed. For solving the stability problem of wind power integrated system, PSSsare installed in SGs from the consideration of economics, but AVR provides transientstability at expense of robust oscillation stability; PSS provides damping andoscillation stability at expense of AVR. So it is necessary through the synchronousadjustment of AVR and PSS to obtain good voltage regulation and oscillation damping,using DE algorithm to solve the optimal regulation problem of AVR and PSSparameters in SG is presented. Under the situation of with or without PSS andwhether using differential evolution algorithm, the stability of wind power integrated system is studied in this dissertation. The research shows that wind power integratedsystem has a good damping effect using AVR-PSS coordinated tuning based on DEalgorithm, it can reduce oscillation of rotor angle difference and improve voltagestability.
     (5)The control scheme based on DFIG-FMAC-PSS is proposed. For the systemwith a lot of wind power, the solution of PSS being installed in synchronousgenerators may no longer provide additional damping, if synchronous generatorsequipped with these devices are cut off to adjust wind power, and the dampingobviously is lost. Therefore PSS being installed in DFIG is considered, anothercontrol scheme of PSS along with flux magnitude and angle controller (FMAC) usedin DFIG is proposed in this dissertation. Stator power of DFIG is chose as PSS inputsignal, through adjusting rotor flux vector magnitude and phase angle of DFIG tocontrol output power and voltage of generator. Under the situation of largedisturbance, the system stability is researched, this research shows that the proposedscheme is economic and feasible, this scheme is superior to the PSS control schemebased on the conventional synchronous generator for providing voltage control,contributing to damping and improving the stability of wind power integrated system.
引文
[1] Kuang Honghai,Wu Zhengqiu,et al.System stability improvement of DGconnected to the grid based on power conversion and energy storagesystem.Advanced Materials Research,2012,(383-390):2513-2517
    [2] Kuang Honghai,Li Shengqing,Wu Zhengqiu. Discussion on advantages anddisadvantages of distributed generation connected to the grid.ICECE2011,2011
    [3]李艳,王立鹏,唐建平,等译.风电场并网稳定性技术.北京:机械工业出版社,2010
    [4]李建林,周京华译.风力发电系统优化控制.北京:机械工业出版社,2010
    [5]石文辉.分布式新能源发电接入电网研究.杭州:中国电力科学研究院,2010
    [6]徐政译.风力发电的模拟和控制.北京:机械工业出版社,2011
    [7]丁孝华.分布式电源并网研究现状与发展.国网电力科学研究院,2010
    [8]迟永宁,王伟胜,刘燕华.大型风电场对电力系统暂态稳定性的影响.电力系统自动化.2006,30(15):10-14
    [9]张红光,张粒子,陈树勇,等.大容量风电场接入电网的暂态稳定特性和调度对策研究.中国电机工程学报,2007,27(31):47-53
    [10]常勇,徐政,郑玉平.大型风电场接入系统方式的仿真比较.电力系统自动化,2007,31(14):70-75
