汶川地震紫坪铺面板堆石坝震害分析及面板抗震对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国西南强震区一大批高土石坝项目在建或待建。由于混凝土面板堆石坝具有安全、经济以及适应性强的特点,在建或拟建的土石坝中有相当一部分采用了面板堆石坝方案。这些高面板堆石坝坝址区河谷条件和地质条件复杂,地震活动频繁且烈度较高。因此,开展强震作用下高面板堆石坝的抗震对策研究具有重大的理论价值和工程意义。
     2008年5月12日,距离紫坪铺面板堆石坝以西约17km的四川省汶川县发生了8.0级强烈地震,震中最大烈度高达Ⅺ度。紫坪铺大坝在地震中出现了明显的震损破坏。但紫坪铺大坝台阵没有获取到强震时坝址基岩处地震动记录,大坝的动力计算成果无法在定量上与实测资料进行对比。地震作用下筑坝材料的动力本构模型,目前国内外大多采用等价线性粘-弹性模型描述高土石坝的地震反应。因此,建立适用于高土石坝应力应变特性的弹塑性分析方法,反应强震时大坝渐进变形过程具有重要的意义。
     本文在国家自然科学基金项目“强震区高土石坝抗震措施研究”(编号:50679093)、国家自然科学基金重大研究计划重点项目“高土石坝地震灾变模拟及安全控制方法研究”(编号:90815024)和“十一五”国家科技支撑计划项目“紫坪铺水库震损评估与抗震减灾技术研究”(编号:2009BAK56B02)资助下,结合汶川地震紫坪铺大坝的震害情况,对大坝的地震变形与面板错台进行了数值仿真,建立了高面板堆石坝弹塑性静、动力计算方法。论文的主要内容包括以下几方面:
     (1)对汶川地震后紫坪铺面板堆石坝余震记录的加速度峰值及频谱特性等进行了分析。选择坝址基岩台站实测余震地震波作为大坝地震动输入,对紫坪铺大坝进行了三维动力有限元分析,并将计算得到的坝体加速度与台站的监测数据进行了对比,研究了小震时大坝的动力反应规律。
     (2)对汶川地震紫坪铺面板堆石坝动力反应分析时的地震动输入选择问题进行了探讨。分别选取几组基岩台站实测主震波、紫坪铺台站某实测余震波以及按水工抗震规范人工生成地震波等作为数值计算的地震动输入,对紫坪铺大坝进行三维动力有限元分析,并与实测结果进行对比,结合大坝自振反应的基本规律,分析大坝在各组地震动作用下的动力反应特性,建议汶川地震中紫坪铺大坝动力计算时可选择茂县地办实测主震波或规范谱人工生成地震波作为地震动输入。
     (3)对汶川地震紫坪铺大坝的震害现象进行了数值仿真。采用三维有限元分析方法计算了大坝地震永久变形,并与实测值进行对比;分别采用了基于应变势的永久变形分析方法和刚体滑块法,对大坝二、三期面板施工缝处的错台现象进行了数值模拟,研究了面板错台的机理,并与面板实际错台震害进行对比,分析了施工缝方向、水库水位以及不同地震动等因素对面板错台的影响。
     (4)建立了高面板堆石坝的弹塑性静、动力分析方法。考虑筑坝堆石料的压力相关性和滞回特性,对广义塑性P-Z模型的弹性剪切模量、弹性体积模量、加卸载塑性模量和应力历史再加载函数进行了修改,并根据筑坝堆石料静力和循环荷载试验确定了修改后的模型参数。将改进的广义塑性P-z模型加入到有限元计算软件GEODYNA中,实现了基于弹塑性模型的高面板堆石坝有限元计算静、动力计算方法。采用该模型,对紫坪铺大坝进行有限元静、动力反应计算,模拟了竣工期和地震中大坝变形和面板施工缝错台的渐进变化过程。
     (5)建议了改善面板应力的综合抗震对策。通过对不同坝高、不同河谷形状的高面板堆石坝进行三维静、动力有限元分析,研究了高面板堆石坝震前、地震时以及地震后面板应力的分布规律。通过不同抗震方案的对比,建议了挤压边墙施工、降低面板与边墙摩擦、面板竖缝填充材料优化布置的综合面板应力改善对策,并进行了数值验证。
A lot of high earth and rock dams have been constructed or being planned or designed in the western region of China (meizoseismal area). With advantages in safety, economy and adaptability, Concrete Face Rockfill Dams (CFRD) are selected as one of the most widely used rockfill dam types. Many of these high CFRDs located at valleys with extremely complex geological conditions, and at regions where earthquake with high seismic intensity occurred frequently. Therefore, it has great theoretical practical significances to study the aseismic measures of high CFRDs to survive from strong earthquakes.
