黑灵芝多糖的抗肿瘤活性及其分子机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑灵芝多糖PSG-1是从黑灵芝子实体中提取的多糖组分,主要由木糖、岩藻糖、甘露糖、半乳糖、葡萄糖等组成。大量研究表明,该多糖具有抗氧化、提高免疫力、心肌保护、抗糖尿病、抗肿瘤、抗衰老等作用,但其抗肿瘤作用机制方面的研究甚少,本研究旨在探讨PSG-1的抗肿瘤作用及其分子机制,从而为其开发为一种新型药品或功能食品提供有价值的理论依据。
     本研究分别从体外和体内两种途径研究PSG-1的抗肿瘤作用及机制。本课题在现代分子生物学理论及技术的指导下,应用流式细胞术(FlowCytometry, FCM)、蛋白印迹(Western Blot)、酶联免疫(Enzyme LinkedImmunosorbent Assay, ELISA)及逆转录-聚合酶链式反应(ReverseTranscription-Polymerase Chain Reaction, RT-PCR)等技术,分别从整体、细胞、分子、基因水平,将PSG-1对荷瘤小鼠的抑制肿瘤生长作用及作用通路进行了深入研究。通过整体和离体两种途径进行研究和探讨,具体研究如下:
     在体外研究中,将不同浓度的PSG-1分别直接作用于S180、CT26肿瘤细胞,通过MTT法测定PSG-1对上述两种肿瘤细胞的增殖抑制作用,结果发现:在体外,各剂量浓度的PSG-1对S180、CT26细胞的增殖抑制率无显著性差异;这说明PSG-1对S180和CT26肿瘤细胞无直接抑制增殖作用,同时也无细胞毒性。另外,用PSG-1预处理小鼠腹腔巨噬细胞,实验结果证明:腹腔巨噬细胞吞噬杀伤S180和CT26肿瘤细胞的能力与PSG-1浓度呈剂量依赖性增强。说明PSG-1能有效地活化腹腔巨噬细胞,提高其吞噬杀伤能力。
     在体内实验中,首先分别采用S180、CT26肿瘤细胞株建立荷瘤小鼠模型,一周左右后,接种处长出80~90mm3大小的肿瘤说明造模成功。然后将小鼠进行随机分组,每天灌胃或注射给药一次。2周后,将部分小鼠首先进行眼眶取血,然后处死,分离出肿瘤和各组织器官;其余部分小鼠用于提取腹腔巨噬细胞和脾细胞实验,测定细胞相应的功能活性。结果显示:与对照组相比,PSG-1组小鼠肿瘤抑制率随剂量升高逐渐增加,脾指数、胸腺指数也显著增加,差异性显著(P<0.05)。此外,PSG-1组小鼠血清中和腹腔巨噬细胞分泌的细胞因子和一氧化氮(NO)均呈剂量依赖性增加;巨噬细胞的吞噬能力也有效增强,此外PSG-1还显著提高了T、B淋巴细胞的增殖能力。说明PSG-1在体内具有很强的抑制肿瘤生长的效果,并且能通过改善荷瘤小鼠的免疫功能,间接地起到抗肿瘤作用。
     为了明确PSG-1抗肿瘤活性的分子机制和作用途径,本实验分别从不同的角度做了深入的研究和探讨。通过分离纯化得到荷瘤小鼠的腹腔巨噬细胞,然后分别加入anti-TLR4抗体、p38MAPK阻断剂SB203580和NF-κB特异阻断剂pyrrolidine dithiocarbamate (PDTC),来探讨PSG-1抗肿瘤作用的信号路径。结果显示:anti-TLR4抗体能部分阻断PSG-1诱导的促腹腔巨噬细胞分泌TNF-α的作用,说明TLR4可能是PSG-1在细胞膜上的作用受体之一。特异性阻断剂SB203580能完全阻滞PSG-1诱导的提高腹腔巨噬细胞产生TNF-α的作用;此外,PDTC也能够显著地抑制PSG-1诱导的TNF-α的分泌。为进一步验证,本研究运用Western-blotting法测定了TLR4、NF-κB、IκBα以及pp38等蛋白的表达情况。结果显示,各组荷瘤小鼠中,PSG-1组腹腔巨噬细胞的膜蛋白TLR4表达显著增加,核蛋白NF-κB表达水平也呈剂量依赖性升高;而细胞质中IκBα的蛋白表达量逐渐降低,并且磷酸化蛋白pp38表达也显著增强,与对照组相比,具有显著性差异。实验结果提示PSG-1通过作用于腹腔巨噬细胞膜上的TLR4受体,将信号传递进入细胞,然后激活NF-κB和p38MAPK信号通路,促进TNF-α的分泌,强化机体免疫力,间接地发挥抗肿瘤的作用。
     另外,本研究通过流式细胞术检测了各组荷瘤模型小鼠的肿瘤细胞的凋亡程度。测定结果显示PSG-1能显著地诱导荷瘤小鼠肿瘤细胞的凋亡。通过ELISA活性试剂盒检测发现PSG-1能显著提高荷瘤小鼠肿瘤细胞中的cAMP、PKA、AC活性,下调DG、cGMP、PKC的活性;Western Blotting法检测PKA和PKC蛋白的表达,结果显示PSG-1显著地促进了PKA蛋白的表达,下调了PKC的蛋白表达量。我们推测,PSG-1可以通过激活cAMP/PKA信号途径,下调DG-PKC信号通路来诱导并促进肿瘤细胞凋亡,从而抑制抗肿瘤的生长。
     采用流式细胞术观察各组荷瘤小鼠肿瘤细胞的线粒体膜电位变化和ROS的产生,发现PSG-1能有效地促进线粒体膜电位的降低和ROS的产生,Western Blotting检测细胞色素C、凋亡相关蛋白Bax、Bcl-2和p53的表达,结果显示:PSG-1显著地提高了促凋亡蛋白Bax和p53的表达水平,减少了了抑制凋亡蛋白Bcl-2表达量,同时还促进了线粒体中细胞色素C释放到细胞质中。此外,通过检测Caspase-9,-3的活性发现,PSG-1有效地活化了Caspase-9,-3。可见,PSG-1能够通过激活线粒体凋亡通路,实现诱导肿瘤细胞凋亡的作用,从而发挥抗肿瘤活性。
     综上所述,本研究证实了PSG-1在体内具有很强的抗肿瘤和免疫调节作用,其作用机制可能是通过活化免疫器官,激活免疫细胞及免疫信号通路,来提高机体免疫力;通过激活G蛋白信号转导通路和线粒体凋亡通路,从而促进肿瘤细胞凋亡,最终实现其较强的抗肿瘤作用。
Ganoderma atrum polysaccharide (PSG-1) was extract from the mycelia ofGanoderma atrum. Sugar analysis revealed that PSG-1was composed of glucose(Glc), mannose (Man), galactose (Gal) and galacturonic acid (GalA) in molar ratioof4.91:1:1.28:0.71. Numerous studies demonstrated that PSG-1has antioxidant,immunomodulatory, myocardial protection, antidiabetic and anti-aging properties. Alot of researchers have studies the antitumor activity of PSG-1and made remarkableprogress, but the exact mechanism is still unclear. It is, therefore, necessary for themechanism to be studied further.
