蛙皮素对下丘脑和马神经元的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     蛙皮素(Bombesin),是一种脑肠肽,由14个氨基酸残基组成,对饮食和行为具有调节作用。在哺乳动物中,它的同类物有胃泌素释放激素(gastrin-releasing peptide, GRP)和神经介素B(neuromedin B, NMB)。作为一种脑肠肽,蛙皮素对神经系统肿瘤、缺血及学习记忆都具有良性作用。有研究表明在帕金森病人脑内蛙皮素浓度增加,具有内源性抗癫痫作用。此外还有很多实验表明蛙皮素具有神经保护作用。
     下丘脑弓形核(arcuate nucleus, ARC),是成年哺乳动物体内能量平衡调节的重要区域。弓形核内的神经肽Y(neuropipte Y, NPY)神经元具有增加饮食的作用。
     本论文使用NPY-GFP转基因小鼠,研究蛙皮素对于下丘脑弓形核内NPY神经元的作用及其可能机制。另外,还探索了蛙皮素对于脑缺血引起的大鼠学习记忆障碍的作用及其对于大鼠海马CA1区神经元离子通道的作用,从而进一步提供了蛙皮素神经保护作用的证据。
     方法
     第一部分:选取NPY-GFP转基因小鼠,NPY神经元中绿色荧光蛋白(green fluorescent protein, GFP)的表达由免疫组织化学和单细胞逆转录PCR(single-cell reverse transcription-PCR)确认。运用全细胞膜片钳技术,研究小鼠下丘脑脑片NPY神经元的电生理特性。首先观察蛙皮素对NPY神经元兴奋性的影响,然后观察蛙皮素对于NPY神经元串联电阻,反转电位的作用,最后在不同内外液条件下观察蛙皮素对NPY神经元的作用,来阐明蛙皮素对NPY神经元的作用机制。除此之外,我们还使用了蛙皮素家族的肽类(NMB和GRP)以及其他与饮食有关的肽类,比较了不同肽类对NPY神经元的作用。最后,还观察了蛙皮素对阿黑皮原(proopiomelanocortin, POMC)神经元的作用,与其对NPY神经元的作用进行比较。
     第二部分:选取18只成年Wistar大鼠,随机分成正常组、缺血组和缺血后蛙皮素干预组。用双侧颈总动脉结扎的方法制作大鼠全脑缺血模型,使用Morris水迷宫和长时程增强(long-term potentiation, LTP)记录的方式来研究蛙皮素对缺血引起的学习记忆障碍的作用。然后使用幼年Wistar大鼠,制作海马脑片,用膜片钳中的电压钳技术研究蛙皮素对钠离子通道的作用。
     所有实验数据经Student t检验或ANOVA等统计学处理,P<0.05表示存在显著性差异。
     结果
     1)从弓形核中收获单个GFP阳性神经元后,运用单细胞RT-PCR技术观察GFP阳性神经元中含有NPY编码的mRNA,从而证明NPY-GFP转基因小鼠系建立成功。
     2)蛙皮素(250nM)使NPY神经元动作电位频率增加了61.5±14.2%(n=15,P<0.05),使神经元的膜电位去极化5.0±0.5 mV(n=15,P<0.05)。
     3)NMB(250nM)使NPY神经元动作电位频率增加66.5±10.6%(n=16,P<0.05),使神经元的膜电位去极化5.6±0.4 mV(n=16,P<0.05).GRP (250nM)使NPY神经元动作电位频率增加9.2±10.5%(n=13,P>0.05),使神经元的膜电位去极化2.6±0.7 mV(n=13,P<0.05).
     4)蛙皮素使NPY神经元的输入电阻减少22.4±5.7%(n=8,P<0.05)。内向电流显示其反转电位在-18.3±3.4 mV。
     5)电极内液中加入BAPTA(10 mM)后,蛙皮素(250 nM)引起的NPY神经元膜电位去极化作用减少到2.0 mV±0.6 mV(n=5,P<0.05).使用无钙细胞外液时,蛙皮素(250 nM)引起的NPY神经元膜电位去极化作用增加到9.0±1.4mV(n=5,P<0.05)。在细胞外液中加入瞬时感受器电位(transient receptor potential,TRP)通道阻断剂SKF96365(30μM)后,蛙皮素(250 nM)引起的NPY神经元膜电位去极化作用减少到2.7 mV±0.6 mV(n=5,P<0.05).在细胞外液加入NiCl2(3mM)后,蛙皮素(250 nM)引起的NPY神经元膜电位去极化作用减少到2.4±0.7 mV(n=5,P<0.05).在细胞外液加入钠-钙交换泵阻断剂KB-R7943(60μM)后,蛙皮素(250 nM)引起的NPY神经元膜电位去极化作用减少到2.3±0.9 mV(n=6,P<0.05).
     6)水迷宫实验中,缺血组大鼠在目标象限停留的时间(ischemia:24.7±3.8%;sham:37.8±6.1%;ischemia+bombesin:35.5±3.6%)显著缩短。而假手术组(P<0.05,ischemia vs sham)和蛙皮素组(P<0.05,ischemia vs ischemia +bombesin)停留时间较长。
     7)在体LTP实验中,缺血组大鼠标准化的群峰电位的斜率明显减少(ischemia:114.0±3.1%;sham:129.8±4.5%,P<0.05),而在蛙皮素组,标准化的群峰电位的斜率与假手术组无显著差异(ischemia+bombesin:125.8±4.3%,P>0.05 vs sham;P<0.05 vs ischemia)。
     8)电压钳实验中,给予蛙皮素(250nM)后,钠电流幅值变为原来的83.32±5.98%(n=6,P<0.05),而洗脱后电流幅值恢复到原来的97.55±2.19%(n=6,P>0.05)。
     结论
     1)蛙皮素能够可逆的兴奋NPY神经元和POMC神经元,并且具有浓度依赖性。
     2)蛙皮素兴奋NPY神经元的机制可能来自激活非选择性阳离子通道和钠-钙交换泵。
     3)蛙皮素能够改善双侧颈总动脉结扎脑缺血大鼠模型的学习和记忆障碍。
     4)蛙皮素的神经保护作用可能与其抑制电压门控钠离子通道有关。
Objective
     Bombesin is a 14 amino acid-containing peptide first isolated from the skin of the frog Bombina bombina. Since its isolation, two related mammalian neuropeptides, neuromedin B (NMB) and gastrin-releasing peptide (GRP), have been isolated and shown to have a widespread distribution. Bombesin, as a brain-gut peptide, plays an important role in food intake and behavior regulations. Hypothalamic arcuate nucleus (ARC) is an area in brain that regulates energy balance in adult mammalian animals. The arcuate nucleus NPY neurons are thought to play an important anabolic role in energy homeostasis.
     As a brain-gut peptide, bombesin have profound effects on glioblastoma, ischemia and memory processing. Bombesin concentration increased in Parkinson's disease patients, and it can act as anti-epileptic peptide in the hippocampus. There are increasing evidences suggesting that bombesin have neuroprotective effects.
     In this study, we look at the possible effects of bombesin on NPY neurons in hypothalamic arcuate nucleus, using NPY-GFP transgenetic mice. Further more, we investigate the effect of bombesin on ischemia-induced memory deficts rats and on rat hippocampal CA1 neruonal channel activity, trying to provide another insight for neuroprotective effect of bombesin.
     Methods
     Use NPY-GFP transgenetic mice to study the possible effect of bombesin on NPY neurons. The expression of green fluorescent protein (GFP) is confirmed by immunohistochemistry and single-cell reverse transcription-PCR. The effects of bombesin on NPY neurons were studied using patch-clamp techniques in the hypothalamic brain slice. The input-resistance and the reverse potential were measured. Various artificial cerebrospinal fluid (ACSF) and pipette solutions were used to access the mechanism of the effects of bombesin. Besides, for comparision purpose, we looked at the effects of bombesin-like peptide (GRP and NMB) and other food regulating peptides on NPY neurons. Finally, we examined the effect of bombesin on proopiomelanocortin (POMC) neurons.
     Twenty-four male Wistar rats were randomly divided into three groups: sham-operation group, ischemia group and ischemia plus bombesin group. Sustained global cerebral ischemia was induced by bilateral occlusion of the carotid arteries. Morris water maze test and long-term potentiation (LTP) recording were performed to access the effect of bombesin on cognitive deficits with chronic cerebral ischemia.Besides, Young male Wistar rats on postnatal days 21-28 were decapitated and cut using an automatic oscillating tissue slicer. Using whole-cell patch clamp recording, the sodium currents (INa), were tested before and after applying bombesin in 350μm thick hippocampal slices.