    [11]倪林,袁荣湘,张宗包,等.大型风电场接入系统的控制方式和动态特性研究.电力系统保护与控制,2011,39(8):75-79
    [12]杨之俊,吴红斌,丁明,等.故障时双馈风力发电系统的控制策略研究.电力系统保护与控制,2010,38(1):14-20
    [13]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风机建模与控制.电力系统自动化,2006,30(8):21-27
    [14]黄学良,刘志仁,祝瑞金,等.大容量变速恒频风电机组接入对电网运行的影响分析.电工技术学报,2010,25(4):142-149
    [15]冷超,江启人.超级电容器储能的应用.上海电力,2008,(1):79-81
    [16]尹忠东,彭军.超级电容储能的并联电能质量调节器.四川电力技术,2005,(1):12-17
    [17]张惠研,齐智平.超级电容器储能单元的设计分析.电源技术,2006,130(4):322-325
    [18] Russell L. Spyker R,Mark Nelms.Optimization of Double-Layer CapacitorArrays.IEEE transactions on industry application,2000,36,(1):194-198
    [19] Muyeen S M,Takahashi Rion,Hasan Mohd Ali,et al.Transient StabilityAugmentation of Power System Including Wind Farms by Using SCESS,IEEETrans.PowerSyst,2008,23(3):1179-1187
    [20]商淼.超级电容器超级电容器储能系统的研究:[华北电力大学硕士学位论文].北京:华北电力大学,2004
    [21]蔡丽娟.超级电容器储能系统电压控制技术的研究:[华北电力大学硕士学位论文].北京:华北电力大学,2004
    [22]王承煦,张源.风力发电.北京:中国电力出版社,2002
    [23] Zhang L,Shen C,Crow M L,et al.Performance indices for the dynamicperformance of FACTS and FACTS with energy storage.Elect Power ComponSyst,2005,33(3):299-314
    [24] Hossain M J, Pota H R, Ugrinovskii V, et al.Robust STATCOM control for theenhancement of fault ride-through capabilityof fixed-speed wind generators.IEEE Multi-Conference on Systems and Control,2009,1505-1510
    [25]吴杰,孙伟,颜秉超.应用STATCOM提高风电场低电压穿越能力.电力系统保护与控制,2011,39(24):47-51
    [26] Yang Z,Shen C,Zhang L, et al..Integration of a STATCOM and battery energystorage.IEEE Trans.Power Syst,2001,16(2):254-260
    [27] Cheng Y,Qian C,Crow M L,et al.A comparison of diode-clamped and cascadedmultilevel converters for a STATCOM with energy storage.IEEE Trans IndElectron,2006,53(5):1512-1521
    [28] Slootweg J G,polinder H,Kling W L.Dynamic Modelling of A Wind Turbinewith Doubly Fed Induction Generator.IEEE Power Engineering SocietySummer Meeting,2001,1(1):644-649
    [29]张步涵,曾杰,毛承雄.电池储能系统在改善并网风电场电能质量和稳定性中的应用.电网技术,2006,30(15):54-58
    [30] Adam Mirecki,Xavier Roboam,Frederic Richardiau.Architecture Complexityand Energy Efficiency of Small Wind Turbines. IEEE Transactions onIndustrial Electronics,2007,54(1):641-645
    [31] Veerachary M,Senjyu T,Uezato K.Neural Network Based Maximum PowerPoint Tracking of Coupled Inductor Interleaved Boost Converter Supplied PVSystem using Fuzzy Controller. IEEE Transactions on Industrial Electronics,2003,50(4):749-758
    [32] Tanaka T, Toumiya T.Output control by hill Climbing method for a small windpower generating system. Rrnewable Enery,1997,12(4):387-400
    [33]贾要勤,曹秉刚,杨仲庆.风力发电的MPPT快速响应控制方法.太阳能学报,2004,9(2):171-176
    [34]吕学德.以同时随机扰动近似法进行风场永磁同步发电机的最大功率控制:[中原大学硕士学位论文].台湾:中原大学,2006
    [35]张慧玲.应用同时扰动随机近似演算法预测风速及风力发电量:[中原大学硕士学位论文].台湾:中原大学,2008.