     This study was to explore the antitumor activity and mechanism through in vivoand in vitro experiments. According to the modern molecular theory and technology,Flow Cytometry, Western Blot, Enzyme Linked Immunosorbent Assay and ReverseTranscription-Polymerase Chain Reaction were used. The impact of PSG-1on thetumor growth and signaling pathways were investigated from the perspectives ofintegral level, cellular level and molecular gene level, respectively. Specificresearches are as follows:
     Firstly, PSG-1resistant the S180or CT26tumor cells had been establishedsuccessfully in vitro. MTT method was used to observe the effects of PSG-1on thetumor cells proliferation. The results showed that PSG-1has little effect on theproliferation of tumor cells. It is suggested that PSG-1has no cytotoxicity on thetumor cells directly. However, PSG-1-primed macrophages exhibited a highertumoricidal activity than untreated macrophages in vitro. This finding indicted thatPSG-1could stimulate the peritoneal macrophage and increase the phagocytosisfunction.
     In vivo, S180or CT26tumor cells were implanted subcutaneously into righthind groin of the mice and the tumor-bearing mice model was established. Aftertumors developed to approximately80-90mm3, the mice were randomized into fivegroups and administrated with PSG-1or5-fluorouracil (5-Fu). On Day15, the micewere sacrificed. Tumors, thymus and spleens were extirpated. The blood samples of mice in each group were centrifuged and the peritoneal macrophages andsplenocytes were collected for the corresponding detections. The results showedPSG-1had significant inhibitory effects on the growth of tumor in mice. The thymusand spleen indexes were significantly increased compared with control group. Thecytokines in the serum and peritoneal macrophages were increased dose-dependently,as well as NO production. Phagocytosis ability of macrophage from the mice treatedwith PSG-1increased significantly. In addition, there was a marked increase in theCon A-or LPS-induced proliferation of splenic cells in PSG-1treated groups. In vivoassay, we believed that PSG-1has the potent antitumor activity, which could notonly inhibit the tumor growth markedly, but also enhance the immunity of the host.
     Different concentrations of PSG-1could increase the production of TNF-α fromtumor-bearing mouse peritoneal macrophages. Anti-TLR4antibody, specific p38MAPK blocker SB203580or specific NF-κB blocker PDTC was added into thecultures to investigate the signaling pathway of PSG-1. The results showed thataddition of anti-TLR4antibody markedly, although not complete, decreased theproduction of TNF-α stimulated by PSG-1. However, specific p38MAPK inhibitorSB203580and NF-κB blocker PDTC could absolutely abrogate the stimulatoryeffect of PSG-1on the TNF-α production by macrophages from tumor-bearing mice.We also explored Western-blotting to check the expressions of TLR4, NF-κB p65,IκB and pp38related proteins. The results showed PSG-1caused a relative increasein TLR4expression. The levels of p65in nuclear fractions were also significantlyenhanced. But the cytoplasmic protein level of IκBα was decreased. So the IκBαdegradation induced NF-κB activation. Moreover, PSG-1induced the activation ofp38MAPK in a dose-dependent manner. It was suggest that PSG-1treatment mayactivate the phosphorylation of p38in macrophages. In conclusion, these resultssuggest that PSG-1could enhance the immunity, and the antitumor effect of PSG-1may be related to their potentiation of the production of TNF-α in tumor-bearingmice. The signaling mechanism by which PSG-1promotes TNF-α production maybe as follows: PSG-1acts on the TLR4receptors on macrophages, signal throughp38MAPK pathway, and then activate NF-κB. The activated NF-κB in turn initiatesthe release of TNF-α.
     Flow cytometry methods were used to observe the apoptosis of tumor cells. Theresults demonstrated that PSG-1induced the apoptosis of tumor cells oftumor-bearing mice. Furthermore, PSG-1significantly increased the levels ofintracellular cAMP, PKA and AC in S180cells. In contrast, cyclic GMP (cGMP),DG level and PKC activity were decreased. Similarly, Western blot also gained thesame result. The expression of PKA protein was upregulated, while PKC proteinexpression in PSG-1-treated group was lowered. Hence, we speculated that theantitumor mechanism of PSG-1may be related to the induction of tumor cellapoptosis through cAMP-PKA signaling pathway and down-regulation of DG-PKCsignal pathway.
     To further investigate the other signaling pathway of PSG-1, the mitochondrialmembrane potential (m) and intracellular ROS production were analyzed by flowcytometry. Experimental results suggested that PSG-1caused a very significantdepletion of mand elevated the level of ROS production. The expressions ofcytochrome c, p53, Bcl-2and Bax were detected by Western blot. The resultsrevealed that Bcl-2expression was down-regulated while Bax and p53expressionlevels were strikingly increased. In addition, level of cytochrome c protein in thecytosolic fraction increased in a dose-dependent manner. In contrast, protein levelcytochrome c decreased in the mitochondrial fraction. These results indicated thatPSG-1led to the release of cytochrome c from the mitochondria to the cytosol.Meanwhile, both caspase-3and caspase-9activities were elevated by administrationof PSG-1in the tumor-bearing mice. These results suggested that PSG-1exhibitsprominent antitumor activity in vivo, at least in part by inducing apoptosis throughthe mitochondrial pathway.
     In conclusion, this study confirms that PSG-1could suppress the growth oftumor. Multiple pathways are involved in the antitumor activity. One of its functionmechanisms is that PSG-1stimulates the immunocytes and immune organs, and thenactivates the whole body immune system through TLR4-mediated NF-κB andMAPK signaling pathways. Besides, PSG-1also could induce the tumor cellsapoptosis via mitochondria-mediated intrinsic apoptotic pathway or Gprotein-mediated signaling pathways.
引文
[1] Koutsilieris M, Mitsiades C, Lembessis P, et al. Cancer and bone repair mechanism: clinicalapplications for hormone refractory prostate cancer [J]. Journal of Musculoskeletal andNeuronal Interactions,2000,1(1):15~17.
    [2] Ginsburg D H. Genetics and privacy [J]. Texas Review of Low and Politics,1999,4:17.
    [3]武晓英,侯冬岩,回瑞华.14种红茶中黄酮类化合物含量的分析和测定[J].鞍山师范学院学报,2011,12(6):57~59.
    [4] Fotsis T, Pepper M, Adlercreutz H, et al. Genistein, a dietary-derived inhibitor of in vitroangiogenesis [J]. Proceedings of the National Academy of Sciences,1993,90(7):2690~2694.
    [5]郭二坤,郝亮,梁朝辉,等.槲皮素对大鼠脑胶质瘤抑瘤作用的体内实验研究[J].中国神经精神疾病杂志,2012,38(2):83~86.
    [6] Chen Y, Shen S, Chow J, et al. Flavone inhibition of tumor growth via apoptosis in vitro and invivo [J]. International Journal of Oncology,2004,25(3):661~670.
    [7]袁淑兰,王修杰,魏于全.丹参酮抗肿瘤作用及其机理的研究[J].癌症:英文版,2003,22(12):1363~1366.
    [8]李芹,王睿.多糖抗肿瘤作用研究新进展[J].中国药物应用与监测,2005,(2):58~61.
    [9]王慧铭,夏明,夏道宗,等.香菇多糖抗肿瘤作用及其机制的研究[J].浙江中西医结合杂志,2006,16(5):291~292.
    [10]丛阳,黄敏.香菇多糖抗肿瘤的基础研究及临床应用进展[J].大连医科大学学报,2010,32(4):465~469.
    [11]王岳五,史玉荣.甘草残渣中多糖GPS抗肿瘤作用的研究[J].南开大学学报,自然科学版,2000,33(4):46~48.
    [12]任美萍,刘明华,李蓉,等.黄芪多糖抗肿瘤活性研究[J].中国新药杂志,2010,(3):221~224.
    [13]赵永娟,王蕾,侯琳,等.半夏多糖抗肿瘤作用研究[J].中国药理学通报,2006,22(3):368~371.
    [14]王丽君,姜虹.龙牙楤木多糖抗肿瘤活性及对荷瘤小鼠免疫功能的影响[J].中国免疫学杂志,2011,27(002):130~134.