     Results
     1) Single GFP-positive neurons harvested from ARC were proved to have NPY mRNS using single-cell reverse transcription-PCR.
     2) Bombesin (250nM) increased the spike frequency by 61.5±14.2%(n=15, P <0.05) with a mean depolarization of 5.0±0.5 mV (n=15,P<0.05)
     3) Neuromedin B, NMB (250nM) increased the spike frequency by 66.5±10.6%(n=16, P<0.05) with a mean depolarization of 5.6±0.4 mV (n=16,P< 0.05. Gastrin-releasing peptide,GRP (250nM) increased the spike frequency by 9.2±10.5%(n=13, P>0.05) with a mean depolarization of 2.6±0.7 mV(n=13, P< 0.05)
     4) Bombesin (250nM) decreased whole-cell input resistance by 22.4±5.7%(n =8, P<0.05) and the induced inward-current reversed~-18.3±3.4 mV.
     5) With BAPTA (10mM) in the pipette solution the bombesin (250 nM)-mediated depolarization of the NPY neuron was reduced to 2.0 mV±0.6 mV, (n=5, P<0.05). In contrast, when a Ca2+-free extracellular buffer was used, the bombesin-mediated depolarization was increased to 9.0±1.4 mV, (n=5, P<0.05). With SKF96365 (30μM) in the bath the bombesin-mediated depolarization of the NPY neuron was reduced to 2.7 mV±0.6 mV, (n=5, P<0.05). With NiCl2 in the bath, the depolarization by bombesin was 2.4±0.7 mV (n=5, P<0.05). With Na+/Ca2+ exchanger blocker KB-R7943 in the bath, the depolarization by bombesin was reduced to 2.3±0.9 mV (n=6, P<0.05)
     6) In Morris water maze test, after five days of training, On day 6, animals in the ischemia group spent less time in the target quadrant (ischemia:24.7±3.8%; sham: 37.8±6.1%; ischemia+bombesin:35.5±3.6%,), whereas the sham-operated (P< 0.05, ischemia vs sham) and the ischemia+bombesin-treated (P<0.05, ischemia vs ischemia+bombesin) animals spent significantly longer times, respectively.
     7) In LTP recording, bombesin protects against LTP changes in the hippocampus induced by chronic cerebral ischemia. In the ischemia group chronic ischemia significantly reduced the normalized slope of the fEPSP (ischemia:114.0±3.1%; sham:129.8±4.5%, P<0.05) but in the bombesin treated group there was no significant impairment of the fEPSP slope this being similar to sham levels (ischemia+bombesin:125.8±4.3%, P>0.05 vs sham; P<0.05 vs ischemia).
     8) Bombesin decreased whole-cell sodium currents by 83.32±5.98%(n=6, P< 0.05) and after wash-out, the currents recovered to 97.55±2.19%(n=6,P>0.05) of its original amplitude.
     Conclusion
     1) Bombesin reversibly excites NPY and POMC neurons in a dose-dependent manner.
     2) The excitatory effects of bombesin are most consistent with two mechanisms, activation of both a nonselective cation channel and of the sodium/calcium transporter.
     3) Bombesin improved the performance of learning and memory of chronic cerebral ischemic rats, reversed the LTP deficit induced by ischemia
     4) Bombesin decreased whole-cell sodium currents, which could be the underlying mechanism for its neuroprotective effects.
引文
[1]Anastasi A, Erspamer V, and Bucci M, Isolation and structure of bombesin and alytesin,2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia,1971.27(2):p.166-7.
    [2]Erspamer, Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol.,1970.
    [3]Hirschowitz BI and Molina E, Relation of gastric acid and pepsin secretion to serum gastrin levels in dogs given bombesin and gastrin-17. Am J Physiol,1983.244(5):p. G546-51.
    [4]Varner A A, Modlin IM, and Walsh JH, High potency of bombesin for stimulation of human gastrin release and gastric acid secretion. Regul Pept,1981.1(4):p.289-96.
    [5]Brown MR, Rivier J, and Vale WW, Bombesin affects the central nervous system to produce hyperglycemia in rats. Life Sci,1977.21(12):p.1729-34.
    [6]Gunion MW, Grijalva CV, Tache Y, et al., Lateral hypothalamic lesions or transections block bombesin hyperglycemia in rats. Brain Res,1984.299(2):p.239-46.
    [7]Minamino N, Kangawa K, and Matsuo H, Neuromedin B:a novel bombesin-like peptide identified in porcine spinal cord. Biochem Biophys Res Commun,1983.114(2):p.541-8.
    [8]Preston SR. Woodhouse LF, Gokhale J, et al., Characterization of a bombesin/gastrin-releasing peptide receptor on a human gastric-cancer cell line. Int J Cancer,1994.57(5):p.734-41.
    [9]Halmos G, Pinski J, Szoke B, et al., Characterization of bombesin/gastrin-releasing peptide receptors in membranes of MKN45 human gastric cancer. Cancer Lett,1994.85(1):p.111-8.
    [10]Moran TH, Moody TW, Hostetler AM, et al., Distribution of bombesin binding sites in the rat gastrointestinal tract. Peptides,1988.9(3):p.643-9.
    [11]Nagy A and Schally AV, Targeting cytotoxic conjugates of somatostatin, luteinizing hormone-releasing hormone and bombesin to cancers expressing their receptors:a "smarter" chemotherapy. Curr Pharm Des,2005.11(9):p.1167-80.
    [12]Erspamer V, Melchiorri P, and Sopranzi N, The action of bombesin on the systemic arterial blood pressure of some experimental animals. Br J Pharmacol,1972.45(3):p.442-50.
    [13]张龙,薛振东,and胡海涛,蛙皮素的分布及其作用.神经解剖学杂志,1991.2.
    [14]Ohki-Hamazaki H, Iwabuchi M, and Maekawa F, Development and function of bombesin-like peptides and their receptors. Int J Dev Biol,2005.49(2-3):p.293-300.
    [15]Speranza V, Basso N, and Lezoche E, Effects of bombesin and calcium on serum gastrin levels in patients with retained or excluded antral mucosa. Adv Exp Med Biol,1978.106:p.319-24.
    [16]Basso N, Lezoche E, Giri S, et al., Acid and gastrin levels after bombesin and calcium infusion in patients with incomplete antrectomy. Am J Dig Dis,1977.22(2):p.125-8.
    [17]Guo YS, Thompson JC, and Singh P, Role of Ca2+ in bombesin-stimulated release of gastrin and somatostatin fiom isolated perfused rat stomach. Am J Physiol,1988.255(5 Pt 1):p. G627-32.
    [18]Konturek SJ, Krol R, and Tasler J, Effect of bombesin and related peptides on the release and action of intestinal hormones on pancreatic secretion. J Physiol,1976.257(3):p.663-72.
    [19]Hirschowitz BI, Gaslrin release after truncal vagotomy in fistula dogs:hypersensitivity to bombesin but not bethanechol. Peptides,1980.1(3):p.217-22.
    [20]Porreca F and Burks TF, Centrally administered bombesin affects gastric emptying and small and large bowel transit in the rat. Gastroenterology,1983.85(2):p.313-7.
    [21]Lin KS and Lin MT, Effects of bombesin on thermoregulatory responses and hypothalamic neuronal activities in the rat. Am J Physiol,1986.251(2 Pt2):p. R303-9.
    [22]Rasler FE, Bombesin produces hypothermia in hypophysectomized rats. Life Sci,1983.32(21):p. 2503-7.
    [23]Morley JE, Levine AS, Oken MM, et al., Neuropeptides and thermoregulation:the interactions of bombesin, neurotensin, TRH, somatostatin, naloxone and prostaglandins. Peptides,1982.3(1):p. 1-6.
    [24]Brown M, Rivier J, and Vale W, Bombesin.-potent effects on thermoregulation in the rat. Science, 1977.196(4293):p.998-1000.
    [25]Brown M, Allen R, and Fisher L, Bombesin alters the sympathetic nervous system response to cold exposure. Brain Res,1987.400(1):p.35-9.
    [26]Iguchi A, Matsunaga H, Nomura T, et al., Glucoregulatory effects of intrahypothalamic injections of bombesin and other peptides. Endocrinology,1984.114(6):p.2242-6.
    [27]Karashima T, Okajima T, Kato K, et al., Suppressive effects of cholecystokinin and bombesin on growth hormone and prolactin secretion in urethane-anesthetized rats. Endocrinol Jpn,1984.31(5): p.539-47.