    [36]王成山,李鹏.分布式发电系统仿真理论与方法.电力科学与技术学报,2008,23(1):8-11
    [37]丁明,包敏,吴红斌.分布式供能系统的经济调度.电力科学与技术学报,2008,23(1):13-17
    [38]张节潭,程浩忠,等.主动管理在含有分布式电源的配电网中的应用.电力科学与技术学报,2008,23(1):18-23
    [39]崔林,文劲宇,程时杰.超导磁储能系统抑制风力发电功率波动的研究.电力科学与技术学报,2008,23(1):24-30
    [40]杜文娟,王海风.应用储能系统抑制电力系统低频振荡原理研究.电力科学与技术学报,2008,23(1):30-35
    [41] Zhongwei CHEN,Xudong ZOU,Shanxu DUAN,et al.Application of flywheelenergy storage to damp power system oscillations.PRZEGLADELEKTROTECHNICZNY,2011,87(3):333-337
    [42] Zhixin Miao,Lingling Fan,Dale Osborn,et al.Control of DFIG-Based WindGeneration to Improve Interarea Oscillation Damping.IEEE Transactions onEnergy Conversion,2009,24(20):415-422
    [43] Miao Z,Fan L,Osborn D,et al.Control of DFIG basedwind generation toimprove inter-area oscillation damping.IEEE Power&Energy Soc GM'09,2009,20-24
    [44]郝正航,余贻鑫,曾沅.改善电力系统阻尼特性的双馈风电机组控制策略.电力系统自动化,2011,35(5):25-29
    [45]郝正航,余贻鑫.双馈风电场对电力系统阻尼影响的转矩分析.电工技术学报,2011,26(5):25-29
    [46]王国民,吴政球,彭程,等.双馈电机改善系统阻尼的研究.电网技术,2011,35(6):144-148
    [47]关宏亮,迟永宁,戴慧珠等.并网风电场改善系统阻尼的仿真.电力系统自动化,2008,32,(13):81-85
    [48] Kundur P. Power System Stability and Control.Hardcover:the McGraw-HillCompaniess, Inc:1994,767-788
    [49]周孝信,李兴源,刘俊勇,等译.电力系统稳定与控制.北京:中国电力出版社,2002
    [50] Graham Dudgeon J W,William Leithead E,John Reilly O,et al. The EffectiveRole of AVR and PSS in Power Systems Frequency Response Analysis.IEEETrans Action Sonpower Systems,2007,22(4):1986-1994
    [51] Olimpo Anaya-Lara,Nick Jenkins,Janaka Ekanayake,et al.Wind energygeneration modelling and control. Chichester:A John Wiley and Sons,Ltd;2009
    [52] Yorino N, Priyadi A, Kakui H,et al.A New Method for Obtaining CriticalClearing Time for Transient Stability.IEEE Transactions on Power Systems,2010,25(3):1620-1626
    [53] Nimje A A, Panigrahi C K.Transient Stability Analysis Using ModifiedEuler’s Iter-ative technique.IEEE Conference on Power Systems,2009,1-4
    [54] Muljadi E, Butterfield C P, Parsons B.Effect of Variable-speed Wind TurbineGenerator on Stability of Weak Grid.IEEE Transactions on Power Systems,2007,22(1):29-36
    [55] Rosas P.Dynamic Influences of Wind Power on the Power Systems:[dissertation]. Denmark: Technical University of Denmark,2003
    [56] Sujith Mohandas, Ashwani Kumar Chandel.Transient Stability Enhancementof the Power System with Wind Generation.TELKOMNIKA,2011,9(2):267-278
    [57] Katherine Elkington.Modelling and control of doubly fed inductiongenerators in power systems:[dissertation].Sweden:Royal Institute ofTechnology(KTH),2009
    [58] Mendonca A,Pecas Lopes J A. Simultaneous tuning of power system stabilizerinstalled in DFIG-based wind generation. Power Tech,2007,219-224
    [59]周双喜,朱凌志,郭锡玖,等.电力系统电压稳定性及其控制.北京:中国电力出版社,2003