    [15]严淑,刘宝瑞.七种天然生物碱抗肿瘤作用研究进展[J].现代肿瘤医学,2010,18(6):1227~1230.
    [16] Hu C M, Li J, Jin Y, et al. The relationship between therapeutic effects and concentration intissue or serum of Mel G [J]. Chinese Pharmacological Bulletin,2004,20(8):890~892.
    [17] Kamiyama H, Takano S, Tsuboi K, et al. Anti-angiogenic effects of SN38(active metaboliteof irinotecan): inhibition of hypoxia-inducible factor1alpha (HIF-1α)/vascular endothelialgrowth factor (VEGF) expression of glioma and growth of endothelial cells [J]. Journal ofCancer Research and Clinical Oncology,2005,131(4):205~213.
    [18] Guoying L, Linxi Y, Yuping W. The study apoptosis of human gastric carcinoma BGC-823cell induced by berberine [J]. Pharmacology and Clinics of Chinese Materia Medica,2005,1:6.
    [19] Zheng J, Liu Y, Zong Y, et al. Effect of Trifoliumpratense L. Extract on Apoptosis ofBGC-823Cells [J]. Life Science Research,2006,2:18.
    [20] Lin S, Tsai S, Lee C, et al. Berberine inhibits HIF-1α expression via enhanced proteolysis [J].Molecular Pharmacology,2004,66(3):612~619.
    [21]赵锐,赵玮玮.抗癌植物药紫杉醇研究进展与动态[J].中草药,2009,(7):1172.
    [22] Mannello F. Natural bio-drugs as matrix metalloproteinase inhibitors: new perspectives on thehorizon?[J]. Recent Patents on Anti-cancer Drug Discovery,2006,1(1):91~103.
    [23]张靖,杨柳,高文远.天然抗肿瘤药物研究进展[J].中草药,2010,(6):1014~1020.
    [24] Whistler R L, Bushway A A, Singh P P, et al. Noncytotoxic, antitumor polysaccharides [J].Advances in Carbohydrate Chemistry and Biochemistry,1976,32:235~275.
    [25] Lei L S, Lin Z B. Effect of Ganoderma polysaccharides on T cell subpopulations andproduction of interleukin2in mixed lymphocyte response [J]. Acta Pharmaceutica Sinica,1992,27(5):331~335.
    [26]金城,张树政.糖生物学与糖工程的兴起与前景[J].生物工程进展,1995,15(3):12~17.
    [27] Hurtley S, Szuromi P. Cinderella's coach is ready [J]. Science,2001,291(5512):2337.
    [28]赵继鼎,张小青.中国灵芝科真菌资源与分布[J].真菌学报,1992,11(1):55~62.
    [29]张晓云,杨春清.灵芝的化学成分和药理作用[J].国外医药:植物药分册,2006,21(4):152~155.
    [30]陈书明,王勤.人工培养灵芝菌丝体中免疫活性成分初探[J].山西农业大学学报:自然科学版,1994,14(4):429~430.
    [31] Liu W, Wang H, Pang X, et al. Characterization and antioxidant activity of twolow-molecular-weight polysaccharides purified from the fruiting bodies of Ganodermalucidum [J]. International Journal of Biological Macromolecules,2010,46(4):451~457.
    [32]秦葵,钱彦丛.灵芝免疫药理研究进展[J].解放军药学学报,2003,19(5):360~362.
    [33]林志彬.灵芝多糖的免疫药理学研究及其意义[J].北京大学学报(医学版),1992,24(4):271~274.
    [34]聂伟,张永祥.多糖的免疫调节作用及其作用机制研究进展[J].中国药理学通报,1999,15(6):484~487.
    [35]田庚元.中药免疫调节剂的研究和开发[J].中国新药杂志,1999,8(11):721~724.
    [36]盖玉红.灵芝多糖抗氧化活性研究[D].吉林农业大学,2007.
    [37]曹容华,侯桂华,姜启海,等.灵芝多糖抗肿瘤作用的机理研究[J].山东大学学报(医学版),1992,3:6.
    [38]雷林生,王庆彪.灵芝多糖对小鼠脾细胞白细胞介素1,肿瘤坏死因子的产生及其mRNA表达的影响[J].中药药理与临床,1998,14(2):16~18.
    [39]江振友,林晨.灵芝多糖对小鼠细胞免疫功能调节作用的实验研究[J].微生物学杂志,2003,23(2):51~54.
    [40]季修庆,吴士良,周迎会,等.灵芝多糖对γ射线照射后NIH3T3成纤维细胞细胞周期及细胞增殖的影响[J].苏州医学院学报,2001,21(4):379~382.
    [41]韩纪举,邓文,亓新国,等.灵芝多糖对NK细胞活性影响的研究[J].泰山医学院学报,2002,23(2):155~156.
    [42]郝瑞芳,李荣春.灵芝多糖的药理和保健作用及应用前景[J].食用菌学报,2004,11(4):57~62.
    [43]蔺丽,方能虎,吴旦.灵芝的主要生物活性研究概况[J].中国食用菌,2002,21(3):38~40.
    [44]张群豪,林志彬.灵芝多糖GL-B的抑瘤作用和机制研究[J].中国中西医结合杂志,1999,19(9):544~547.
    [45]林志彬.灵芝抗肿瘤活性和免疫调节作用的研究进展[J].北京大学学报(医学版),2002,
    [46]宁安红,曹婧,黄敏,等.灵芝多糖对小鼠肿瘤的抑制作用及免疫指标的观察[J].肿瘤研究与临床,2004,16(3):147~149.
    [47]高晓霞,费晓方,王本祥,等.松杉灵芝菌丝体多糖(FI0-b)对人组织瘤细胞和人外周血白细胞产生炎症性细胞因子的影响()(英文)[J]. Acta Pharmacologica Sinica,2000,12:20.
    [48]宁安红,曹婧,黄敏,等.灵芝多糖对荷瘤小鼠肿瘤免疫系统的影响[J].中国微生态学杂志,2004,16(1):13~14.
    [49]刘静.灵芝多糖抗病毒和抗肿瘤作用机制研究[D].武汉大学,2005.
    [50] Zhang J, Wang G, Li H, et al. Antitumor active protein-containing glycans from the Chinesemushroom songshan lingzhi, Ganoderma tsugae mycelium [J]. Bioscience, Biotechnology,and Biochemistry,1994,58(7):1202.
    [51]吴锦文,李慧.灵芝多糖精粉制备技术的研究[J].精细与专用化学品,2001,9(3):15~17.
    [52] Hikino H, Ishiyama M, Suzuki Y, et al. Mechanisms of Hypoglycemic Activity of GanoderanB: A Glycan of Ganoderma lucidum Fruit Bodies [J]. Planta Medica,1989,55(05):423~428.
    [53]闵三弟,严惠芳.灵芝多糖的抗肿瘤活性及免疫效应.食用菌学报,1996,3(1):21~26.
    [54]陆林.来自中华灵芝宝抗肿瘤药理研究和临床实践的报告[J].参考消息,1999,(4):23~24.
    [55] Yang M, Sun H, Yu D W, et al. Effects of the polysaccharides isolated from ganodermaapplanatum (PGA) on the level of PGE2and gastric mucosal blood flow (GMBF) and gastricmucus secretion of rats with gastric mucosa injury [J]. Zhong Guo Zhong Yao Za Zhi,2005,30(15):1176-1178.
    [56]吴锦文.食用菌的医疗保健功能和改善食物结构的作用[J].中国食用菌,2003,22(4):9~11.
    [57]王君巧,聂少平,余强,等.黑灵芝多糖对免疫抑制小鼠的免疫调节和抗氧化作用[J].食品科学,2012,33(023):274~277.