    [28]Baranowska B, Wolinska-Witort E, Baranowska-Bik A, et al., Bombesin inhibits LH release in ovariectomized (OVX), estrogen primed rats. Neuro Endocrinol Lett,2006.27(1-2):p.257-9.
    [29]Bicknell RJ and Chapman C, Bombesin stimulates growth hormone secretion from cultured bovine pituitary cells. Neuroendocrinology,1983.36(1):p.33-8.
    [30]Okubo M, Kaku K, Kaneko T, et al., Effects of bombesin and gastrin releasing peptide on catecholamine secretion from rat adrenal gland, in vitro. Endocrinol Jpn,1985.32(1):p.21-7.
    [31]Moody TW and Merali Z, Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides,2004.25(3):p.511-20.
    [32]Gibbs J, Fauser DJ, Rowe EA, et al., Bombesin suppresses feeding in rats. Nature,1979. 282(5735):p.208-10.
    [33]de Caro G, Massi M, Micossi LG, et al., Drinking and feeding inhibition by ICV pulse injection or infusion of bombesin, ranatensin and litorin to rats. Peptides,1984.5(3):p.607-13.
    [34]Martin CF and Gibbs J, Bombesin elicits satiety in sham feeding rats. Peptides,1980.1(2):p. 131-4.
    [35]Stuckey JA and Gibbs J, Lateral hypothalamic injection of bombesin decreases food intake in rats. Brain Res Bull,1982.8(6):p.617-21.
    [36]West DB, Williams RH, Braget DJ, et al., Bombesin reduces food intake of normal and hypothalamically obese rats and lowers body weight when given chronically. Peptides,1982.3(1): p.61-7.
    [37]Kulkosky PJ, Gibbs J, and Smith GP, Behavioral effects of bombesin administration in rats. Physiol Behav,1982.28(3):p.505-12.
    [38]Gibbs J, Effect of bombesin on feeding behavior. Life Sci,1985.37(2):p.147-53.
    [39]Vigh J, Lenard L, Fekete E, et al., Bombesin injection into the central amygdala influences feeding behavior in the rat. Peptides,1999.20(4):p.437-44.
    [40]McCoy JG and Avery DD. Bombesin:potential integrative peptide for feeding and satiety. Peptides,1990.11(3):p.595-607.
    [41]Gmerek DE, Cowan A, and Vaught JL, Intrathecal bombesin in rats:effects on behaviour and gastrointestinal transit. Eur J Pharmacol,1983.94(1-2):p.141-3.
    [42]Cowan A, Khunawat P, Zhu XZ, et al., Effects of bombesin on behavior. Life Sci,1985.37(2):p. 135-45.
    [43]Girard F, Aube C, St-Pierre S, et al., Structure-activity studies on neurobehavioral effects of bombesin (BB) and gastrin releasing peptide (GRP). Neuropeptides,1983.3(6):p.443-52.
    [44]Kulkosky PJ, Foderaro MA, Glazner GW, et al., Bombesin-induced grooming in the golden hamster. Behav Brain Res,1988.29(1-2):p.173-7.
    [45]Flynn FW, Effects of fourth ventricle bombesin injection on meal-related parameters and grooming behavior. Peptides,1991.12(4):p.761-5.
    [46]Jackson HC and Kitchen I, Bombesin-induced behavior in infant rats. Peptides,1989.10(3):p. 529-31.
    [47]Rasler FE, Behavioral and electrophysiological manifestations of bombesin:excessive grooming and elimination of sleep. Brain Res,1984.321(1):p.187-91.
    [48]于频,系统解剖学.1978:人民卫生出版社.3.
    [49]张守国and孙秀青,下丘脑的枢纽作用及调控机制.生物学教学,2009.34(8).
    [50]Hetherington AW and Ranson SW, Hypothalamic lesions and adiposity in the rat. Anat Rec,1940. 78:p.149-172.
    [51]Dietrich MO and Horvath TL, Feeding signals and brain circuitry. Eur J Neurosci,2009.30(9):p. 1688-96.
    [52]Broadwell RD and Brightman MW, Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp NeuroL 1976.166(3):p.257-83.
    [53]Broadwell RD, Balin BJ, Salcman M, et al., Brain-blood barrier? Yes and no. Proc Natl Acad Sci U S A,1983.80(23):p.7352-6.
    [54]Norsted E, Gomuc B, and Meister B, Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus. J Chem Neuroanat,2008.36(2):p.107-21.
    [55]Cone RD, Anatomy and regulation of the central melanocortin system. Nat Neurosci,2005.8(5):p. 571-8.
    [56]Tatemoto K, Carlquist M, and Mutt V, Neuropeptide Y--a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature,1982.296(5858):p.659-60.
    [57]Clark JT, Kalra PS, Crowley WR, et al., Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology,1984.115(1):p.427-9.
    [58]Stanley BG and Leibowitz SF, Neuropeptide Y:stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci,1984.35(26):p.2635-42.
    [59]Lein ES,Hawrylycz MJ,Ao N, et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature,2007.445(7124):p.168-76.
    [60]Bai FL, Yamano M, Inagaki S, et al., Distribution of neuropeptides in the hypothalamo-hypophyseal system in the rat:an immunohistochemical observation. Cell Mol Biol, 1984.30(5):p.437-52.
    [61]Bai FL, Yamano M, Shiotani Y, et al., An arcuato-paraventricular and -dorsomedial hypothalamic neuropeptide Y-containing system which lacks noradrenaline in the rat. Brain Res,1985.331(1):p. 172-5.
    [62]Hahn TM, Breininger JF, Baskin DG, et al., Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci,1998.1(4):p.271-2.
    [63]Klebig ML, Wilkinson JE, Geisler JG, et al., Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type Ⅱ diabetes, and yellow fur. Proc Natl Acad Sci U S A,1995. 92(11):p.4728-32.
    [64]Fan W, Ellacott KL, Halatchev IG, et al., Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci,2004.7(4):p.335-6.
    [65]Lu D, Willard D, Patel IR, et al., Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature,1994.371(6500):p.799-802.
    [66]Horvath TL, Bechmann I, Naftolin F, et al., Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus:GABAergic and non-GABAergic subpopulations. Brain Res, 1997.756(1-2):p.283-6.
    [67]Cowley MA, Smart JL, Rubinstein M, et al., Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature,2001.411(6836):p.480-4.
    [68]Horvath TL, Naftolin F, Kalra SP, et al., Neuropeptide-Y innervation of beta-endorphin-containing cells in the rat mediobasal hypothalamus:a light and electron microscopic double immunostaining analysis. Endocrinology,1992.131(5):p.2461-7.
    [69]Pinto S, Roseberry AG, Liu H, et al., Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science,2004.304(5667):p.110-5.
    [70]Bewick GA, Gardiner JV, Dhillo WS, et al., Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J,2005.19(12):p.1680-2.
    [71]Luquet S, Perez FA, Hnasko TS, et al., NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science,2005.310(5748):p.683-5.
    [72]Gropp E, Shanabrough M, Borok E, et al., Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci,2005.8(10):p.1289-91.
    [73]于频等,系统解剖学.1978:人民卫生出版社.3.
    [74]Shapiro ML and Eichenbaum H, Hippocampus as a memory map:synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus,1999.9(4):p.365-84.
    [75]Milner B, Pribram KH, and Broadbent DB, eds. Memory and the medial temporal regions of the brain. Biology of memory.1970, Academic Press:New York.29-50.
    [76]Rempel-Clower NL, Zola SM, Squire LR, et al., Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci,1996.16(16):p.5233-55.
    [77]Shapiro ML and Olton DS, Hippocampal function and interference.1994, Cambridge, MA:MIT Press.
    [78]Squire LR and Zola SM, Memory, memory impairment, and the medial temporal lobe. Cold Spring Harb Symp Quant Biol,1996.61:p.185-95.
    [79]Cohen NJ and Eichenbaum H, eds. Memory, amnesia, and the hippocampal system.1993, MIT Press:Cambridge, MA.
    [80]Bliss TV and Collingridge GL, A synaptic model of memory:long-term potentiation in the hippocampus. Nature,1993.361(6407):p.31-9.
    [81]Malenka RC and Nicoll RA, Long-term potentiation--a decade of progress? Science,1999. 285(5435):p.1870-4.
    [82]Bliss TV and Gardner-Medwin AR, Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol, 1973.232(2):p.357-74.