    [60]黄胜利,张国伟,孔力.电力电子技术在微电网中的应用.电气应用,2008,27(9):55-59
    [61]李淼.电力系统机网协调优化若干问题研究:[武汉大学博士学位论文].武汉:武汉大学,2012
    [62]唐亮.分布式电源的分类及对电力系统的影响.仪器仪表用户,2008,15(2):119-120
    [63]徐荆州.分布式发电对配电可靠性的影响分析:[武汉大学博士学位论文].南京:东南大学,2007
    [64]莫颖涛,吴为麟.分布式发电的研究方向.热力发电,2006,(5):71-72
    [65] Girgis A, Brahma S. Effect of Distributed Generation on Protective DeviceCoordination in Distribution System. Proceedings of2001Large EngineeringSystems Conference on Power Engineering, Hahfax(Canada):2001,115-119
    [66]王敏,丁明.含有分布式电源的配电网系统规划.农村电气化,2003,7:19-20
    [67]叶在福,单渊达.多种遗传算法在电网扩展规划中应用的改进.电力系统及其自动化学报,1999,11(5):55-60
    [68] Guillot M,Collombet C,Bertrand P et al.Protection of embedded generationconnected to a distribution network and loss of mains detection.16thInternational Conference and Exhibition on Electricity Distribution,2001,(4):254-257
    [69]梁振峰,杨晓萍,张聘.DG技术及其在中国的发展.西北水电,2006,(1):51-53
    [70]刑运民,陶永红.现代能源与发电技术.西安:西安电子科学技术出版社,2007
    [71]熊礼俭.风力发电新技术与发电工程设计、运行、维护及标准规范实用手册.北京:中国科技文化出版社,2005
    [72]刘广,董冠军,刘毅.变速恒频风力发电机的运行及控制策略研究.机械工程与自动化,2008,150(5):128-130
    [73]张兴,陈玲,杨淑英,等.离网型小型风力发电系统逆变器的控制.电力系统自动化,2008,32(23):95-99
    [74]李军军.并网型风力发电系统的小扰动稳定性分析研究:[湖南大学博士学位论文].长沙:湖南大学,2011
    [75]刘取.电力系统稳定性及发电机励磁控制.北京:中国电力出版社,2007:96-99
    [76]钟浩.电力系统静态电压稳定性快速评估及其预防控制:[湖南大学博士学位论文].长沙:湖南大学,2011
    [77]黄群古,任震,黄雯莹.梯形小波变换及其在电力系统频率跟踪中的应用.2001,25(4):6-9
    [78] Iulian Munteanu,Antoneta Iuliana Bratcu,et al.Optimal Control of WindEnergy Systems.London:Springer,2008
    [79]刘光德译.风力机控制系统原理、建模及增益调度设计.北京:机械工业出版社,2009
    [80] Fernando D,Bianchi,Hernan De Battista.Wind Turbine Control SystemsPrinciples,Modelling and Gain Scheduling Design.The Netherlands: Springer,2007
    [81]唐西胜.超级电容器储能应用于分布式发电系统的能量管理及稳定性研究;[北京中科院博士学位论文].北京:北京中科院,2006
    [82]张慧研,齐智平,韦统振.超级电容器储能直流变换器的设计.电气应用,2005,25(12):97-100
    [83]张慧研,韦统振,齐智平.超级电容器储能装置研究.电网技术,2006,30(8):92-96
    [84]汪娟华,范伟.超级电容器储能系统统一模型的研究.电力科学与工程,2008,24(2):1-3
    [85] Yan JIA,Ryosuke SHIBATA.A Control Method of Prolonging the Service Lifeof Battery in Stand-alone Renewable Energy System using Electric DoubleLayer Capacitor (EDLC).IEEE PEDS,2005,228-233
    [86]王振浩,张延奇,李国庆,等.基于超级电容器的直流系统混合储能研究.电网技术,2010,34(4):158-162
    [87]张文亮,丘明,来小康.储能技术在电力系统中的应用.电网技术,2008,32(4):1-9
    [88] Kinjo T,Senjiu T,Urasaki N,et al.Output Leveling Using of Renewable Energyby Electric Double-layer Capacitor Applied for Energy Storage System.IEEETrans on Energy Conversion,2006,21(1):221-227
    [89] Muyeen S M,Shishido S,Ali M H,et al.Application of energy capacitor systemto wind power generation.wind energy,2008,11(4):335-350
    [90] Muyeen S M, Rion Takahashi,Mohd Hasan Ali,et al.Transient StabilityAugmentation of Power System Including Wind Farms by Using ECS.IEEETRANSCATION ON POWER SYSTEM,2008,23(3):1179-1187