     A large earthquake (Ms=8.0) occurred on May12,2008in Wenchuan in China's Sichuan province,17km west from where locates Zipingpu CFRD. The largest seismic intensity in the epicenter was up to XI. The strong shock caused obvious damages on Zipingpu dam. Unfortunately the rock station under Zippingpu dam failed to capture the base rock seismic wave of Zippingpu dam during Wenchuan earthquake. Thus the damages from field investigations cannot be used to quantitatively verify the results predicted by dynamic numerical analysis. Equivalent linear viscoelastic model was usually applied in dynamic constitutive model of rockfill materials. Therefore, the elastic-plastic analysis method was established for the stress-strain behavior of high earth and rockfill dam. It is a great significance to calculate the process of gradual deformation during earthquake.
     The present research is supported by the Natural Science Foundation of China "Study on aseismic measures of high earth and rockfill dam in meizoseismal area"(No.50679093), the National Mega-project of Natural Science Foundation of China "Disaster simulation and safety control of high earth and rock dams during earthquake"(No.90815024) and the National Key Technology R&D Program for the11th5-year plan "Study on earthquake damage assessment of Zipingpu reservoir and aseismic technology of dams"(No.2009BAK56B02). The deformation of Zipingpu dam and the dislocations of face slabs at horizontal construction joints were simulated by numerical method. A elasto-plastic model for static and dynamic analyses on high rockfill dams was developed and verified. The main contents of this study are as follows:
     (1) The peak acceleration and spectrum characteristic of the dynamic responses of Zipingpu CFRD shaken by aftershocks after Wenchuan Earthquake were analyzed. Several representative motion records captured by the rock stations at the dam site were selected to generate the seismic input for three-dimensional dynamic finite element (FE) analysis of Zipingpu CFRD. The calculated acceleration responses were compared with the measured data at different levels. The characteristic of dynamic response of the dam under small earthquake was studied.
     (2) Selection of the seismic wave input of Zipingpu CFRD in dynamic simulation under Wenchuan earthquake was discussed at first in this paper.3-D dynamic FE simulations of Zipingpu CFRD were carried out with various seismic input waves, including records of main shock captured by nearby rock stations, records of aftershocks captured by stations on the dam site, and the artificially derived seismic input according to the standardized spectrum of specifications for seismic design of hydraulic structures. The dynamic responses of the dam under various seismic input waves are compared with the measured data. Suitable seismic wave inputs of Zipingpu CFRD under Wenchuan earthquake such as seismic waves measured by Diban station of Mao town and artificial seismic waves generated by standardized spectrum were suggested for dynamic simulation.
     (3) The damages of Zipingpu dam during Wenchuan earthquake were simulated numerically. Three-dimensional FE methods, respectively based on strain potentials and rigid sliding method, were adopted to calculate the permanent deformation of the dam and further to calculate the dislocations of face slabs between the second and third construction stages. The calculated results are compared with the field measured data. The major factors affecting the dislocation of face slabs, including the direction of the joints, water level of the reservoir and different seismic inputs, were analyzed.
     (4) An elasto-plastic model for static and dynamic FE analyses of high CFRD was developed based on the generalized plastic P-Z model. The elastic shear modulus, elastic bulk modulus, loading and unloading plastic modulus, and and reload function about stress history were modified according to the stress-related behaviour and the damping characteristic of rockfill materials. The parameters of the improved model were determined by large-scale static and dynamic triaxial experiments. The improved generalized plastic P-Z model was successfully programmed into the FE software GEODYNA. Static and dynamic analyses of Zipingpu dam were carried out using this elasto-plastic model. The dam deformation during construction and during the earthquake, and the dislocations of face slabs between construction stages during the earthquake were calculated.
     (5) Comprehensive aseismic measures for improving the stresses distributions of face slabs were proposed, including adopting extrusion-sidewall technology during construction, reducing the friction factor between sidewalls and face slabs, and adopting optimization scheme in the filling materials between vertical joints. The stress distribution behaviour of face slabs of high CFRD before, during and after earthquake were investigated by3-D staic and dynamic FE analyses. The effects of various dam height and valley shape were also discussed. The results of FE analyses showed that the above aseismic measures can effectively improve the stress distribution of the face slabs of CFRDs.
引文
[1]中国经济网.史海回眸:回顾二十世纪中国发生的十大地震[EB/OL]. http://www.ce.cn/culture/ history/200805/26/t20080526_15621087.shtml.
    [2]中国水力发电工程学会混凝土面板堆石坝专业委员会.混凝土面板堆石坝安全监测技术实践与进展[M].北京:中国水利水电出版社,2010:1—20.
    [3]赵剑明,常亚屏,陈宁.加强高土石坝抗震研究的现实意义及工作展望[J].世界地震工程,2004,20(1):95-99.
    [4]H. B. Seed, K. L. Lee, I. M. Idriss. Analysis of the Sheffield dam failare[C]. Engineering Geology and Soils Engineering Symposium, Proceedings of the 6th Annual.1968.
    [5]上海大科科技咨询有限公司,中国水力发电工程学会史料信息组.国外土石坝地震震害实例和统计[R].2001.