    [83]Bliss TV and Lomo T, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol,1973.232(2):p. 331-56.
    [84]Neher E and Sakmann B, Voltage-dependence of drug-induced conductance in frog neuromuscular junction. Proc Natl Acad Sci U S A,1975.72(6):p.2140-4.
    [85]Neher E and Sakmann B; The patch clamp technique. Sci Am,1992.266(3):p.44-51.
    [86]刘镇伟,实用膜片钳技术.1999:军事医学科学出版社.6.
    [87]Berridge MJ, Elementary and global aspects of calcium signalling. J Physiol,1997.499 (Pt 2):p. 291-306.
    [88]Berridge MJ, Neuronal calcium signaling. Neuron,1998.21(1):p.13-26.
    [89]Bolton TB, Prestwich SA, Zholos AV, et al., Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol,1999.61:p.85-115.
    [90]Ferrier GR and Howlett SE, Cardiac excitation-contraction coupling:role of membrane potential in regulation of contraction. Am J Physiol Heart Circ Physiol,2001.280(5):p. H1928-44.
    [91]Jaggar JH, Porter VA, Lederer WJ, et al.. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol,2000.278(2):p. C235-56.
    [92]Petersen OH, Stimulus-secretion coupling:cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol,1992.448:p.1-51.
    [93]Hamill OP, Marty A, Neher E, et al., Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch,1981.391(2):p.85-100.
    [94]Brownlee C, Cellular calcium imaging:so, what's new? Trends Cell Biol,2000.10(10):p.451-7.
    [95]Garaschuk O, Yaari Y, and Konnerth A, Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol,1997.502 (Pt 1):p.13-30.
    [96]Petersen OH, Tepikin A, and Park MK, The endoplasmic reticulum:one continuous or several separate Ca(2+) stores? Trends Neurosci,2001.24(5):p.271-6.
    [97]Smetters D, Majewska A, and Yuste R, Detecting action potentials in neuronal populations with calcium imaging. Methods,1999.18(2):p.215-21.
    [98]ZhuGe R, Tuft RA, Fogarty KE, et al., The influence of sarcoplasmic reticulum Ca2+ concentration on Ca2+ sparks and spontaneous transient outward currents in single smooth muscle cells. J Gen Physiol,1999.113(2):p.215-28.
    [99]Augustine GJ, Combining patch-clamp and optical methods in brain slices. J Neurosci Methods, 1994.54(2):p.163-9.
    [100]Rizzuto R, Carrington W, and Tuft RA, Digital imaging microscopy of living cells. Trends Cell Biol,1998.8(7):p.288-92.
    [101]Paddock SW, Principles and practices of laser scanning confocal microscopy. Mol Biotechnol,2000.16(2):p.127-49.
    [102]Tadrous PJ, Methods for imaging the structure and function of living tissues and cells:3. Confocal microscopy and micro-radiology. J Pathol,2000.191(4):p.345-54.
    [103]Yao Y, Han DD, Zhang T, et al., Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons. Phytother Res,2010.24(1):p.136-40.
    [104]van den Pol AN, Yao Y, Fu LY, et al., Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong Renilla green fluorescent protein in NPY neurons. J Neurosci,2009.29(14):p.4622-39.
    [105]Yao Yang, Zhaowei. L, Zhang Tao, et al., Chlorpromazine against the damages of cerebral ischemia related to the inhibitory effects of voltage-gated sodium channel. Acta Biophysica Sinica., 2007.23(1):p.7.
    [106]Tatemoto K., Neuropeptide Y:complete amino acid sequence of the brain peptide. Proc Natl Acad Sci U S A,1982.79(18):p.5485-9.
    [107]Allen YS. Adrian TE, Allen JM, et al., Neuropeptide Y distribution in the rat brain. Science, 1983.221(4613):p.877-9.
    [108]Salin P, Kerkerian L, and Nieoullon A, Expression of neuropeptide Y immunoreactivity in the rat nucleus accumbens is under the influence of the dopaminergic mesencephalic pathway. Exp Brain Res,1990.81(2):p.363-71.
    [109]Kerkerian L, Salin P, and Nieoullon A, Pharmacological characterization of dopaminergic influence on expression of neuropeptide Y immunoreactivity by rat striatal neurons. Neuroscience, 1988.26(3):p.809-17.
    [110]Seeley RJ and Woods SC, Monitoring of stored and available fuel by the CNS:implications for obesity. Nat Rev Neurosci,2003.4(11):p.901-9.
    [111]Elmquist JK, Elias CF, and Saper CB, From lesions to leptin:hypothalamic control of food intake and body weight. Neuron,1999.22(2):p.221-32.
    [112]Schwartz MW, Woods SC, Porte D, Jr., et al., Central nervous system control of food intake. Nature,2000.404(6778):p.661-71.
    [113]Saper CB, Chou TC, and Elmquist JK, The need to feed:homeostatic and hedonic control of eating. Neuron,2002.36(2):p.199-211.
    [114]McDonald JK and Koenig JI, Neuropeptide Y actions on reproductive and endocrine functions. The biology of Neuropeptide Y and related peptides, ed. W.F. Colmers and C. Wahlestedt.1993, Totowa NJ:Humana.
    [115]Colmers WF, Klapstein GJ, Fornier A, et al., Presynaptic inhibition by neuropeptide Y in rat hippocampal slice in vitro is mediated by a Y2 receptor. Br J Pharmacol,1991.102(1):p.41-4.
    [116]Colmers WF and Wahlestedt C, eds. The biology of neuropeptide Y and related peptides. 1993, Humana:Totowa, NJ.
    [117]Acuna-Goycolea C and van den Pol AN, Peptide YY(3-36) inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons:implications for hypothalamic regulation of energy homeostasis. J Neurosci,2005.25(45):p.10510-9.
    [118]Fu LY, Acuna-Goycolea C, and van den Pol AN, Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms:tonic depression of the hypothalamic arousal system. J Neurosci,2004.24(40):p.8741-51.
    [119]van den Pol AN, Obrietan K, Chen G, et al., Neuropeptide Y-mediated long-term depression of excitatory activity in suprachiasmatic nucleus neurons. J Neurosci,1996.16(18):p.5883-95.
    [120]Chen G and van den Pol AN, Multiple NPY receptors coexist in pre- and postsynaptic sites: inhibition of GABA release in isolated self-innervating SCN neurons. J Neurosci,1996.16(23):p. 7711-24.
    [121]Rhim H, Kinney GA, Emmerson PJ, et al., Regulation of neurotransmission in the arcuate nucleus of the rat by different neuropeptide Y receptors. J Neurosci,1997.17(9):p.2980-9.
    [122]Kopp J, Xu ZQ, Zhang X, et al., Expression of the neuropeptide Y Y1 receptor in the CNS of rat and of wild-type and Yl receptor knock-out mice. Focus on immunohistochemical localization. Neuroscience,2002.111(3):p.443-532.
    [123]Kerkerian L, Salin P, and Nieoullon A, Cortical Regulation of Striatal Neuropeptide Y (NPY)-Containing Neurons in the Rat. Eur J Neurosci,1990.2(3):p.181-189.
    [124]O'Shea RD and Gundlach AL, NPY mRNA and peptide immunoreactivity in the arcuate nucleus are increased by osmotic stimuli:correlation with dehydration anorexia. Peptides,1995. 16(6):p.1117-25.
    [125]Abbott CR, Small CJ, Kennedy AR, et al., Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3-36) on food intake. Brain Res,2005.1043(1-2):p.139-44.
    [126]van de Wall E, Leshan R, Xu AW, et al., Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology,2008.149(4):p. 1773-85.
    [127]Yang MJ, Wang F, Wang.JH, et al., PI3K integrates the effects of insulin and leptin on large-conductance Ca2+-activated K+ channels in neuropeptide Y neurons of the hypothalamic arcuate nucleus. Am J Physiol Endocrinol Metab.298(2):p. E193-201.
    [128]van den Pol AN, Acuna-Goycolea C, Clark KR, et al., Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron,2004.42(4):p.635-52.
    [129]Roseberry AG, Liu H, Jackson AC, et al., Neuropeptide Y-mediated inhibition of proopiomelanocortin neurons in the arcuate nucleus shows enhanced desensitization in ob/ob mice. Neuron,2004.41(5):p.711-22.
    [130]Brown M, Tache Y, and Fisher D, Central nervous system action of bombesin:mechanism to induce hyperglycemia. Endocrinology,1979.105(3):p.660-5.