    [91] Shigenori Inoue,Hirofumi Akagi.A Bi-Directional DC_DC Converter for anEnergy Storage System.IEEE2007,2007,761-767
    [92] Sheikh M R I,Muyeen S M,Rion Takahashi,et al.Transient stabilityenhancement of wind generator using superconducting magnetic energystorage unit.Proceedings of the2008International Conference on ElectricalMachines,2008,1-6
    [93]王鑫,郭佳欢,谢清华,等.超级电容器在微电网中的应用.电网与清洁能源,2009,25(6):18-22
    [94]朱文慧,吴政球,匡洪海.超级电容器改善同步发电机稳定性能的研究.电网技术,2011,35(6):95-100
    [95] Jazayeri M,Fendereski M.Stabilization of Gird Connected Wind GeneratorDuring Power,UPEC2007,2007,1182-1186
    [96] Ekanayake J B,Holdsworth L.Dynamic modeling of doudy fed inductiongenerator wind turbines.IEEE Transactions on Power Systems2003,18(2):803-809
    [97] Gilbert Sybille,Louis-A Dessaint,Pierre Giroux,et al.SimPower-SystemsUser’s Guide,Transénergie Technologies Inc And The MathWorks,Inc.2004
    [98] Muyeen S M,Ali M H,Takahashi R,et al.Stabilization of Wind FarmsConnected with Multi Machine Power System by Using STATCOM,2007,299-304
    [99]匡洪海,吴政球,何小宁,等.多机风力发电并网系统的稳定性提高.热能动力工程,2011,26(2):241-245
    [100] Kuang Honghai,Wu Zhengqiu.Research of Super Capacitor Energy StorageSystem Based on DG Connected to Power Grid.SUPERGEN,2009
    [101] Kuang Honghai,Wu Zhengqiu,Zhu Wenhui.Transient Stability of Multi-Machine Wind Turbine Generators System Connected to the Gird.ICEET,2009,917-921
    [102] Wenkai Wu,Pongratananukul N,Weihong Qiu,et al.DSP-based multiple peakpower tracking for expandable power system. IEEE Applied Power Electronicsconference and Exposition,2003
    [103] Eftichios Koutroulis, Kostas kalaitzakis.Design of a Maximum PowerTracking System for Wind Energy Conversion Applications.IEEE Transactionson Industrial Electronics,2006,53(2):486-494
    [104]王建斌.风力发电系统最大功率追踪方法的研究:[中原大学硕士学位论文].台湾:中原大学,2005
    [105]温宗修.风力发电的混合式最大功率追踪法:[大同大学硕士学位论文].台湾:大同大学,2009
    [106]黄意明.风力发电的类神经网络最大功率追踪:[中原大学硕士学位论文].台湾:中原大学,2006
    [107]李朋.小型风力发电系统最大功率追踪及控制器的研究[山东建筑大学硕士学位论文].山东:山东建筑大学,2011
    [108]魏毅立,韩素贤,时盛志.风力发电系统中组合风速的建模与仿真.可再生能源,2010,28(2):19-20
    [109]匡洪海,吴政球,李圣清.基于同步扰动随机逼近算法的最大风能追踪控制.电力系统自动化.2012,36(24):34-38
    [110] Kuang Honghai,Li Shengqing,Wu Zhengqiu.MPPT of Doubly-fed InductionGenerator in Wind Farm Using SPSA Algorithm,Advanced Materials Research,2013,Vols (608-609):662-667
    [111]赵璐璐.大型风电场并网暂态稳定性研究:[北京交通大学硕士学位论文].北京:北京交通大学,2010
    [112]牛远方.电网故障时风电场基于STATCOM的无功协调控制策略.中国电力,2011,44(3):11-15
    [113]范高峰,迟永宁等.用STATCOM提高风电场暂态电压稳定性.电工技术学报,2007,22(11):158-162
    [114]王成福,梁军.基于静止同步补偿器的风电场无功电压控制策略.中国电机工程学报,2010,30(25):23-28
    [115]张飞,鲍海.电池储能系统-静止同步补偿器集成单元模型在风电场并网计算中的应用.电网技术,2010,34(9):211-215