    [58] Liu W, Wang H, Pang X, et al. Characterization and antioxidant activity of twolow-molecular-weight polysaccharides purified from the fruiting bodies of Ganodermalucidum [J]. International Journal of Biological Macromolecules,2010,46(4):451~457.
    [59]张慧娜,林志彬.灵芝多糖对大鼠胰岛细胞分泌胰岛素功能的影响[J].中国临床药理学与治疗学,2003,8(3):265~268.
    [60] Hikino H, Konno C, Mirin Y, et al. Isolation and hypoglycemic activity of ganoderans A andB, glycans of Ganoderma lucidum fruit bodies [J]. Planta Medica,1985,51(4):339~340.
    [61]罗少洪,杨红.灵芝多糖调节血糖作用的实验研究[J].广东药学院学报,2000,16(2)119~120.
    [62] Harman D. The free radical theory of aging [J]. Antioxidants and Redox Signaling,2003,5(5):557~561.
    [63]陈书明,王勤.灵芝含氮多糖对动物机体红细胞内SOD活性的影响[J].中国食用菌,1994,13(3):26~27.
    [64] Sun J, He H, Xie B J. Novel antioxidant peptides from fermented mushroom Ganodermalucidum [J]. Journal of Agricultural and Food Chemistry,2004,52(21):6646~6652.
    [65]邢国庆,邢东升.灵芝多糖口服液对老龄小鼠超氧化物歧化酶的影响[J].泰山医学院学报,1999,20(2):135~136.
    [66]邵华强,卢连华.灵芝抗衰老作用的实验研究[J].山东中医药大学学报,2002,26(5):385~386.
    [67] Eo S, Kim Y, Lee C, et al. Possible mode of antiviral activity of acidic protein boundpolysaccharide isolated from Ganoderma lucidum on herpes simplex viruses [J]. Journal ofEthnopharmacology,2000,72(3):475~481.
    [68] Li Z, Liu J, Zhao Y. Possible mechanism underlying the antiherpetic activity of aproteoglycan isolated from the mycelia of Ganoderma lucidum in vitro [J]. Journal ofBiochemistry and Molecular Biology,2005,38(1):34~40.
    [69]戴则林,董昌武.灵芝多糖的生物活性研究进展[J].安徽中医学院学报,2005,24(5):60~62.
    [70]吴京燕,程光宇,江海涛,等.灵芝多糖合剂抗辐射保健功能的研究[J].南京师大学报(自然科学版),2003,26(30):79~81.
    [71]关洪昌,丛峥.灵芝多糖D6对核酸,蛋白质合成的影响及其初步分析[J].北京医学院学报,1981,13(4):261.
    [72] Li W J, Chen Y, Nie S P, et al. Ganoderma atrum polysaccharide induces anti-tumor activityvia the mitochondrial apoptotic pathway related to activation of host immune response.Journal of Cellular Biochemistry [J],2011,112(3):860~871.
    [73]秦立红.灵芝多糖抗肿瘤作用的分子机制研究[D].吉林农业大学,2007.
    [74]李明春,雷林生.灵芝多糖引起小鼠腹腔巨噬细胞膜超极化[J].中药药理与临床,1999,15(4):24~25.
    [75]李明春,雷林生.灵芝多糖对小鼠巨噬细胞cAMP含量的影响[J].中国中药杂志,2000,25(1):41~43.
    [76]李明春,雷林生.灵芝多糖对小鼠腹腔巨噬细胞蛋白激酶C活性的影响[J].中国药理学通报,2000,16(1):36~38.
    [77]李明春,雷林生.灵芝多糖对小鼠巨噬细胞内三磷酸肌醇和二酰基甘油的作用研究[J].中药药理与临床,1999,15(5):20~22.
    [78] Lacchini A H, Davies A J, Mackintosh D, et al. β-1,3-glucan modulates PKC signalling inLymnaea stagnalis defence cells: a role for PKC in H2O2production and downstream ERKactivation. Journal of Experimental Biology [J],2006,209(24):4829~4840.
    [79] Lin K, Kao Y, Kuo H, et al. Reishi polysaccharides induce immunoglobulin productionthrough the TLR4/TLR2-mediated induction of transcription factor Blimp-1[J]. Journal ofBiological Chemistry,2006,281(34):24111~24123.
    [80] Kawai T, Akira S. TLR signaling. Cell Death&Differentiation [J].2006,13(5):816~825.
    [81] Schepetkin I A, Quinn M T. Botanical polysaccharides: macrophage immunomodulation andtherapeutic potential. International Immunopharmacology [J].2006,6(3):317~333.
    [82]李建军,雷林生,余传林,等.灵芝多糖抗肿瘤作用的免疫学相关性研究[J].中药材,2007,30(1):71~73.
    [83] Kohguchi M, Kunikata T, Watanabe H, et al. Immuno-potentiating effects of theantler-shaped fruiting body of Ganoderma lucidum (Rokkaku-Reishi). Bioscience,Biotechnology, and Biochemistry [J].2004,68(4):881~887.
    [84] Shao B, Dai H, Xu W, et al. Immune receptors for polysaccharides from Ganoderma lucidum[J]. Biochemical and Biophysical Research Communications,2004,323(1):133~141.
    [85] Zhu X, Chen A, Lin Z. Ganoderma lucidum polysaccharides enhance the function ofimmunological effector cells in immunosuppressed mice [J]. Journal of Ethnopharmacology,2007,111(2):219~226.
    [86] Chien C M, Cheng J, Chang W, et al. Polysaccharides of Ganoderma lucidum alter cellimmunophenotypic expression and enhance CD56+NK-cell cytotoxicity in cord blood [J].Bioorganic&Medicinal Chemistry,2004,12(21):5603~5609.
    [87] Lin Z, Zhang H. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and itspossible mechanisms [J]. Acta Pharmacologica Sinica,2004,25:1387~1395.
    [88] Wang S Y, Hsu M L, Hsu H C, et al. The anti-tumor effect of Ganoderma Lucidum ismediated by cytokines released from activated macrophages and T lymphocytes [J].International Journal of Cancer,1997,70(6):699~705.
    [89] Geng Y, Hellstrand K, Wennmalm A, et al. Apoptotic death of human leukemic cells inducedby vascular cells expressing nitric oxide synthase in response to γ-interferon and tumornecrosis factor-α [J]. Cancer Research,1996,56(4):866~874.
    [90]沈先荣,贾福星.血管生成抑制因子在肿瘤防治中的研究进展[J].国外医学:药学分册,1994,21(4):215~220.
    [91] Li W J, Chen Y, Nie S P, et al. Ganoderma atrum polysaccharide induces anti-tumor activityvia the mitochondrial apoptotic pathway related to activation of host immune response.Journal of Cellular Biochemistry,2011,112(3):860~871.
    [92] Li W, Nie S, Chen Y, et al. Enhancement of cyclophosphamide-induced antitumor effect by anovel polysaccharide from Ganoderma atrum in sarcoma180-bearing mice [J]. Journal ofAgricultural and Food Chemistry,2011,59(8):3707~3716.
    [93]易有金,郭雨桐,王仁才,等.灵芝多糖联合5-FU对人结肠癌HCT-116细胞增殖及凋亡的影响[J].食品科学,33(19):310~314.
    [94]徐晋,吴丽,徐巧芳.灵芝多糖诱导人肝癌细胞HepG2凋亡的研究[J].中国当代医药,2009,16(23):7~9.
    [95]李建军,雷林生,余传林,等.灵芝多糖对S180荷瘤小鼠肿瘤细胞核酸及其细胞周期的影响[J].南方医科大学学报,2007,27(7):100315.