    [131]Willis GL, Hansky J, and Smith GC, Ventricular, paraventricular and circumventricular structures involved in peptide-induced satiety. Regul Pept,1984.9(1-2):p.87-99.
    [132]Kyrkouli SE, Stanley BG, and Leibowitz SF, Bombesin-induced anorexia:sites of action in the rat brain. Peptides,1987.8(2):p.237-41.
    [133]Widerlov E, Mueller RA, Frye GD, et al., Bombesin increases dopamine function in rat brain areas. Peptides,1984.5(3):p.523-8.
    [134]Saporito MS and Warwick RO, Jr., Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro. Life Sci,1989.45(1):p.15-23.
    [135]Morley JE, Levine AS, Gosnell BA, et al., Effect of neuropeptide Y on ingestive behaviors in the rat. Am J Physiol,1987.252(3 Pt 2):p. R599-609.
    [136]Batterham RL, Cowley MA, Small CJ, et al., Gut hormone PYY(3-36) physiologically inhibits food intake. Nature,2002.418(6898):p.650-4.
    [137]Paxinos G and Franklin KB, The mouse brain in stereotaxic coordinates.2001, Amsterdam: Elsevier.
    [138]Kang L, Routh VH, Kuzhikandathil EV, et al., Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes,2004.53(3):p.549-59.
    [139]Gao XB and van den Pol AN, Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J Physiol,2001.533(Pt 1):p.237-52.
    [140]Broberger C, Visser TJ, Kuhar MJ, et al., Neuropeptide Y innervation and neuropeptide-Y-Y1-receptor-expressing neurons in the paraventricular hypothalamic nucleus of the mouse. Neuroendocrinology,1999.70(5):p.295-305.
    [141]Broberger C, De Lecea L, Sutcliffe JG, et al., Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol,1998. 402(4):p.460-74.
    [142]Taylor BK, Abhyankar SS, Vo NT, et al., Neuropeptide Y acts at Yl receptors in the rostral ventral medulla to inhibit neuropathic pain. Pain,2007.131(1-2):p.83-95.
    [143]Merali Z, Moody TW, and Coy D, Blockade of brain bombesin/GRP receptors increases food intake in satiated rats. Am J Physiol,1993.264(5 Pt 2):p. R1031-4.
    [144]Lin JY and Pan JT, Stimulatory effects of bombesin-like peptides on hypothalamic arcuate neurons in rat brain slices. Brain Res Bull,1994.35(3):p.241-6.
    [145]Tsushima H and Mori M, Mechanisms underlying anorexia after microinjection of bombesin into the lateral cerebroventricle. Pharmacol Biochem Behav,2005.80(2):p.289-96.
    [146]Ohki-Hamazaki H, Watase K, Yamamoto K, et al., Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature,1997.390(6656):p.165-9.
    [147]Zhang C, Bosch MA, Levine JE, et al., Gonadotropin-releasing hormone neurons express K(ATP) channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. J Neurosci,2007.27(38):p.10153-64.
    [148]Liu RJ, van den Pol AN, and Aghajanian GK, Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci, 2002.22(21):p.9453-64.
    [149]Wu M, Zaborszky L, Hajszan T, et al., Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons. J Neurosci,2004.24(14):p.3527-36.
    [150]Sekizawa S and Bonham AC, Group Ⅰ metabotropic glutamate receptors on second-order baroreceptor neurons are tonically activated and induce a Na+-Ca2+ exchange current. J Neurophysiol,2006.95(2):p.882-92.
    [151]Xiong Z, Lu W, and MacDonald JF, Extracellular calcium sensed by a novel cation channel in hippocampal neurons.Proc Natl Acad Sci U S A,1997.94(13):p.7012-7.
    [152]Hablitz JJ, Heinemann U, and Lux HD, Step reductions in extracellular Ca2+ activate a transient inward current in chick dorsal root ganglion cells. Biophys J,1986.50(4):p.753-7.
    [153]Halaszovich CR, Zitt C, Jungling E, et al., Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem,2000.275(48):p.37423-8.
    [154]Kimura J, Miyamae S, and Noma A, Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig. J Physiol,1987.384:p.199-222.
    [155]Eriksson KS, Sergeeva O, Brown RE, et al., Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci,2001.21(23):p.9273-9.
    [156]Iwamoto T, Watano T, and Shigekawa M, A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem,1996.271(37):p. 22391-7.
    [157]Cone RD, Studies on the physiological functions of the melanocortin system. Endocr Rev, 2006.27(7):p.736-49.
    [158]Fu LY and van den Pol AN, Agouti-related peptide and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons. J Neurosci,2008.28(21):p.5433-49.
    [159]Cota D, Tschop MH, Horvath TL, et al., Cannabinoids, opioids and eating behavior:the molecular face of hedonism? Brain Res Rev,2006.51(1):p.85-107.
    [160]Hentges ST, Low MJ, and Williams JT, Differential regulation of synaptic inputs by constitutively released endocannabinoids and exogenous cannabinoids. J Neurosci,2005.25(42):p. 9746-51.
    [161]Sakurai T, Amemiya A, Ishii M, et al., Orexins and orexin receptors:a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998.92(4):p.573-85.
    [162]Acuna-Goycolea C, Tamamaki N, Yanagawa Y, et al., Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. J Neurosci,2005.25(32):p.7406-19.
    [163]van den Top M, Lee K, Whyment AD, et al., Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci,2004.7(5):p.493-4.
    [164]Acuna-Goycolea C and van den Pol AN, Neuroendocrine proopiomelanocortin neurons are excited by hypocretin/orexin. J Neurosci,2009.29(5):p.1503-13.
    [165]Kumarnsit E, Johnstone LE, and Leng G, Actions of neuropeptide Y and growth hormone secretagogues in the arcuate nucleus and ventromedial hypothalamic nucleus. Eur J Neurosci, 2003.17(5):p.937-44.
    [166]Cowley MA, Smith RG, Diano S, et al., The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron, 2003.37(4):p.649-61.
    [167]Elias CF, Lee C, Kelly J, et al., Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron,1998.21(6):p.1375-85.
    [168]Jobst EE, Enriori PJ, and Cowley MA, The electrophysiology of feeding circuits. Trends Endocrinol Metab,2004.15(10):p.488-99.
    [169]Elias CF, Aschkenasi C, Lee C, et al., Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron,1999.23(4):p.775-86.
    [170]Gutzwiller JP, Drewe J, Hildebrand P, et al., Effect of intravenous human gastrin-releasing peptide on food intake in humans. Gastroenterology,1994.106(5):p.1168-73.
    [171]Ladenheim EE, Taylor JE, Coy DH, et al., Blockade of feeding inhibition by neuromedin B using a selective receptor antagonist. Eur J Pharmacol,1994.271(1):p. R7-9.
    [172]Gonzalez N, Moody TW, Igarashi H, et al., Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes, 2008.15(1):p.58-64.
    [173]Muurahainen NE, Kissileff HR, and Pi-Sunyer FX, Intravenous infusion of bombesin reduces food intake in humans. Am J Physiol,1993.264(2 Pt 2):p. R350-4.
    [174]Merali Z, McIntosh J, and Anisman H, Role of bombesin-related peptides in the control of food intake. Neuropeptides,1999.33(5):p.376-86.
    [175]Flynn FW, Fourth ventricle bombesin injection suppresses ingestive behaviors in rats. Am J Physiol,1989.256(3 Pt 2):p. R590-6.
    [176]Ladenheim EE, Taylor JE, Coy DH, et al., Caudal hindbrain neuromedin B-preferring receptors participate in the control of food intake. Am J Physiol,1997.272(1 Pt 2):p. R433-7.
    [177]Ladenheim EE and Knipp S, Capsaicin treatment differentially affects feeding suppression by bombesin-like peptides. Physiol Behav,2007.91(1):p.36-41.
    [178]Panula P, Yang HY, and Costa E, Neuronal location of the bombesin-like immunoreactivity in the central nervous system of the rat Regul Pept, 1982.4(5):p.275-83.
    [179]Mikkelsen JD, Larsen PJ, O'Hare MM, et al., Gastrin releasing peptide in the rat suprachiasmatic nucleus:an immunohistochemical, chromatographic and radioimmunological study. Neuroscience,1991.40(1):p.55-66.
    [180]Chronwall BM, DiMaggio DA, Massari VJ, et al., The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience,1985.15(4):p.1159-81.