    [6]Earthquake Engineering Research Center, Berkeley The University Of California. The Sheffield Dam after the 1925 earthquake[EB/OL].http://projects.crustal.ucsb.edu/sb_eqs/1925/sheffield2.img.html.
    [7]Boulanger R. W., Bray J. D., Merry S. M., et al. Three-Dimensional Dynamic Response Analysis of Cogswell Dam[J]. Canadian Geotechnical Journal,1995,32(3):452-464.
    [8]Boulanger R. W., Bray J. D., Merry S. M., et al. Dynamic Response Analyses of Cogswell Dam During the 1991 Sierra Madre and 1987 Whittier[C]. Proceedings of Seminar on seismological and engineering implications of recent strong-motion data. California:1993.
    [9]Luis Arrau, Ismael Ibarra, Guillermo Noguera. Performance of Cogoti Dam Under Seismic Loading[C]. Concrete face rockfill dams-design, construction and performance. ASCE. New York: 1985.
    [10]韩国城,孔宪京.混凝土面板堆石坝抗震研究进展[J].大连理工大学学报,1996,36(6):708-720.
    [11]Nuclear Engineering International. CFRDs in highly seismic regions [EB/OL]. http://www.neimagazine.com/storyprint.asp?sc=2056051.
    [12]陈生水,霍家平,章为民.汶川“5.12”地震对紫坪铺混凝土面板堆石坝的影响及原因分析[J].岩土工程学报,2008,30(6):795—801.
    [13]孔宪京,邹德高,周扬,等.汶川地震中紫坪铺混凝土面板堆石坝震害分析[J].大连理工大学学报,2009(05):667—674.
    [14]Burland J., Symes M. J. A Simple axial displacement gauge for use in the triaxial apparatus[J]. Geotechnique,1982,32(1):62-65.
    [15]Clayton C. R. I., Khatrush S. A., Bica A. V. D., et al. The use of hall effect semiconductors in geotechnical instrumentation[J]. Geotechnical Testing Journal,1989,12(1):69-76.
    [16]Kokusho T. Cyclic Triaxial Test of dynamic soil properties for wide strain range[J]. Soils and Foundations,1980,20(2):45-60.
    [17]Goto S., Tatsuoka F. A simple gauge for local small strain measurements in the laboratory[J]. Soils and Foundations,1991,31(1):169-180.
    [18]Tatsuoka F., Shibuya S., Goto S., et al. Discussion on "The use of hall effect semiconductors on geotechnical instrumentation" by Clayton C. R. I., Khatrush S. A.,Bica A. V. D. and Siddique A.[J]. Geotechnical Testing Journal,1990,13(1):63-65.
    [19]孔宪京,韩国城,娄树莲,等.土工试验新技术研究[C].辽宁省第二届青年学术会论文集.1995.
    [20]孔宪京,张涛,邹德高,等.中型动三轴仪研制及微小应变测试技术应用[J].大连理工大学学报,2005,45(1):79-84.
    [21]孔宪京,徐斌,邹德高,等.多级位移测试方法在三轴试验中的应用[C].第24届土工测试会议论文集.北京:2005,120—122.
    [22]孔宪京,贾革续.微小应变下堆石料的变形特性[J].岩土工程学报,2001,23(1):32-37.
    [23]孔宪京,娄树莲,邹德高,等.筑坝堆石料的等效动剪切模量与等效阻尼比[J].水利学报,2001(8):20-25.
    [24]贾革续,孔宪京.粗粒土动残余变形特性的试验研究[J].岩土工程学报,2004,26(1):26-30.
    [25]沈珠江,徐刚.堆石料的动力变形特性[J].水利水运科学研究,1996(2):143-150.
    [26]邹德高,孟凡伟,孔宪京,等.堆石料残余变形特性研究[J].岩土工程学报,2008,30(6):807-812.
    [27]李万红,汪闻韶.无粘性土动力剪应变模型[J].水利学报,1993(9):11—17.
    [28]赵剑明,王昆耀,汪闻韶.面板坝三维非线性动力分析[J].中国水利水电科学院学报,2001,5(1):72-76.
    [29]王昆耀,常亚屏,陈宁.往返荷载下粗粒土的残余变形特性[J].土木工程学报,2000,33(3):48-53.
    [30]Zienkiewicz O. C., Leung K. H., Pastor M. Simple model for transient soil loading in earthquake analysis.I:basic model and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(5):453-476.
    [31]Pastor M., Zienkiewicz O. C., Leung K. H. Simple model for transient soil loading in earthquake analysis. Ⅱ. Non-associative models for sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(5):477-498.
    [32]Pastor M., Zienkiewicz O. C., Chen A. H. Generalized plasticity and the modeling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14(3):151-190.
    [33]Alyami M., Rouainia M., Wilkinson A. M. Numerical analysis of deformation behaviour of quay walls under earthquake loading[J]. Soil Dynamic and Earthquake Engineering,2009,29(3):525-536.