    [116]撖奥洋.变速恒频风力发电系统故障特性与保护技术研究:[华中科技大学博士学位论文].武汉:华中科技大学,2010
    [117]韩洪.含STATCOM的风电场电压稳定性研究:[山东大学硕士学位论文].济南:山东大学,2009
    [118]周宏林,杨耕.大型DFIG风电场的LCC-HVDC并网及控制.电力自动化设备,2009,29(7):8-12
    [119]李鑫.基于SVG技术的风力发电系统电压稳定控制研究[华北电力大学硕士学位论文].保定:华北电力大学,2008
    [120] Muyeen S M,Tamura J,et al.Stability Augmentation of a Grid-Connected WindFarm.London:Springer Press,2009
    [121] Olimpo Anaya-lara,Nick Jenkins.wind energy modeling and control.JohnWiley&Sons,Ltd.2009
    [122]赵书强,常鲜戎.PSS控制过程中的借阻尼现象与负阻尼效应用.中国电机工程学报,2004,24(5):7-11
    [123] Kundur P.power system stability and control.Hardcover:the McGraw-HillCompanies,Inc.1994:767-788
    [124]李国庆,冀瑞芳.基于改进微分进化算法的可用输电能力研究.电力系统保护与控制,2011,39(21):22-27
    [125]张炳才,秦四娟.基于改进微分进化算法的电力系统无功优化.电力系统保护与控制,2010,28(15):91-94
    [126]刘自发,闫景信.基于改进微分进化算法的电力系统无功优化.电网技术,2007,31(18):68-72
    [127]许津津,马进.基于改进DE算法的负荷建模参数辨识.电力系统保护与控制,2009,37(24):36-40
    [128]吴骅,吴耀武.基于改进微分进化算法的负荷模型参数辨识.电网技术,2008,34(9):1977-1981
    [129]饶攀,彭春华.基于改进微分进化算法的节能减排发电调度研究.华东交通大学学报,2010,27(5):48-52
    [130]许童羽,孙艳辉.基于GIS和改进微分进化算法的农网变电站选址定容.电力系统保护和控制,2009,37(22):34-39
    [131] Viadislav Akhmatov.Analysis of dynamic behaviour of electric power systemswith large amount of wind power:[dissertation].Denmark:Technical Universityof Denmark,2003
    [132] Selvabala Dysko B,Devaraj D.Co-ordinated design of AVR-PSS using multiobjective genetic algorithm.Lecture Notes in Computer Science,SEMCCO:2010
    [133] Storn R,Price K.Differential Evolution-a Simple and Efficient Heuristic forGlobal Optimization over Continuous Spaces.Journal of Global Optimization,Kluwer Academic Publishers,1997,11(4):341-359
    [134] Storn R.System Design by Constraint Adaptation and Differential Evolution.IEEE Trans on Evolutionary Computation,1999,3(1):22-34
    [135]周清清,刘勇.多目标优化微分进化改进算法的实现.自动化仪表,2010,30(12):6-11
    [136]赵学权,彭喜元,孙宁.基于混合优化策略的微分进化改进算法.电子学报,2006,34(12):2402-2405
    [137] Graham Dudgeon J W, William Leithead E.The Effective Role of AVR andPSS in Power Systems Frequency Response Analysis.IEEE Trans ActionSonpower Systems,2007,22(4):1986-1994
    [138]杨冠成.电力系统自动装置原理.北京:中国电力出版社.2004,67-68
    [139]匡洪海,吴政球,李圣清,等.基于差分进化法的风电并网系统暂态稳定研究.计算机工程与应用,2013,49(2):39-42
    [140] Selvabala B,Devaraj D.Co-Ordinated Tuning Of AVR-PSS Using DifferentialEvolution Algorithm.IPEC2010,2010,439-444
    [141] Nick Jenkins,Olimpo Anaya-Lara,Mike Hughes,et al.Dynamic Performance ofDFIGs and System Support.Manchester:The University of Manchester,2005
    [142] Michael Hughes F,Olimpo Anaya-Lara,Nicholas Jenkins,et al.A Power SystemStabilizer for DFIG-Based Wind Generation.IEEE TRANS-ACTIONS ONPOWER SYSTEMS,2006,21(2):763-772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700