    [181]Wada E, Way J, Lebacq-Verheyden AM, et al., Neuromedin B and gastrin-releasing peptide mRNAs are differentially distributed in the rat nervous system. J Neurosci,1990.10(9):p. 2917-30.
    [182]Wada E, Way J, Shapira H, et al., cDNA cloning, characterization, and brain region-specific expression of a neuromedin-B-preferring bombesin receptor. Neuron,1991.6(3):p.421-30.
    [183]Wada E, Wray S, Key S, et al., Comparison of gene expression for two distinct bombesin receptor subtypes in postnatal rat central nervous system. Mol Cell Neurosci,1992.3(5):p. 446-60.
    [184]Zarbin MA, Kuhar MJ, O'Donohue TL, et al., Autoradiographic localization of (125I-Tyr4)bombesin-binding sites in rat brain. J Neurosci,1985.5(2):p.429-37.
    [185]Kamichi S, Wada E, Aoki S, et al., Immunohistochemical localization of gastrin-releasing peptide receptor in the mouse brain. Brain Res,2005.1032(1-2):p.162-70.
    [186]Coll AP, Farooqi IS, and O'Rahilly S, The hormonal control of food intake. Cell,2007. 129(2):p.251-62.
    [187]Kim MS, Pak YK, Jang PG, et al., Role of hypothalamic Foxol in the regulation of food intake and energy homeostasis. Nat Neurosci,2006.9(7):p.901-6.
    [188]Heisler LK, Cowley MA, Tecott LH, et al., Activation of central melanocortin pathways by fenfluramine. Science,2002.297(5581):p.609-11.
    [189]Heisler LK, Jobst EE, Sutton GM, et al., Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron,2006.51(2):p.239-49.
    [190]Saper CB, Loewy AD, Swanson LW, et al., Direct hypothalamo-autonomic connections. Brain Res,1976.117(2):p.305-12.
    [191]Swanson LW and Kuypers HG, A direct projection from the ventromedial nucleus and retrochiasmatic area of the hypothalamus to the medulla and spinal cord of the rat. Neurosci Lett, 1980.17(3):p.307-12.
    [192]Chronwall BM, Pisano JJ, Bishop JF, et al., Biochemical and histochemical characterization of ranatensin immunoreactive peptides in rat brain:lack of coexistence with bombesin/GRP. Brain Res,1985.338(1):p.97-113.
    [193]de Quidt ME and Emson PC, Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system--Ⅱ. Immunohistochemical analysis. Neuroscience,1986.18(3):p.545-618.
    [194]Ubink R, Halasz N, Zhang X, et al., Neuropeptide tyrosine is expressed in ensheathing cells around the olfactory nerves in the rat olfactory bulb. Neuroscience,1994.60(3):p.709-26.
    [195]Gehlert DR, Chronwall BM, Schafer MP, et al., Localization of neuropeptide Y messenger ribonucleic acid in rat and mouse brain by in situ hybridization. Synapse,1987.1(1):p.25-31.
    [196]Grove KL, Chen P, Koegler FH, et al., Fasting activates neuropeptide Y neurons in the arcuate nucleus and the paraventricular nucleus in the rhesus macaque. Brain Res Mol Brain Res, 2003.113(1-2):p.133-8.
    [197]Ubink R and Hokfelt T, Expression of neuropeptide Y in olfactory ensheathing cells during prenatal development. J Comp Neurol,2000.423(1):p.13-25.
    [198]Terao S, Yilmaz G, Stokes KY, et al., Inflammatory and injury responses to ischemic stroke in obese mice. Stroke,2008.39(3):p.943-50.
    [199]杨期东,神经病学(七年制教材).2001,北京:人民卫生出版社.
    [200]陈捷and亓树彬,缺血性脑卒中的流行病学.实用心脑肺血管病杂志,2000.8(3):p.3.
    [201]李董,大鼠脑缺血损伤后行为学、神经活动和c-fos表达的变化研究.南开大学博士论文.2007.
    [202]Hossmann KA, Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol, 2006.26(7-8):p.1057-83.
    [203]Ding Y and Clark JC, Cerebrovascular injury in stroke. Neurol Res,2006.28(1):p.3-10.
    [204]Schumann P, Touzani O, Young AR, et al., Evaluation of the ratio of cerebral blood flow to cerebral blood volume as an index of local cerebral perfusion pressure. Brain,1998.121 (Pt 7):p. 1369-79.
    [205]Harukuni I and Bhardwaj A, Mechanisms of brain injury after global cerebral ischemia. Neurol Clin,2006.24(1):p.1-21.
    [206]Astrup J, Siesjo BK, and Symon L, Thresholds in cerebral ischemia-the ischemic penumbra. Stroke,1981.12(6):p.723-5.
    [207]田时雨and吴多斌,缺血性脑卒中的治疗进展.新医学,2007.38(2):p.4.
    [208]杨宝峰,离子通道药理学:人民卫生出版社.
    [209]左明雪,动作电位形成的机制.生物学通报,2006.41(6):p.3.
    [210]Schnoebel R, WolffM, Peters SC, et al., Ketamine impairs excitability in superficial dorsal horn neurones by blocking sodium and voltage-gated potassium currents. Br J Pharmacol,2005. 146(6):p.826-33.
    [211]Brau ME, Sander F, Vogel W, et al., Blocking mechanisms of ketamine and its enantiomers in enzymatically demyelinated peripheral nerve as revealed by single-channel experiments. Anesthesiology,1997.86(2):p.394-404.
    [212]Olschewski A, Hempelmann G, Vogel W, et al., Suppression of potassium conductance by droperidol has influence on excitability of spinal sensory neurons. Anesthesiology,2001.94(2):p. 280-9.
    [213]Schally AV and Nagy A, New approaches to treatment of various cancers based on cytotoxic analogs of LHRH, somatostatin and bombesin. Life Sci,2003.72(21):p.2305-20.
    [214]Salido M, Vilches J, and Lopez A, Neuropeptides bombesin and calcitonin induce resistance to etoposide induced apoptosis in prostate cancer cell lines. Histol Histopathol,2000.15(3):p. 729-38.
    [215]Kiaris H, Schally AV, Sun B, et al., Inhibition of growth of human malignant glioblastoma in nude mice by antagonists of bombesin/gastrin-releasing peptide. Oncogene,1999.18(50):p. 7168-73.
    [216]Hosli L, Hosli E, Winter T, et al., Electrophysiological evidence for the presence of receptors for cholecystokinin and bombesin on cultured astrocytes of rat central nervous system. Neurosci Lett,1993.163(2):p.145-7.
    [217]Lee K, Dixon AK, Gonzalez I, et al., Bombesin-like peptides depolarize rat hippocampal interneurones through interaction with subtype 2 bombesin receptors. J Physiol,1999.518 (Pt 3): p.791-802.
    [218]Flood JF and Morley JE, Effects of bombesin and gastrin-releasing peptide on memory processing. Brain Res,1988.460(2):p.314-22.
    [219]Roesler R, Lessa D, Venturella R, et al., Bombesin/gastrin-releasing peptide receptors in the basolateral amygdala regulate memory consolidation. Eur J Neurosci,2004.19(4):p.1041-5.
    [220]Roesler R, Kopschina MI, Rosa RM, et al., RC-3095, a bombesin/gastrin-releasing peptide receptor antagonist, impairs aversive but not recognition memory in rats. Eur J Pharmacol,2004. 486(1):p.35-41.
    [221]Roesler R, Meller CA, Kopschina MI, et al., Intrahippocampal infusion of the bombesin/gastrin-releasing peptide antagonist RC-3095 impairs inhibitory avoidance retention. Peptides,2003.24(7):p.1069-74.
    [222]Santo-Yamada Y, Yamada K, Wada E, et al., Blockade of bombesin-like peptide receptors impairs inhibitory avoidance learning in mice. Neurosci Lett,2003.340(1):p.65-8.
    [223]Bissette G, Nemeroff CB, Decker MW, et al., Alterations in regional brain concentrations of neurotensin and bombesin in Parkinson's disease. Ann Neurol,1985.17(4):p.324-8.
    [224]Hsu LL, Yu JR, Upp JR, Jr., et al.. Chronic bombesin treatment increased the [3H]spiperone binding, glutamate decarboxylase and choline acetyltransferase activity in the rat brain. Brain Res, 1987.417(2):p.232-8.
    [225]Assimakopoulos SF, Scopa CD, Zervoudakis G, et al., Bombesin and neurotensin reduce endotoxemia, intestinal oxidative stress, and apoptosis in experimental obstructive jaundice. Ann Surg,2005.241(1):p.159-67.