    [96] Xie J T, Wang C Z, Wicks S, et al. Ganoderma lucidum extract inhibits proliferation of SW480human colorectal cancer cells [J]. Experimental Oncology,2006,28(1):25~29.
    [97]弓晓峰.黑灵芝元素形态,活性成分及其保健功能研究[D].南昌大学,2006.
    [98]弓晓峰,谢明勇,陈奕.黑灵芝中三萜及其皂苷类化合物总量的光度测定[J].天然产物研究与开发,2008,(5):825~829.
    [99]申明月.黑灵芝甾醇类的结构表征及其提取物活性和指纹图谱研究[D].南昌大学,2007.
    [100]怡悦.黑灵芝抑制癌转移的作用[J].国外医学:中医中药分册,2003,25(4):248~249.
    [101]陈奕,谢明勇,弓晓峰.黑灵芝提取物清除DPPH自由基的作用[J].天然产物研究与开发,2007,18(6):917~921.
    [102] Chen Y, Xie M, Nie S, et al. Purification, composition analysis and antioxidant activity of apolysaccharide from the fruiting bodies of Ganoderma atrum [J]. Food Chemistry,2008,107(1):231~241.
    [103] Chen Y, Xie M Y, Wang Y X, et al. Analysis of the monosaccharide composition of purifiedpolysaccharides in Ganoderma atrum by capillary gas chromatography [J]. PhytochemicalAnalysis,2009,20(6):503~510.
    [104] Zhang H, Li W, Nie S, et al. Structural characterisation of a novel bioactive polysaccharidefrom Ganoderma atrum [J]. Carbohydrate Polymers,2012,88(3):1047~1054.
    [105]余强,聂少平,李文娟,等.黑灵芝多糖对D-半乳糖致衰老小鼠的作用研究[J].食品科学,2009,30(17):305~307.
    [106]李文娟,聂少平,余强,等.黑灵芝多糖对免疫抑制小鼠的免疫调节作用[J].食品科学,2009,(19):297~299.
    [107]李文娟,聂少平,余强,等.黑灵芝多糖对高糖诱导人脐静脉内皮细胞损伤的影响[J].营养学报,2010,(3):264~267.
    [108] Paterson R R M. Ganoderma–A therapeutic fungal biofactory [J]. Phytochemistry,2006,67(18):1985~2001.
    [109] Yeh C, Chen H, Yang J, et al. Polysaccharides PS-G and protein LZ-8from Reishi(Ganoderma lucidum) exhibit diverse functions in regulating murine macrophages and Tlymphocytes [J]. Journal of Agricultural and Food Chemistry,2010,58(15):8535~8544.
    [110] Yang Q, Wang S, Xie Y, et al. HPLC analysis of Ganoderma lucidum polysaccharides andits effect on antioxidant enzymes activity and Bax, Bcl-2expression [J]. International Journalof Biological Macromolecules,2010,46(2):167~172.
    [111] Zhou Z, Tang Y, Xiang J, et al. Neuroprotective effects of water-soluble Ganoderma lucidumpolysaccharides on cerebral ischemic injury in rats [J]. Journal of Ethnopharmacology,2010,131(1):154~164.
    [112]韦永福,陈晓颖,吴龙娟,等.灵芝多糖对肝癌细胞株HepG2的PTEN活性的影响[J].右江民族医学院学报,2013,35(4):455~457.
    [113]彭玉娜,谭获,王颖超,等.灵芝孢子粉对兔移植性肿瘤生存期及外周血的影响[J].时珍国医国药,2008,19(7):1737~1738.
    [114]王丹.灵芝硒多糖对乳腺癌MCF-7细胞蛋白质组的影响[D].辽宁师范大学,2009.
    [115]韩福生,赵运华,陆海涛,等.灵芝多糖对人喉癌Hep-2细胞增殖的影响[J].山东医药,2013,53(12):28~29.
    [116]黄芳华,商明红,熊亚婷,等.低分子灵芝多糖体内抗肿瘤活性研究及其作用机制探讨[J].中国天然药物,2010,8(3):228~232.
    [117]齐曼,邵雪斋,宋有鑫,等.灵芝多糖对小鼠黑素瘤细胞的体外抑制作用[J].河北医学,2009,15(4):400~402.
    [118]吴菲,林国桢,张晋昕.我国恶性肿瘤发病现状及趋势[J].中国肿瘤,2012,21(2):81~85.
    [119]林华型.灵芝多糖抗肿瘤靶向作用机制研究进展[J].细胞与分子免疫学杂志,2008,24(4):428~429.
    [120]赵世华,姚文兵,庞秀炳,等.灵芝多糖分离鉴定及抗肿瘤活性的研究[J].中国生化药物杂志,2003,24(4):173~176.
    [121]徐晋,吴丽,徐巧芳.灵芝多糖诱导人肝癌细胞HepG2凋亡的研究[J].中国当代医药,2009,16(23):7~9.
    [122]王翔岩,齐云,蔡润兰,等.肉苁蓉多糖的巨噬细胞活化作用[J].中国药理学通报,2009,25(6):787~790.
    [123] Boh B, Berovic M, Zhang J, et al. Ganoderma lucidum and its pharmaceutically activecompounds [J]. Biotechnology Annual Review,2007,13:265~301.
    [124] Key C A. On paraplegia depending on disease of the ligaments of the spine [J]. Guy'sHospital Reports,1838,3:17~34.
    [125]赵嘉惠,张华屏,王春芳. MTT法在检测细胞增殖方面的探讨[J].山西医科大学学报,2007,38(3):262~263.
    [126]吴窈画,谈书华,范超超,等. MTT法检测细菌细胞数的主要影响因素分析[J].微生物学杂志,2011,31(3):67~72.
    [127]徐静,吴锋,梅铭惠.应用MTT法检测肿瘤化疗药物的敏感性[J].华夏医学,2005,18(1):140~143.
    [128] Koutsilieris M, Mitsiades C, Lembessis P, et al. Cancer and bone repair mechanism: clinicalapplications for hormone refractory prostate cancer [J]. Journal of Musculoskeletal andNeuronal Interactions,2000,1(1):15~17.
    [129] Geavlete P, Georgescu D, Arabagiu I. Topical immunotherapy with BCG in the adjuvanttreatment of superficial bladder tumors--15-year-experience. Chirurgia (Bucharest, Romania:1990),2004,95(2):157~168.
    [130]崔国平,蔺建章,郭强,等. D3手术治疗进展期右半结肠癌临床分析[J].河北医药,2010,32(6):697~698.
    [131]狄彩虹,李响,郎刚,等.红细胞在结肠癌免疫治疗中的研究进展[J].中国实用医药,2010,(034):232~233.
    [132] Sporn M B, Suh N. Chemoprevention of cancer [J]. Carcinogenesis,2000,21(3):525~530.
    [133]陈奕,谢明勇,弓晓峰.黑灵芝提取物清除DPPH自由基的作用[J].天然产物研究与开发,2006,18(6):917~921.
    [134]弓晓峰,谢明勇,陈奕.黑灵芝与赤灵芝提取物的抗氧化作用比较[J].食品科学,2006,27(4):44~47.
    [135]李文娟,聂少平,余强,等.黑灵芝多糖对免疫抑制小鼠的免疫调节作用[J].食品科学,2009,30(19):297~299.
    [136]张莘莘,李文娟,聂少平,等.黑灵芝多糖对体外培养的小鼠腹腔巨噬细胞功能的影响[J].中国药理学通报,2010,26(009):1139~1142.
    [137]王长山,李丽,朱喜科.胸腺增龄性萎缩分子机制研究进展[J].国际免疫学杂志,2011,34(4):257~261.