    [34]Pastor M. Modelling of ansotropic sand behavior[J]. Computers and Geotechnics,1991,11(3): 173-208.
    [35]Sassa S., Sekiguchi H. Analysis of waved-induced liquefaction of sand beds[J]. Getechnique,2001, 51(2):115-126.
    [36]Ling H. I., Liu H. B. Pressure-level dependency and densification behavior of sand through a generalized plasticity model[J]. Journal of Engineering Mechanics,2003,129(8):851-860.
    [37]Ling H. I., Yang S. T. Unified sand based on the critical state and generalized plasticity[J]. Journal of Engineering Mechanics,2006,132(12):1380-1391.
    [38]Manzanal D., Merodo J. A. F., Pastor M. Generalized plasticity state parameter-based model for saturated and unsaturated soils.Partl:Saturated state[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(12):1347-1362.
    [39]于玉贞,卞锋.高土石坝地震动力响应特征弹塑性有限元分析[J].世界地震工程,2010,26(S1):341—345.
    [40]Mononobe H. A. Seismic stability of the earth dam[C]. Proceedings of 2nd Congress of Large Dams. Washington D.C.:1936.
    [41]Gazetas G. Longitudinal vibrations of embankment of dams[J]. Journal of the Geotechnical Engineering Division, ASCE,1981,107(1):21-40.
    [42]Oner M. Shear vibration of inhomogeneous earth dams in rectangular canyons[J]. Soil Dynamics and Earthquake Engineering,1984,3(1):19-26.
    [43]Dakoulas P., Gazetas G. A class of inhomogeneous shear models for seismic response for dam and embankments[J]. Soil Dynamics and Earthquake Engineering,1985,4(4):166-182.
    [44]张克绪.土坝等价地震系数和水平剪应力最大幅值简化计算[J].水利学报,1985,16(9):35-42.
    [45]Dakoulas P., Gazetas G. Seismic shear vibration of embankment dams in semi-cylindrieal valleys[J]. Earthquake Engineering and Struetural Dynamics,1986,14(1):19-40.
    [46]Gazetas G. Seismic response of earth dams:some recent developments[J]. Soil Dynamics and Earthquake Engineering,1987,6(1):2-47.
    [47]栾茂田.非均质堤坝振动特性简化分析[J].大连理工大学学报,1989,29(4):479-488.
    [48]栾茂田,金崇磐,林皋.非均质土石坝及地基竖向地震反应简化分析[J].水力发电学报,1990,9(1):48-62.
    [49]栾茂田,金崇磐,林皋.非均质地基振动特性及地展反应分析[J].大连理工大学学报,1992,32(1):81—87.
    [50]Gazetas G., Hsu C. Lateral response of earth dams in semi-elliPtieal rigid canyon[J]. Soil Dynamics and Earthquake Engineering,1993,12(8):497-507.
    [51]孔宪京,韩国城,张天明.土石坝与地基地震反应分析的波动一剪切梁法[J].大连理工大学学报,1994,34(2):173—179.
    [52]Elgamal A. W. M., Abdel-Ghaffar A. M., Prevost J. H. Elasto-plastic earthquake shear response of one-dimensional earth dam models[J]. Earthquake Engineering and Struetural Dynamics,1985,13(5): 533-617.
    [53]Elgamal A. W. M., Abdel-Ghaffar A. M., Prevost J. H.2-D Elasto-plastic seismic shear response of earth dam:theory[J]. Journal of Engineering Meehanies, ASCE,1987,113(5):687-701.
    [54]徐志英.V形河谷内土石坝横向振动分析简化法[J].河海大学学报,1994,22(5):82—86.
    [55]楼梦麟.变参数土层的动力特性和地震反应分析[J].同济大学学报,1997,25(2):155-160.
    [56]沈振中,徐志英.V形河谷中土石坝纵向地震反应的简化解析解[J].水电能源科学,1999,1(4):9—12.
    [57]沈振中,徐志英.V形河谷中土石坝垂直振动的近似解析[J].河海大学学报,2002,30(2):85—89.
    [58]栾茂田,刘占阁.成层场地振动特性及地震反应简化解析解的完整形式[J].岩土工程学报,2003,25(6):747-749.
    [59]孔宪京,刘君,韩国城,等.混凝土面板堆石坝地震反应分析的剪切梁法[J].水利学报,2000(7):55-60.
    [60]Clough R. W., Chopra A. K. Earthquake Stress Analysis in Earth Dams[J]. Journal of the Engineering Mechanics Division,1966,92(2):197-212.
    [61]Seed H. B., Lee K. L., Idriss I. M. Analysis of Sheffield Dam Failure[J]. Journal of the Soil Mechanics and Foundations Division,1969,95(6):1453-1490.
    [62]顾淦臣,张振国.钢筋混凝土面板堆石坝三维非线性有限元动力分析[J].水力发电学报,1988,20(1):26-45.