    [226]Alexandris IH, Assimakopoulos SF, Vagianos CE, et al., Oxidative state in intestine and liver after partial hepatectomy in rats. Effect of bombesin and neurotensin. Clin Biochem,2004.37(5): p.350-6.
    [227]Kimura O, Kinoshita H, Furukawa T, et al., Prevention of warm ischemic injury by neuropeptide bombesin in small bowel transplantation. Transplant Proc,2006.38(6):p.1794-5.
    [228]Kinoshita H, Kimura O, Furukawa T, et al., Preoperative bombesin administration can protect the rat small bowel allograft from ischemic reperfusion injury. J Pediatr Surg,2005.40(12): p.1877-80.
    [229]Eigyo M, Katsuura G, Shintaku H, et al., Systemic administration of a cholecystokinin analogue, ceruletide, protects against ischemia-induced neurodegeneration in gerbils. Eur J Pharmacol,1992.214(2-3):p.149-58.
    [230]Banks WA, Evidence for a cholecystokinin gut-brain axis with modulation by bombesin. Peptides,1980.1(4):p.347-51.
    [231]Higuchi K, Kimura 0, Furukawa T, et al., Bombesin can rescue the enteric ganglia from FK506 neurotoxicity on small bowel transplantation. J Pediatr Surg,2006.41(12):p.1957-61.
    [232]Merali Z, Bedard T, Andrews N, et al., Bombesin receptors as a novel anti-anxiety therapeutic target: BB1 receptor actions on anxiety through alterations of serotonin activity. J Neurosci,2006.26(41):p.10387-96.
    [233]Yamada K, Santo-Yamada Y, Wada E, et al., Role of bombesin (BN)-like peptides/receptors in emotional behavior by comparison of three strains of BN-like peptide receptor knockout mice. Mol Psychiatry,2002.7(1):p.113-7,6.
    [234]Kent P, Anisman H, and Merali Z, Are bombesin-like peptides involved in the mediation of stress response? Life Sci,1998.62(2):p.103-14.
    [235]Roesler R, Henriques JA, and Schwartsmann G, Gastrin-releasing peptide receptor as a molecular target for psychiatric and neurological disorders. CNS Neurol Disord Drug Targets, 2006.5(2):p.197-204.
    [236]Jeon D, Chu K, Jung KH, et al., Na(+)/Ca(2+) exchanger 2 is neuroprotective by exporting Ca(2+) during a transient focal cerebral ischemia in the mouse. Cell Calcium,2008.43(5):p. 482-91.
    [237]Yoshida-Yoneda E, TJ OL, Wei JY, et al.. Peripheral bombesin induces gastric vagal afferent activation in rats. Am J Physiol,1996.271(6 Pt 2):p. R1584-93.
    [238]Kirkham TC, Walsh CA, Gibbs J, et al., A novel bombesin receptor antagonist selectively blocks the satiety action of peripherally administered bombesin. Pharmacol Biochem Behav,1994. 48(3):p.809-11.
    [239]Akcan A, Muhtaroglu S, Akgun H, et al., Ameliorative effects of bombesin and neurotensin on trinitrobenzene sulphonic acid-induced colitis, oxidative damage and apoptosis in rats. World J Gastroenterol,2008.14(8):p.1222-30.
    [240]Porreca F, Burks TF, and Sheldon RJ, Central and peripheral visceral effects of bombesin. Ann N Y Acad Sci,1988.547:p.194-203.
    [241]Banks WA, Kastin AJ, Radulovic S, et al., Selective uptake of the somatostatin analog RC-160 across the blood-brain tumor barrier of mice with KHT sarcomas. Anticancer Drugs,1992. 3(5):p.519-23.
    [242]Pinski J, Schally AV, Halmos G, et al., Somatostatin analogues and bombesin/gastrin-releasing peptide antagonist RC-3095 inhibit the growth of human glioblastomas in vitro and in vivo. Cancer Res,1994.54(22):p.5895-901.
    [243]Koranda JL, Masino SA, and Blaise JH, Bidirectional synaptic plasticity in the dentate gyrus of the awake freely behaving mouse. J Neurosci Methods,2008.167(2):p.160-6.
    [244]Yang JJ, Tian YT, Yang Z, et al., Effect of melamine on potassium currents in rat hippocampal CA1 neurons. Toxicol In Vitro,2009.24(2):p.397-403.
    [245]de la Torre JC and Aliev G, Inhibition of vascular nitric oxide after rat chronic brain hypoperfusion:spatial memory and immunocytochemical changes. J Cereb Blood Flow Metab, 2005.25(6):p.663-72.
    [246]Lutz PL, Nilsson GE, and Prentice H, The Brain Without Oxygen:Causes of Failure Molecular and Physiological Mechanisms for Survival 2003, Dordrecht,Netherlands:Kluwer Academic Press,.
    [247]Rossen R, Kabat H, and Anderson JP, Acute arrest of cerebral circulation in man. Archives of Neurology and Psychiatry 1943.50:p.18.
    [248]Hochachka PW and Lutz PL, Mechanism, origin, and evolution of anoxia tolerance in animals. Comp Biochem Physiol B Biochem Mol Biol,2001.130(4):p.435-59.
    [249]Berger H, Electroencephalogram in humans. Archiv fur Psychiatrie und Nervenkrankheiten 1929.87:p.43.
    [250]Brazier MA, The history of the electrical activity of the brain as a method for localizing sensory function. Med Hist,1963.7:p.199-211.
    [251]Choi DW, Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol,1996.6(5):p. 667-72.
    [252]Tanabe M, Watanabe T, Ishibashi M, et al., Hippocampal ischemia in a patient who experienced transient global amnesia after undergoing cerebral angiography. Case illustration. J Neurosurg,1999.91(2):p.347.
    [253]Clarkson AN, Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci,2007.80(13):p.1157-75.
    [254]Sugar O and Gerard RW, Anoxia and brain potentials. Journal of Neurophysiology 1938.1: p.14.
    [255]Kalaria RN, Kenny RA, Ballard CG, et al., Towards defining the neuropathological substrates of vascular dementia. J Neurol Sci,2004.226(1-2):p.75-80.
    [256]Loeb C and Gandolfo C, Diagnostic evaluation of degenerative and vascular dementia. Stroke,1983.14(3):p.399-401.
    [257]Bokura H and Robinson RG, Long-term cognitive impairment associated with caudate stroke. Stroke,1997.28(5):p.970-5.
    [258]Bradvik B, Sonesson B, and Holtas S, Spatial impairment following right hemisphere transient ischaemic attacks in patients without carotid artery stenosis. Acta Neurol Scand,1989. 80(5):p.411-8.
    [259]Godefroy O, Rousseaux M, Pruvo JP, et al., Neuropsychological changes related to nilateral lenticulostriate infarcts. J Neurol Neurosurg Psychiatry,1994.57(4):p.480-5.
    [260]Alagona G, Ferri R, Pennisi G, et al., Motor cortex excitability in Alzheimer's disease and in subcortical ischemic vascular dementia. Neurosci Lett,2004.362(2):p.95-8.
    [261]Block F, Global ischemia and behavioural deficits. Prog Neurobiol, 1999.58(3):p.279-95.
    [262]Pulsinelli WA, Brierley JB, and Plum F, Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol,1982.11(5):p.491-8.
    [263]Liu K, Lin Y, Yu P, et al., Dynamic regional changes of extracellular ascorbic acid during global cerebral ischemia:studied with in vivo microdialysis coupled with on-line electrochemical detection. Brain Res,2009.1253:p.161-8.
    [264]Liu K, Lin Y, Xiang L, et al., Comparative study of change in extracellular ascorbic acid in different brain ischemia/reperfusion models with in vivo microdialysis combined with on-line electrochemical detection. Neurochem Int,2008.52(6):p.1247-55.
    [265]Kimura R, Nakase H, Tamaki R, et al., Vascular endothelial growth factor antagonist reduces brain edema formation and venous infarction. Stroke,2005.36(6):p.1259-63.
    [266]Hodges H, Nelson A, Virley D, et al., Cognitive deficits induced by global cerebral schaemia:prospects for transplant therapy. Pharmacol Biochem Behav,1997.56(4):p.763-80.
    [267]Smith ML, Auer RN, and Siesjo BK, The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol,1984.64(4):p.319-32.
    [268]Kirino T, Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res, 1982.239(1):p.57-69.
    [269]Morris R, Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods,1984.11(1):p.47-60.