    [138]金光明,余世春,苏德,等.优生素对草杂鸡生长性能及淋巴器官发育的影响[J].中国农学通报,2006,22(2):17.
    [139]杨汉春.动物免疫学[M].北京:中国农业大学出版社,1996.
    [140]向荣,余传霖.现代医学免疫学[M].上海:上海医科大出版社,1998
    [141]毕爱华,龚非力,王立人,等.医学免疫学[M].人民军医出版社,1995.
    [142] Bogdan C. Nitric oxide and the immune response [J]. Nature Immunology,2001,2(10):907~916.
    [143]黄波,陈畅.一氧化氮的功能及其作用机制(I)-性质与功能[J].生物物理学报,2012,28(3):173~184.
    [144]刘清池,梁冰.中药诱生细胞因子研究进展[J].中医杂志,1997,38(12):748~750.
    [145]赵显玲,曾庆华,黄百渠. TNF基因治疗肿瘤的研究进展[J].东北师大学报(自然科学版),2000,1:15.
    [146]郭甫坤,吴曙光.白介素1信号转导研究进展[J].国外医学:分子生物学分册,2001,23(1):13~15.
    [147]王筱静,梁桂玲,王郡甫,等. Toll样受体与癌症研究进展[J].国际肿瘤学杂志,2013,40(3):166~169.
    [148]阮丽钦,洪炎国. Toll样受体4及其调控神经病理性痛的可能机制[J].生命科学,2013,25(009):932~936.
    [149] Jin H, Axtell M J, Dahlbeck D, et al. NPK1, an MEKK1-like mitogen-activated proteinkinase kinase kinase, regulates innate immunity and development in plants [J].Developmental Cell,2002,3(2):291~297.
    [150] Vermeulen L, De Wilde G, Van Damme P, et al. Transcriptional activation of the NF-κB p65subunit by mitogen-and stress-activated protein kinase-1(MSK1)[J]. The EMBO Journal,2003,22(6):1313~1324.
    [151]单永平.灵芝多糖抗癌机制研究进展[J].健康必读:下半月,2011,(7):348.
    [152]李晓冰,谢忠礼,朱艳琴,等.灵芝多糖抗肿瘤机制研究进展[J].中国药学杂志,2013,48(016):1329~1332.
    [153] Boyd M R, Paull K D. Some practical considerations and applications of the NationalCancer Institute in vitro anticancer drug discovery screen [J]. Drug Development Research,1995,34(2):91~109.
    [154] Monks A, Scudiero D A, Johnson G S, et al. The NCI anti-cancer drug screen: a smartscreen to identify effectors of novel targets [J]. Anti-cancer Drug Design,1997,12(7):533~541.
    [155] Plowman J, Dykes D J, Hollingshead M, et al. Human tumor xenograft models in NCI drugdevelopment [J]. Anticancer Drug Development Guide Springer,1997,101~125.
    [156]李建军.灵芝多糖免疫调节作用与抗肿瘤作用的关系及作用机制的研究[D].第一军医大学,2007.
    [157] Tzianabos A O. Polysaccharide immunomodulators as therapeutic agents: structural aspectsand biologic function [J]. Clinical Microbiology Reviews,2000,13(4):523~533.
    [158]白吉庆,王小平,贺新怀,等.中药多糖的免疫佐剂作用[J].陕西中医学院学报,2005,28(4):64~65.
    [159]王丁,苗春木,龚建平.肝X受体激动剂对脂多糖诱导的炎症反应相关因子IRAK-4和NF-κB的影响[J].细胞与分子免疫学杂志,2009,25(4):293~295.
    [160]张弛,范建军.参附对脐静脉内皮细胞Toll样受体4/NF-κB途径的影响[J].山西医药杂志,2006,35(9):777~779.
    [161]李心群,许文.猪苓多糖通过Toll样受体4对小鼠骨髓来源树突状细胞作用研究[J].中草药,2011,42(1):118~123.
    [162] Li X, Xu W. TLR4-mediated activation of macrophages by the polysaccharide fraction fromPolyporus umbellatus (pers.) Fries [J]. Journal of Ethnopharmacology,2011,135(1):1~6.
    [163]叶平,杨波,吴晓玲,等. P38MAPK信号通路主要功能,常见研究方法及对肝纤维化的作用[J].世界华人消化杂志,2011,19(32):3353~3358.
    [164]葛保胜. G蛋白偶联受体结构生物学进展[J].生命科学研究,2009,13(4):360~365.
    [165] Filmore D. Cell-based screening assays and structural studies are fueling g-protein coupledreceptors as one of the most popular classes of investigational drug targets [J]. Modern DrugDiscovery,2004,7(11)
    [166] Overington J P, Al-Lazikani B, Hopkins A L. How many drug targets are there?[J]. NatureReviews Drug Discovery,2006,5(12):993~996.
    [167]黄秀兰. PI3K-Akt信号通路与肿瘤细胞凋亡关系的研究进展[J].癌症:英文版,2008,27(3):331~336.
    [168]黄丽妹,朱建梁,孙敏.哺乳动物腺苷酸环化酶亚型的研究进展[J].国际病理科学与临床杂志,2011,31(2):161.
    [169]刘恩梅,李成荣,杨锡强,等.细胞内信号传递对脐血淋巴细胞凋亡的影响[J].中华儿科杂志,1999,37(6):337~339.
    [170]姜涛,程庆书.金喜素诱导肺癌细胞凋亡与抑制Bcl-2和PKC活性的关系[J].华西药学杂志,2002,17(2):87~89.
    [171]田维毅,王文佳,李海峰,等.中性红法检测巨噬细胞吞噬功能的实验条件的优化[J].贵阳中医学院学报,2009,31(2):23~26.
    [172]蒋超. CAPE对人结肠癌HT-29细胞增殖凋亡及NF-κB信号通路影响的实验研究[D].南华大学,2011.
    [173]赵青.人参皂苷Rh3对结肠癌SW1116的抑制作用及其机制的初步探究[D].吉林大学,2012.
    [174] Pennarun B, Meijer A, de Vries E G, et al. Playing the DISC: turning on TRAIL deathreceptor-mediated apoptosis in cancer [J]. Biochimica et Biophysica Acta (BBA)-Reviews onCancer,2010,1805(2):123~140.
    [175] Indran I R, Tufo G, Pervaiz S, et al. Recent advances in apoptosis, mitochondria and drugresistance in cancer cells [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2011,1807(6):735~745.
    [176] Liu S, Cheng H, Kwan W, et al. Histone deacetylase inhibitors induce growth arrest,apoptosis, and differentiation in clear cell sarcoma models [J]. Molecular CancerTherapeutics,2008,7(6):1751~1761.
    [177] Kaiser H E, Bodey B. The role of apoptosis in normal ontogenesis and solid humanneoplasms [J]. In vivo (Athens, Greece),1999,14(6):789~803.
    [178]范玉贞.金雀异黄素抗结肠癌作用及其机制的体内外实验研究[D].河北医科大学,2008.
    [179]王嘉宁,郭宁.细胞凋亡的检测技术与方法[J].中国药理学与毒理学杂志,2005,19(6):466~470.
    [180]许金霞,赵鲁杭.多糖对细胞信号转导途径影响研究进展[J].中兽医医药杂志,2009,28(3):21~24.
    [181]刘敏,苏振忠,柴丽萍,等.人喉癌组织中蛋白激酶C和蛋白激酶A活性水平的检测[J].临床耳鼻咽喉科杂志,2006,19(21):996~998.
    [182]曾艳兵,张妮娜,卜平.中药对恶性肿瘤细胞信号转导通路的影响及其作用机理研究的进展[J].中国中西医结合杂志,2004,24(7):670~672.