    [63]孔宪京,韩国城.关门山面板堆石坝二维地震反应分析[J].大连理工大学学报,1992,32(4):434-440.
    [64]李俊杰,韩国城,孔宪京.关门山面板堆石坝三维地震反应分析和研究[J].水利学报,1994(2):76-84.
    [65]吕凯歌,孔宪京.面板坝三维动力计算中面板与堆石界面模拟方法研究[J].甘肃工业大学学报,2001,27(1):80-84.
    [66]蔡新,王德信.清平面板堆石坝抗震分析[J].工程力学,1996,13(2):86-91.
    [67]张社荣,何辉.面板堆石坝三维耦合非线性数值计算[J].天津大学学报:自然科学与工程技术版,2004,37(10):886-890.
    [68]吴兴征,栾茂田,周晓光.面板堆石坝动力分析方法比较研究[J].水利学报,2004(3):15—21.
    [69]郦能惠,李国英,赵魁芝,等.强震区高面板堆石坝静力和动力应力变形性状[J].岩土工程学报,2004,26(2):183—188.
    [70]邹德高,尤华芳,孔宪京,等.接缝简化模型及参数对面板堆石坝面板应力及接缝位移的影响研究[J].岩石力学与工程学报,2009,28(A01):3257-3263.
    [71]周辉,李俊杰,康飞.Distribution of acceleration and empirical formula for calculating maximum acceleration of rockfill dams[J].中南大学学报:英文版,2010,17(3):642-647.
    [72]田景元,张志伟.大岗山面板堆石坝加速度放大系数对材料动参数和输入地震动的敏感性分析[J].水电站设计,2006,22(4):20-22.
    [73]彭卫军,范金勇.吉林台一级水电站混凝士面板砂砾-堆石坝坝体抗震设计[J].水力发电,2006,32(6):26-28.
    [74]川崎秀明,译陈明莉,校李仲杰.混凝土面板堆石坝的动态形变特性[J].国际水力发电,2005(5):27-30.
    [75]马丁·韦兰德,皮特·布里勒,黎满林,等.碾压混凝土坝和混凝土面板堆石坝地震特性[J].水电技术信息,2004(2):11—20.
    [76]迟世春.不同地震输入对混凝土面板堆石坝动力反应的影响[J].世界地震工程,2002,18(2):69-74.
    [77]迟世春.不同高度面板堆石坝幅频反应的比较研究[J].世界地震工程,2002,18(3):6-9.
    [78]阴吉英,栾茂田,等.面板堆石坝地震反应特性的比较分析[J].岩石力学与工程学报,2001,20(S01):1158—1162.
    [79]蔡新,王德信.清平面板堆石坝抗震分析[J].工程力学,1996,13(2):86-91.
    [80]梁海波,李仲奎.FLAC程序及其在我国水电工程中的应用[J].岩石力学与工程学报,1996,15(3):225-230.
    [81]朱建明,任天贵.FLAC有限差分程序及其在矿山工程中的应用[J].中国矿业,2000,9(4):78-81.
    [82]康红普.回采巷道锚杆支护影响因素的FLAC分析[J].岩石力学与工程学报,1999,18(5):534-537.
    [83]杨新安,黄宏伟.FLAC程序及其在隧道工程中的应用[J].上海铁道大学学报,1996,17(4):39-44.
    [84]胡军,朱巨建.加筋技术在高土石坝抗震加固中的应用[J].辽宁工程技术大学学报:自然科学版,2009,28(4):578-580.
    [85]孔宪京,邹德高,邓学晶,等.高土石坝综合抗震措施及其效果的验算[J].水利学报,2006,37(12):1489-1495.
    [86]孔宪京,刘君,韩国城.面板堆石坝模型动力破坏试验与数值仿真分析[J].岩土工程学报,2003,25(1):26-30.
    [87]孙大伟,郦能惠,米占宽.深覆盖层上面板堆石坝关键技术研究进展与展望[J].水力发电,2005,31(8):67-69.
    [88]Newmark N. M. Dynamic failure numeric simulations of model concrete-faced rock-fill dam[J]. Geotechnique,1965,15(2):139-160.
    [89]邓学晶,孔宪京,杜永峰,等.基于Newmark滑块系统能量分析的地震永久位移计算方法[J].兰州理工大学学报,2010,36(5):104—107.
    [90]Miles S. B., Ho C. L. Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation[J]. Soil Dynamics and Earthquake Engineering,1999,18(4):305-323.
    [91]Kramer S. L., Lindwall N. W. Dimensionality and Directionality Effects in Newmark Sliding Block Analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,130(3):303-315.
    [92]Jibson R. W. Methods for assessing the stability of slopes during earthquakes-A retrospective[J]. Engineering Geology,2011,122(1-2):43-50.
    [93]Pradel D., Smith P. M., Stewart J. P., et al. Case History of Landslide Movement during the Northridge Earthquake [J]. Journal of geotechnical and geoenvironmental engineering,2005,131(11): 1360-1369.