    [270]Teyler TJ and DiScenna P, Long-term potentiation. Annu Rev Neurosci,1987.10:p.131-61.
    [271]Sharp PE, McNaughton BL, and Barnes CA, Enhancement of hippocampal field potentials in rats exposed to a novel, complex environment. Brain Res,1985.339(2):p.361-5.
    [272]Green EJ and Greenough WT, Altered synaptic transmission in dentate gyrus of rats reared in complex environments:evidence from hippocampal slices maintained in vitro. J Neurophysiol, 1986.55(4):p.739-50.
    [273]Bannerman DM, Good MA, Butcher SP, et al., Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature,1995.378(6553):p.182-6.
    [274]彭建安and萍郭,学习和记忆与LTP关系的研究进展.河南职工医学院学报,2008.20(3):p.5.
    [275]Gustafsson B and Wigstrom H, Physiological mechanisms underlying long-term potentiation. Trends Neurosci,1988.11(4):p.156-62.
    [276]Nicoll RA, Kauer JA, and Malenka RC, The current excitement in long-term potentiation. Neuron,1988.1(2):p.97-103.
    [277]Madison DV, Malenka RC, and Nicoll RA, Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci,1991.14:p.379-97.
    [278]Larkman AU and Jack JJ, Synaptic plasticity:hippocampal LTP. Curr Opin Neurobiol,1995. 5(3):p.324-34.
    [279]Nicoll RA and Malenka RC, Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature,1995.377(6545):p.115-8.
    [280]Bear MF, Cooper LN, and Ebner FF, A physiological basis for a theory of synapse modification. Science,1987.237(4810):p.42-8.
    [281]Constantine-Paton M, Cline HT, and Debski E, Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu Rev Neurosci,1990.13:p.129-54.
    [282]Shatz CJ, Impulse activity and the patterning of connections during CNS development. Neuron,1990.5(6):p.745-56.
    [283]Fields RD and Nelson PG, Activity-dependent development of the vertebrate nervous system. Int Rev Neurobiol,1992.34:p.133-214.
    [284]Kandel ER and O'Dell TJ, Are adult learning mechanisms also used for development? Science,1992.258(5080):p.243-5.
    [285]Goodman CS and Shatz CJ, Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell,1993.72 Suppl:p.77-98.
    [286]Singer W, Development and plasticity of cortical processing architectures. Science,1995. 270(5237):p.758-64.
    [287]Cline HT, Topographic maps:developing roles of synaptic plasticity. Curr Biol,1998.8(23): p. R836-9.
    [288]Kirkwood A, Dudek SM, Gold JT, et al., Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science,1993.260(5113):p.1518-21.
    [289]Bear MF and Kirkwood A, Neocortical long-term potentiation. Curr Opin Neurobiol,1993. 3(2):p.197-202.
    [290]Eichenbaum H, Learning from LTP:a comment on recent attempts to identify cellular and molecular mechanisms of memory. Learn Mem,1996.3(2-3):p.61-73.
    [291]Stevens CF, Spatial learning and memory:the beginning of a dream. Cell,1996.87(7):p. 1147-8.
    [292]Shors TJ and Matzel LD, Long-term potentiation:what's learning got to do with it? Behav Brain Sci,1997.20(4):p.597-614; discussion 614-55.
    [293]Collingridge GL, Kehl SJ, and McLennan H, The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. J Physiol,1983.334:p.19-31.
    [294]Lynch G, Larson J, Kelso S, et al., Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature,1983.305(5936):p.719-21.
    [295]Regehr WG and Tank DW, Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites. Nature,1990.345(6278):p.807-10.
    [296]Alford S, Frenguelli BG, Schofield JG, et al., Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J Physiol,1993.469:p. 693-716.
    [297]Perkel DJ, Petrozzino JJ, Nicoll RA, et al.. The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation. Neuron,1993.11 (5):p.817-23.
    [298]Yuste R and Denk W, Dendritic spines as basic functional units of neuronal integration. Nature,1995.375(6533):p.682-4.
    [299]Svoboda K and Mainen ZF, Synaptic [Ca2+]:intracellular stores spill their guts. Neuron, 1999.22(3):p.427-30.
    [300]Anwyl R, Metabotropic glutamate receptors:electrophysiological properties and role in plasticity. Brain Res Brain Res Rev,1999.29(1):p.83-120.
    [301]Bear MF and Malenka RC, Synaptic plasticity:LTP and LTD. Curr Opin Neurobiol,1994. 4(3):p.389-99.
    [302]Malenka RC and Nicoll RA, NMDA-receptor-dependent synaptic plasticity:multiple forms and mechanisms. Trends Neurosci,1993.16(12):p.521-7.
    [303]Malenka RC, Synaptic plasticity in the hippocampus:LTP and LTD. Cell,1994.78(4):p. 535-8.
    [304]Teyler TJ, Cavus I, Coussens C, et al., Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus,1994.4(6):p.623-34.
    [305]Tanaka K, Ito D, Suzuki S, et al., A novel voltage-sensitive Na(+) and Ca(2+) channel blocker, NS-7, prevents suppression of cyclic AMP-dependent protein kinase and reduces infarct area in the acute phase of cerebral ischemia in rat. Brain Res,2002.924(1):p.98-108.
    [306]LoPachin RM, Gaughan CL, Lehning EJ, et al., Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons. Neuroscience,2001.103(4):p.971-83.
    [307]Phillis JW, Song D, and O'Regan MH, Tamoxifen, a chloride channel blocker, reduces glutamate and aspartate release from the ischemic cerebral cortex. Brain Res,1998.780(2):p. 352-5.
    [308]Fujiwara N, Higashi H, Shimoji K, et al., Effects of hypoxia on rat hippocampal neurones in vitro. J Physiol,1987.384:p.131-51.
    [309]Leblond J and Krnjevic K, Hypoxic changes in hippocampal neurons. J Neurophysiol,1989. 62(1):p.1-14.
    [310]Rader RK and Lanthorn TH, Experimental ischemia induces a persistent depolarization blocked by decreased calcium and NMDA antagonists. Neurosci Lett,1989.99(1-2):p.125-30.
    [311]Spuler A and Grafe P, Adenosine,'pertussis-sensitive' G-proteins, and K+ conductance in central mammalian neurones under energy deprivation. Neurosci Lett,1989.98(3):p.280-4.
    [312]Martin RL, Lloyd HG, and Cowan AI, The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci,1994.17(6):p.251-7.
    [313]Yamamoto S, Tanaka E, and Higashi H, Mediation by intracellular calcium-dependent signals of hypoxic hyperpolarization in rat hippocampal CA1 neurons in vitro. J Neurophysiol, 1997.77(1):p.386-92.
    [314]Erdemli G, Xu YZ, and Krnjevic K, Potassium conductance causing hyperpolarization of CA1 hippocampal neurons during hypoxia. J Neurophysiol,1998.80(5):p.2378-90.
    [315]Spuler A, Endres W, and Grafe P, Glucose depletion hyperpolarizes guinea pig hippocampal neurons by an increase in potassium conductance. Exp Neurol, 1988.100(1):p.248-52.
    [316]Krnjevic K and Leblond J, Changes in membrane currents of hippocampal neurons evoked by brief anoxia. J Neurophysiol,1989.62(1):p.15-30.
    [317]Nowicky AV and Duchen MR, Changes in [Ca2+]i and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons. J Physiol,1998.507 (Pt 1):p. 131-45.
    [318]Hyllienmark L and Brismar T, Effect of hypoxia on membrane potential and resting conductance in rat hippocampal neurons. Neuroscience,1999.91(2):p.511-7.
    [319]Hodgkin AL and Huxley AF, A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol,1952.117(4):p.500-44.
    [320]Hartshorne RP and Catterall WA, Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci U S A,1981.78(7):p.4620-4.
    [321]Stuart GJ and Sakmann B, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature,1994.367(6458):p.69-72.
    [322]Raley-Susman KM, Kass IS, Cottrell JE, et al., Sodium influx blockade and hypoxic damage to CA1 pyramidal neurons in rat hippocampal slices. J Neurophysiol,2001.86(6):p.2715-26.
    [323]Ates O, Cayli SR, Gurses I, et al., Do sodium channel blockers have neuroprotective effect after onset of ischemic insult? Neurol Res,2007.29(3):p.317-23.
    [324]Brahma MK, Dohare P, Varma S, et al., The neuronal apoptotic death in global cerebral ischemia in gerbil:important role for sodium channel modulator. J Neurosci Res,2009.87(6):p. 1400-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700