    [183]黄添友,佟丽.四种植物多糖对S180细胞膜磷脂酰肌醇转换的影响[J].第一军医大学学报,1995,15(3):211~212.
    [184]李松,吴青华,陈畅,等.多糖抗肿瘤活性的最新研究进展[J].中国生化药物杂志,2007,28(3):213~215.
    [185]谢少茹.黄芪多糖调控胃癌细胞COX-2表达和凋亡的研究[D].南京中医药大学,2007.
    [186]陈小蒙,刘成梅,刘伟.百合多糖的药理作用及其作用机制研究进展[J].农产品加工.学刊,2007,(8):7~9.
    [187] Sarangi I, Ghosh D, Bhutia S K, et al. Anti-tumor and immunomodulating effects ofPleurotus ostreatus mycelia-derived proteoglycans [J]. International Immunopharmacology,2006,6(8):1287~1297.
    [188] Denecker G, Vercammen D, Declercq W, et al. Apoptotic and necrotic cell death induced bydeath domain receptors [J]. Cellular and Molecular Life Sciences CMLS,2001,58(3):356~370.
    [189] Whelan R S, Kaplinskiy V, Kitsis R N. Cell death in the pathogenesis of heart disease:mechanisms and significance [J]. Annual Review of Physiology,2010,72:19~44.
    [190] Tewari M, Quan L T, O'Rourke K, et al. Yama/CPP32beta, a mammalian homolog ofCED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose)polymerase [J]. Cell,1995,81(5):801~809.
    [191]王文亮.细胞凋亡研究进展[J].心脏杂志,2005,6.
    [192]刘文,黄文芳,卢贤瑜.死亡受体信号传导途径研究进展[J].检验医学与临床,2008,(9):445~447.
    [193]焦俊霞,高维娟.细胞凋亡的信号转导机制研究进展[J].中国老年学杂志,2010,30(6):853~856.
    [194]李捷萌,陈彦青,刘荣国.线粒体凋亡途径与Bcl-2家族蛋白研究进展[J].医学综述,2008,14(4):489~490.
    [195]郑天胜.线粒体凋亡通路的研究进展[J].医学综述,2013,19(18):3282~3285.
    [196]姜山,谢青.内质网应激与细胞凋亡[J].国外医学·流行病学传染病学分册,2004,31(6):330~333.
    [197]许彩民,潘华珍.内质网应激介导的细胞凋亡[J].生物化学与生物物理进展,2007,34(11):1136-1141.
    [198]何维.医学免疫学(第2版)[M].北京:人民卫生出版社,2001.
    [199]王一飞,江金花,王庆端,等.冬凌草多糖的抗肿瘤及其免疫增强作用[J].中国病理生理杂志,2002,18(11):1341~1343.
    [200]陈慧莉,李建华,王树庆.线粒体跨膜电位和细胞凋亡相关性的研究[J].医学综述,2007,13(14):1041~1043.
    [201]许守明,陈双喜,何艳霞.细胞凋亡与细胞色素C[J].安徽农学通报,2009,15(15):38.
    [202]雷义,金文达,陈锋.活性氧与线粒体损伤[J].南华大学学报:医学版,2008,(5)
    [203]赵云罡,徐建兴.线粒体,活性氧和细胞凋亡[J].生物化学与生物物理进展,2001,28(2):168~171.
    [204]王钊,黄雨蒙,彭军.氧化应激与脑缺血-再灌注损伤[J].国际病理科学与临床杂志,2012,32(4):343~346.
    [205]刘志,郑军. Bcl-2家族蛋白及其在细胞凋亡中的作用[J].生命的化学,2007,27(1):22~25.
    [206]付永锋,樊廷俊. Bcl-2家族蛋白与细胞凋亡[J].生物化学与生物物理学报,2002,34(4):389~394.
    [207]朱玉山,卢铁元,王蕊,等. Bcl-2家族蛋白调控线粒体膜通透性和细胞色素C释放的新机制[J].生命科学,2011,23(11):1076~1080.
    [208]钱呈睿,葛海良,王颖. p53转录非依赖活性介导细胞凋亡[J].生命科学,2007,19(3)
    [209] Sliva D. Cellular and physiological effects of Ganoderma lucidum (Reishi)[J]. MiniReviews in Medicinal Chemistry,2004,4(8):873~879.
    [210] Gao Y, Zhou S, Wen J, et al. Mechanism of the antiulcerogenic effect of Ganodermalucidum polysaccharides on indomethacin-induced lesions in the rat [J]. Life Sciences,2002,72(6):731~745.
    [211] Eo S, Kim Y, Lee C, et al. Antiherpetic activities of various protein bound polysaccharidesisolated from Ganoderma lucidum [J]. Journal of Ethnopharmacology,1999,68(1):175~181.
    [212]王统一,赵兵,王玉春.多糖免疫调节和抗肿瘤研究进展[J].过程工程学报,2006,6(4):674~682.
    [213]戴慧,高晓明.多糖特异性免疫识别的分子机制及其免疫生物学意义[J].中国免疫学杂志,2009,25(1):35~39.
    [214]乔英.灵芝多糖的研究概况[J].云南民族大学学报(自然科学版),2006,15(2):134~137.
    [215]冯献启,邹萍.内质网应激反应性凋亡途径研究进展[J].国外医学:肿瘤学分册,2004,31(10):726~730.
    [216]赵瑞杰,李引乾,王会,等. Caspase家族与细胞凋亡的关系[J].中国畜牧杂志,2010,46(17):73~78.
    [217]和四梅,张丽莉,王艺磊,王国栋. Caspase细胞凋亡通路及其在水生无脊椎动物的研究进展[J].生物技术通报.2013(9):54~61.
    [218]李勇,李竹.线粒体与细胞凋亡[J].中华预防医学杂志,2000,24(3):183~184.
    [219]李建涛,张倩.抑癌基因p53与肿瘤发生及基因治疗的研究进展[J].菏泽学院学报,2013,35(2):56~58.
    [220]苏玉慧,漆正堂,丁树哲. p53与线粒体的关系[J].生命的化学,2010,(3):354~359.
    [221]孟祥东,严云勤. BCL-2家族与线粒体对细胞凋亡的调控.细胞与分子免疫学杂志,2005,21(B03):77~79.
    [222]袁海波,沈忠明.细胞凋亡的分子机理[J].上海大学学报:自然科学版,2001,7(1):77~80.
    [223]王小红.细胞凋亡的分子机理[J].中华中西医杂志,2007,8(11):980~985.
    [224]周永.多糖类抗肿瘤作用的研究进展[J].国外医学:卫生学分册,2001,28(3):129~132.
    [225] Gamal-Eldeen A M, Amer H, Helmy W A. Cancer chemopreventive and anti-inflammatoryactivities of chemically modified guar gum [J]. Chemico-biological Interactions,2006,161(3):229~240.
    [226] Zhang M, Cheung P C, Chiu L C, et al. Cell-cycle arrest and apoptosis induction in humanbreast carcinoma MCF-7cells by carboxymethylated β-glucan from the mushroom sclerotiaof Pleurotus tuber-regium [J]. Carbohydrate Polymers,2006,66(4):455~462.
    [227]韩翰.人参多糖抗肿瘤活性及机理研究[D].东北师范大学,2011.
    [228]吴媛媛,李龙,沈萍萍.巨噬细胞替代激活及调控[J].中国细胞生物学学报,2011,2:17.
    [229]李相仕.壳聚糖基生物材料与巨噬细胞相互作用研究[D].天津大学,2007.
    [230]张立煌,王青青.恶性肿瘤免疫治疗的现状及展望[J].浙江大学学报:医学版,2010,39(4):339~344.