    [94]Ingles J., Darrozes J., Soula J. C. Effects of the vertical component of ground shaking on earthquake-induced landslide displacements using generalized Newmark analysis[J]. Engineering Geology,2006,86(2-3):134-147.
    [95]Makdisi F. I., Seed H. B. Simplified procedure for estimating dam and embankment earthquake-induced deformations[J]. Journal of the Geotechnical Engineering Division,1978,104(7): 849-867.
    [96]栾茂田,李湛,范庆来.土石坝拟静力抗震稳定性分析与坝坡地震滑移量估算[J].岩土力学,2007,28(2):224—236.
    [97]Ling H. I., Leshchinsky D., Yoshiyuki M. Soil slopes under combined horizontal and vertical seismic accelerations[J]. Earthquake Engineering and Structural Dynamics,1997,26(12):1231-1241.
    [98]Seed H. B. A method for earthquake resistant design of earth dams[J]. Journal of Soil Mechanics and Foundation Engineering,1966,92(1):13-42.
    [99]汪闻韶.在某电厂地基饱和砂性土地震稳定性试验中提出的原理和方法[C].水利水电科学研究院科学研究论文集.北京:1984.
    [100]李红军,迟世春,林皋.基于动强度模式和时程应力分析的Newmark滑块位移法[J].岩土力学,2006(S2):1063—1068.
    [101]刘汉龙.土体地震永久变形分析述评[J].水利水电科技进展,1995,15(4):22-28.
    [102]张克绪,李明宰,常向前.地震引起的土坝永久变形分析[J].地震工程与工程振动,1989,9(1):91—100.
    [103]陈生水,沈珠江.钢筋混凝土面板坝的地震永久变形分析[J].岩土工程学报,1990,12(3):66-72.
    [104]汪闻韶,金崇磐,王克成.土石坝的抗妞计算和模型实验及原型观测[J].水利学报,1987(12):1—16.
    [105]Serff H., Seed H. B. Earthquake Induced Deformation of Earth Dams[R]. Berkeley:University of CA, 1976.
    [106]Taniguchi E., Whitman R. V., Marr W. A. Prediction of earthquake-induced deformation of earth dams[J]. Soils and Foundations,1983,23(4):126-132.
    [107]刘汉龙.随机地震作用下地基及土石坝永久变形分析[J].岩土工程学报,1996,18(03):19-27.
    [108]迟世春,林皋,孔宪京.堆石料残余体应变对计算面板堆石坝永久变形的影响[J].水力发电学报,1998,60(1):59-67.
    [109]郭兴文,王德信,于玉莽.水布垭混凝土面板堆石坝地震永久变形分析[J].河海大学学报(自然科学版),2001(06):56-60.
    [110]李湛,栾茂田.土石坝地震永久变形计算方法[J].水力发电学报,2009(04):63—70.
    [111]郑颖人,沈珠江,龚晓南.广义塑性力学—岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [112]郑颖人.岩土塑性力学的新进展—广义塑性力学[J].岩土工程学报,2003,25(1):1—10.
    [113]郑颖人,孔亮.塑性力学中的分量理论——广义塑性力学[J].岩土工程学报,2000,22(3):269-274.
    [114]刘华北,宋二祥.埋深对地下结构地震液化响应的影响[J].清华大学学报:自然科学版,2005,45(3):301-305.
    [115]刘华北,宋二祥.可液化土中地铁结构的地震响应[J].岩土力学,2005,26(3):381—386.
    [116]刘华北.水平与竖向地震作用下土工格栅加筋土挡墙动力分析[J].岩士工程学报,2006,28(5):594—599.
    [117]刘华北,Ling H.I.土工格栅加筋土挡土墙设计参数的弹塑性有限元研究[J].岩士工程学报,2004,26(5):668-673.
    [118]邹德高.地震时浅埋地下管线上浮机理及减灾对策研究[D].大连:大连理工大学,2008.
    [119]韩国城,孔宪京,李俊杰.面板堆石坝动力破坏性态及抗震措施试验研究[J].水利学报,1990(3):61-67.
    [123]孔宪京,韩国城,李俊杰,等.防渗面板对堆石坝体自振特性的影响[J].大连理工大学学报,1989,29(5):583—588.
    [124]汤书明.钢筋混凝土面板堆石坝动力模型试验与有限元动力分析[D].河海大学,1990.
    [125]姜朴,汤书明.土石坝模型动力试验与计算[J].水利学报,1992(2):53-57.
    [126]刘小生,刘启旺,王钟宁,等.黑泉水库面板坝大型振动台模型试验[J].水利规划与设计,2007(5):30-33.
    [127]刘小生,王钟宁,赵剑明,等.面板堆石坝振动模型试验及动力分析研究[J].水利学报,2002(2):29-35.
    [128]杨正权,刘小生,刘启旺,等.猴子岩高面板堆石坝地震模拟振动台模型试验研究[J].地震工程与工程振动,2010,30(5):113—119.