    [231]文亚平,高丽华,黎明.肿瘤与免疫系统的相互作用及肿瘤免疫治疗新策略[J].中国肿瘤,2011,20(2):103~107.
    [232]叶韵斌,周智锋.原发性肝癌免疫治疗现状及展望[J].中国肿瘤,2011,20(2):108~114.
    [233]毛建平,陈立军.临床肿瘤免疫治疗研究进展[J].国际药学研究杂志ISTIC,2013,40(2)
    [234]石燕,焦顺昌.天然免疫-肿瘤免疫治疗不容忽视的领域[J].现代肿瘤医学,2009,17(2):367~370.
    [235]李兰英,田国才.激活的巨噬细胞在抗肿瘤免疫治疗中的意义[J].内蒙古医学院学报,1997,1
    [236]周永.多糖类抗肿瘤作用的研究进展[J].国外医学:卫生学分册,2001,28(3):129~132.
    [237]王健,龚兴国.多糖的抗肿瘤及免疫调节研究进展[J].中国生化药物杂志,2001,22(1):52~54.
    [238]孙耕耘,毛宝龄,吕宝璋.白细胞介素-1,肿瘤坏死因子与炎症[J].生理科学进展,1993,24(1):23~28.
    [239]周光炎.免疫学[M].北京:人民卫生出版社,2002
    [240]付书婕,王乃平,黄仁彬.植物多糖免疫调节作用的研究进展[J].时珍国医国药,2008,19(1):99~101.
    [241]周世文,徐传福.多糖的免疫药理作用[J].中国生化药物杂志,1994,15(2):143~147.
    [242]韦小瑜,何云,程明亮.细胞因子与肺纤维化[J].西南军医,2006,8(2):54~57.
    [243]王寿叶,杨文东.子宫内膜异位症患者血清VEGF, TNF-α水平变化及其相关性[J].中国妇产科临床杂志,2007,8(2):140~141.
    [244]冯娜,刘芳,郭会彩,等.车前子多糖抗炎作用机制的实验研究[J].天津医药,2012,40(6):598~601.
    [245]孙晨鸣,马海霞,刘光伟,等.巨噬细胞免疫球蛋白超家族受体的研究进展[J].细胞与分子免疫学杂志,2007,23(2):183~186.
    [246]姜琳,朱金水.急性胰腺炎预后与细胞免疫因子相关研究新进展[J].世界华人消化杂志,2002,10(9):1045~1047.
    [247]张英,王盛民.一氧化氮的免疫功能及中药的调节作用[J].陕西中医,2002,23(12):1120~1123.
    [248] Medzhitov R, Preston-Hurlburt P, Janeway C A. A human homologue of the Drosophila Tollprotein signals activation of adaptive immunity [J]. Nature,1997,388(6640):394~397.
    [249]陈洁,姜虹. TLR4信号通路与炎性反应[J].医学综述,2009,15(19):2902~2904.
    [250]张宇. Toll样受体4信号转导研究进展[J].国际病理科学与临床杂志,2008,29(1):32~36.
    [251]吴汉军.木犀草素对活化T细胞NF-κB及IκBa的调节作用[D].中南大学,2009.
    [252] Sethi G, Sung B, Aggarwal B B. Nuclear factor-κB activation: from bench to bedside [J].Experimental Biology and Medicine,2008,233(1):21~31.
    [253] Bacher S, Schmitz M L. The NF-kB pathway as a potential target for autoimmune diseasetherapy [J]. Current Pharmaceutical Design,2004,10(23):2827~2837.
    [254]董志珍,姚登福,苏小琴,等.肝癌形成过程中基因表达谱及转录核因子-κB动态改变[J].胃肠病学和肝病学杂志,2008,16(6):580~584.
    [255]楼希文,孙绍刚,王琛.转录因子NF-κB的核内活性调控[J].细胞生物学杂志,2009,31(16):741~748.
    [256] Yah Z Q. Regulation of TLR4expression is a tale about tail arterio-sclerosis [J].Arteriosclerosis, Thrombosis, and Vascular Biology,2006,26(4):2582~2584.
    [257]韩果萍.我国天然活性多糖药理研究进展[J].中药材,2003,26(2):138~141.
    [258]刘烜,王海生,刘淑萍. Wnt信号转导通路与细胞凋亡[J].内蒙古医学杂志,2011,1:20.
    [259]王红阳,丁劲,冯赘.细胞信号转导与靶向抗肿瘤药物的研发[J].中国肿瘤生物治疗杂志,2007,14(5):401~404.
    [260]许力. p38MAPK在神经病理性疼痛中作用的研究[D].中国协和医科大学,2006.
    [261]谷善青,梁云燕.复方白龙片对人胃癌细胞两条信号通路的调控[J].中国中西医结合杂志,1997,17(7):404~407.
    [262]李荣辉,赵富生,梁启超,等.信号转导通路与中药抗肿瘤作用的研究进展[J].医学研究杂志,2011,40(8):157~160.
    [263]李勇,刘冀红.大蒜素对人胃腺癌BGC-823细胞影响的研究[J].中国中西医结合外科杂志,2001,7(5):307~310.
    [264]卜平.细胞信号转导与抗肿瘤中药开发(上)[J].江苏中医药,2003,24(4):1~4.
    [265] Zhu K, Nie S, Li C, et al. A newly identified polysaccharide from Ganoderma atrumattenuates hyperglycemia and hyperlipidemia [J]. International Journal of BiologicalMacromolecules,2013,57:142~150.
    [266] Zhang S, Nie S, Huang D, et al. A novel polysaccharide from Ganoderma atrum exertsantitumor activity by activating mitochondria-mediated apoptotic pathway and boosting theimmune system [J]. Journal of Agricultural and Food Chemistry,2014,62(7):1581~1589.
    [267] Yu Q, Nie S P, Li W J, et al. Macrophage immunomodulatory activity of a purifiedpolysaccharide isolated from Ganoderma atrum [J]. Phytotherapy Research,2013,27(2):186~191.
    [268]计慧琴,王丙云,陈志胜,等. T细胞的发育分化及胸腺激素的作用[J].动物医学进展,2005,26(4):47~50.
    [269]刘国超.脾破裂的临床治疗方法[J].健康必读:下半月,2010,1(012):38.
    [270]蒯守刚,俞用芳,朱启贯.巨噬细胞研究进展[J].中国实验诊断学,2008,12(2):266~267.
    [271]汤城,薛雅蓉,余飞,等.一种检测巨噬细胞吞噬鸡红细胞活性新方法的建立[J].畜牧与兽医,2006,37(11):47~49.
    [272] Fierro I M, Serhan C N. Mechanisms in anti-inflammation and resolution: the role oflipoxins and aspirin-triggered lipoxins [J]. Brazilian Journal of Medical and BiologicalResearch,2001,34(5):555~566.
    [273]林成招,马海田,邹思湘,等.大豆异黄酮对大鼠乳腺癌细胞内cAMP/PKA信号途径的影响[J].生理学报,2005,57(4):517~522.
    [274] Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of proteinkinase C [J]. Science,1992,258(5082):607~614.
    [275] Parker P J, Murray-Rust J. PKC at a glance [J]. Journal of Cell Science,2004,117(2):131~132.
    [276] Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumourpromotion [J]. Nature,1984,308(19):693~698.
    [277] O'Brian C A, Ward N E, Vogel V G. Inhibition of protein kinase C by the12-O-tetradecanoylphorbol-13-acetate antagonist glycyrrhetic acid [J]. Cancer Letters,1990,49(1):9~12.
    [278]李勇,刘冀红.大蒜素对人胃腺癌BGC-823细胞影响的研究[J].中国中西医结合外科杂志,2001,7(5):307~310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700