    [129]王年香,章为民.混凝土面板堆石坝动态离心模型试验研究[J].岩土工程学报,2003,25(4):504-507.
    [130]程嵩,张建民.面板堆石坝的动力离心模型试验研究[J].地震工程与工程振动,2011,31(2):98—102.
    [131]顾淦臣.土石坝地震工程[M].南京:河海大学出版社,1989.
    [132]Duncan J. M., Chang C. Y. Nonlinear analysis of stress and strain in soils[J]. Journal of Soil Mechanics and Foundations Division,1970,96(5):1629-1653.
    [133]沈珠江.南水双屈服面模型其及应用[C].海峡两岸土力学及基础工程、地工技术学术研讨会.西安:1994.
    [134]胡军.高土石坝动力稳定分析及加固措施研究[D].大连:大连理工大学,2008.
    [135]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [136]陈慧远.土石坝有限元分析[M].南京:河海大学出版社,1988.
    [137]丰土根,杨贵.高土石坝抗震性态分析与灾害对策研究[J].灾害学,2010,25(03):42—48.
    [138]Hardin B. O., Drnevich V. P. Shear Modulus and Damping in Soils:Design Equations and Curves [J]. Journal of Soil Mechanics and Foundations Division,1972,98(7):667-692.
    [139]Idriss I. M., Lysmer J., Hwang R., et al. Quad4 A computer program for evaluating the seismic response of soil structures by variable damping finite element procedures[M]. California:University of California, Berkeley,1973.
    [140]Yoshida N., Kobayashi S., Suetomi I., et al. Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J]. Soil Dynamics and Earthquake Engineering, 2002,22(3):205-222.
    [141]Hudson M., Idriss I. M., Beikae M. User manual for Quad4m:A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base[M]. California:University of California, Berkeley,1994.
    [142]邹德高,徐斌,孔宪京.瑞利阻尼系数确定方法对高土石坝地震反应的影响研究[J].岩土力学,2011,32(03):797-803.
    [143]田景元,李国英Hardin土动模型的应用与讨论[J].水利水运工程学报,2009(1):22-28.
    [144]赵剑明,常亚屏,陈宁.龙首二级面板堆石坝三维真非线性地震反应分析和评价[J].岩土力学,2004(Z2):388-392.
    [145]赵剑明,汪闻韶,常亚屏,等.高面板坝三维真非线性地震反应分析方法及模型试验验证[J].水利学报,2003(9):12-18.
    [146]Zienkiewicz O. C., Mroz Z. Generalized Plasticity formulation and application to Geomechanics[M]. John Wiley and Sons.,1985.
    [147]邹德高,孔宪京,斌徐.Geotechnical Dynamic Nonlinear Analysis-GEODYNA使用说明[M].大连:大连理工大学土木水利学院工程抗震研究所,2003.
    [148]陈厚群,徐泽平,李敏.汶川大地震和大坝抗震安全[J].水利学报,2008,39(10):1158—1167.
    [149]赵剑明,刘小生,温彦锋,等.紫坪铺大坝汶川地震震害分析及高士石坝抗震减灾研究设想[J].水力发电,2009,35(5):11—14.
    [150]中国地震局震害防御司.汶川8.0级地震未校正加速度记录[M].北京:地震出版社,2008.
    [151]水利部四川水利水电勘测设计研究院.紫坪铺水利枢纽工程混凝土面板堆石坝震后处理[R].成都:2008.
    [152]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005.
    [153]陈永祁,刘锡荟,龚思礼.拟合标准反应谱的人工地震波[J].建筑结构学报,1984(4):31—43.
    [154]日本电力土木技术协会.最新土石坝工程学[M].陈慧远,徐关泉,李鸿俊等,译.北京:水利电力出版社,1986.
    [155]Darbre G. Strong-motion instrumentation of dams[J]. Earthquake Engineering & Structural Dynamics,1995,24(8):1101-1111.
    [156]徐锡伟,闻学泽,叶建青,等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,2008,30(3):597-629.
    [157]李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报,2007,29(1):102—111.
    [158]刘启方,袁一凡,金星,等.近断层地震动的基本特征[J].地震工程与工程振动,2006.26(1):1—10.
    [159]大连理工大学工程抗震研究所.猴子岩水电站工程混凝土面板堆石坝静、动力计算分析[R].大连:大连理工大学,2008.
    [160]于海英,王栋,杨永强,等.汶川8.0级地震强震动加速度记录的初步分析[J].地震工程与工程振动,2009,29(1):1—13.
    [161]陈生水,沈珠江.堆石坝地震永久变形分析[J].水利水运科学研究,1990(3):277-286.
    [162]Clough G. W., Duncan J. M. Finite element analysis of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundation Division,1971,97(12):1657-1672.
    [163]大连理工大学工程抗震研究所.温泉水电站工程静、动力计算分析[R].大连:大连理工大学,2008.
    [164]Hofbeck J. A., Ibrahim I. O., Mattock A. H. Shear Transfer in Reinforced Concrete[J]. ACI Journal, 1969(2):119-128.
    [165]李宏,刘西拉.混凝土拉、剪临界破坏及纯剪强度[J].工程力学,1969,9(4):1—9.
    [166]李英民,于婧,刘建伟.现浇钢筋混凝土结构中施工缝的模型化研究初探[J].西安建筑科技大学学报:自然科学版,2010,42(2):196-200.
    [167]Jensen B. C. Lines of discontinuity for displacement s in the theory of plasticity of plain and reinforced concrete[J]. Magazine of Concrete Research,2010,92(27):143-150.
    [168]Mattock A. H. Cyclic shear transfer and type of interface[J]. Journal of the Structural Division,1981, 107(10):1945-1964.
    [169]大连理工大学工程抗震研究所.两河口水电站工程心墙堆石坝静、动力计算分析[R].大连:大连理工大学,2008.
    [170]李桂芳,谭志军.双沟水电站面板堆石坝反演计算分析[J].吉林水利,2009(11):13_—15.
    [171]海燕,王瑞骏,朱岳明.心墙坝坝坡稳定性对于邓肯E-B模型参数的敏感性研究[J].三峡大学学报:自然科学版,2008,30(3):13—17.
    [172]李宗坤,何芳婵,王建有,等.基于ANSYS的土石坝施工过程仿真分析[J].人民黄河,2007,29(8):59-60.
    [173]周伟,常晓林,周创兵,等.观音岩水电站混合坝接头结构形式研究[J].岩土力学,2008,29(2):496-500.
    [174]朱俊高,周建方.邓肯E—v模型与E-B模型的比较[J].水利水电科技进展,2008,28(1):4-7.
    [175]吴兴征,栾茂田,等.修正邓肯模型及在面板堆石坝应力与变形分析中的应用[J].岩石力学与工程学报,2001,20(A01):1098—1102.
    [176]汤馥郁,李旺林.峡山水库主坝物理力学参数的试验研究[J].山东建筑工程学院学报,2000,15(4):34-38.
    [177]张宏洋,李同春,宫必宁,等.砂土的P-Z模型介绍及振动台试验验证[J].水力发电学报,2009,28(5):182-186.
    [178]吴兴征,栾茂田.关于堆石料加卸载体积模量的探讨[C].第七届全国岩土力学数值分析与解析方法讨论会论文集.大连:2001.
    [179]Wang Z. L., Daflisa Y. F., Shen C. K. Bounding surface hypoplasticity model for sands[J]. Journal of Engineering Mechanics Division,1990,116(5):983-1001.
    [180]杨启贵,常晓林,周创兵,等.水布垭高面板堆石坝变形控制方法研究[J].岩土力学,2010,31(S2):247-253.
    [181]孙陶,高希章,杨建.紫坪铺混凝土面板堆石坝应力-应变分析[J].岩土力学,2006,27(2):247-251.
    [182]徐泽平,郭晨.巴西坎泼斯诺沃斯面板堆石坝的经验和教训[J].中国水利水电科学研究院学报,2007.5(3):233-240.
    [183]万里,罗永祥,黄刚,等.马来西亚巴贡混凝土面板堆石坝面板抗挤压破坏措施探讨[J].西北水电,2007(4):37—39.
    [184]胡耘,张嘎,程嵩,等.面板堆石坝面板竖缝特性对面板应力变形影响分析[J].岩土力学,2009,30(4):1089—1094.
    [185]马立秋,张嘎,程嵩,等.面板水平分缝对面板堆石坝应力变形影响分析[J].工程力学,2010(10):145-149.
    [186]大连理工大学工程抗震研究所.双江口水电站工程心墙堆石坝静、动力计算分析[R].大连:大连理工大学,2008.
    [187]沈婷,李国英.超高面板堆石坝混凝土面板应力状态影响因素分析[J].岩土工程学报,2010,32(9):1345—1349.
    [188]孙伟圣.木材_橡胶复合材料及其在静音地板中的应用研究[D].中国林业科学研究院,2009.
    [189]关云航,王章忠,向红卫.混凝土面板堆石坝挤压边墙施工技术[J].红水河,2006,25(1):26-28.
    [190]陈志勇,苏礼臣.面板堆石坝挤压边墙施工技术[J].水利建设与管理,2010(6):6-9.
    [191]李方平,廖光荣.水布垭水利枢纽混凝土面板堆石坝挤压边墙施工技术[J].水利水电技术,2004,35(4):40-42.
    [192]侯文峻,张嘎,张建民.面板堆石坝挤压式边墙与面板接触面力学特性研究[J].岩土工程学报,2008,30(09):1356—1360.
    [193]张建民,张嘎,刘芳.面板堆石坝挤压式边墙的概化数值模型及应用[J].岩土工程学报,2005,27(03):249-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700