尼日尔阿泽里克地区砂岩型铀矿控矿因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过研究阿泽里克地区野外露头剖面、钻孔岩芯、测井曲线等,结合室内镜下薄片鉴定,认为阿萨乌阿组沉积相为辫状河三角洲,亚相为辫状河三角洲前缘。分流河道砂岩以中-粗粒砂岩为主,富含酸性火山碎屑,泥质含量少,成分成熟度低、结构成熟度低。分流河道砂体孔隙度、渗透率高,在纵向、横向上连通性好,利于成矿流体在砂体中流通,并为铀成矿提供了良好的容矿空间和铀源。
     在野外蚀变现象研究的基础上,通过光学显微镜、电子探针、扫描电镜技术手段分析了阿萨乌阿组砂岩中蚀变类型。与铀成矿关系密切的蚀变类型主要有还原蚀变、泥微晶碳酸盐化、方沸石化、火山玻璃脱玻化。酸性火山物质方沸石化与火山玻璃脱玻化可为铀成矿提供铀源。
     运用电子探针、光学显微镜及扫描电镜手段,研究了铀赋存形态及其伴生矿物。铀主要以独立铀矿物的形式存在,多以胶结物形式充填于碎屑粒间孔隙、碎屑裂隙及溶蚀孔洞中;沥青铀矿、铀石等伴生矿物主要有黄铁矿、黄铜矿、辉铜矿、自然铜等。
     通过流体包裹体分析、方解石碳氧同位素分析、沥青铀矿氧同位素分析,追踪了成矿流体来源。成矿流体来自大气水和深部还原性流体。方解石氧同位素显示成矿流体δ18O值为-0.01,沥青铀矿氧同位素显示成矿流体δ18O值为-1.05,说明大气水对铀成矿有重要作用。方解石碳同位素显示成矿流体δ~(13)C值为-6.63,接近地幔碳(δ~(13)C=-7~3‰)的边界值,说明深部还原性流体可能有地幔碳的加入。流体包裹体中检测出H2,显示来自深部的H2为还原剂之一。大气水流体提供铀,深部流体提供还原剂。
     在对阿泽里克铀矿床进行分析的基础上,总结归纳出铀成矿的控矿因素。构造、沉积、成矿流体三者共同控制了阿泽里克铀矿床的铀矿化。河道砂体为铀成矿提供了良好的容矿空间;北西向断层控制了还原蚀变砂体的分布;三元流体的叠合作用控制了铀矿化沿砂体顶部,并形成分散的板状、透镜状矿体。
     通过综合运用沥青铀矿物稀释法和LA-ICP-MS微区U-Pb同位素测年,测出沥青铀矿物形成年了为101.3~64.5Ma。
     以砂岩型铀矿床成矿理论为指导,在分析大地构造背景、盆地演化的基础上,综合构造活动、沉积建造、矿化特征、地球化学特征、成矿流体活动特征、控矿因素、铀成矿年龄等提出了“三元流体叠合成矿“理论,建立了矿床成因模式。
After studies on outcrops and drill cores and logs associating with thin sectionanalysis under microscope,the conclusion is that the sedimentary facies of Assaouasfromation is braided river delta and subfacies is delta front; distributary channelssandstone characters medium-coarse grains and rich acid volcanic debris and poorlyargillaceous material whose compositional maturity and textural maturity arelow;channel sandstone bodies are high porosity and permeability and goodcommunication horizontally and vertically which favor circulation of mineralizingfluids and provide favorable host room and uranium resource for uraniummineralization.
     Alterations are analyzed by methods such as optical microscope and electronmicroprobe and scanning electron microscope,based on studies on alterations in thefield.There mainly are reduction and micrite carbonatization and analcitization anddevitrification of acidic volcanic glasses which are relational with uraniummineralization. Analcitization of acidic volcanic and devitrification of acidic volcanicglasses provide uranium for uranium mineralization.
     The paper studies existent forms of uranium by utilization of electronmicroprobe and optical microscope and scanning scanning electronmicroscope.Uranium mainly existence as forms of uranium minerals which cementand infill intergranular pore and fissures and cavities corroded of clastics. Pitchblendeand coffinite associate with pyrite and chalcopyrite and chalcocite and native copperet al.
     Origins of mineralizing fluids are traced by analysis of fluid inclusion and C-Oisotope of calcite and O isotope of pitchblende. Mineralizing fluids comes fromatmospheric water and reducing fluid from the deep. δ18O of mineralizing fluidsfrom O isotope of calcite and pitchblende are-0.01and-1.05which revealatmospheric water signifies uranium mineralizing. δ~(13)C of mineralizing fluids fromcalcite is-6.63which is close to the boundary value of mantle carbon(δ~(13)C=-7~3‰)and indicates reducing fluid from the deep probability blends with mantle carbon. H2is detected form fluid inclusion which reveals one type of reductants is H2from the deep. Atmospheric water fluid provides uranium as well as fluid from thedeep does reductants.
     Ore controling fectors of uranium mineralization are concluded based on analysisof the Azelik uranium deposit. Structure and sedimentarion and mineralizing fluidstogether control uranium mineralization. Channel sandstone badies providefavourable host room; NW faults control the rang of reduced sandstone badies; Thesuperposition of three types of fluids contros forms of mineral ore which is at the topof sandstone and tablet and discrete.
     Pitchblende minerogenic age is dated by utilization of pitchblende mineraldilution method and LA-ICP-MS pitchblende microzone U-Pb isotope dating which is101.3~76.6Ma.
     With theories of sandstone type uranium deposit,the theory of the superpositionof three typies of fluids and metallogenetic model is established,based on analysis ofgeotectonic and basin’s structure setting, after multidisciplinary analysis of structurescharacteristics and sedimentation and mineralization features and geochemicalbehavior and mineralizing fluids characteristics and ore controling fectors ofmineralization and minerogenic age.
引文
[1].A D迈尔.沉积盆地分析原理.北京:石油工业出版社,1991.
    [2].R L海.沉积岩中的沸石及其成因.北京:地质出版社,1978.
    [3].常丽华,陈曼云,金巍.透明矿物薄片鉴定手册.北京:地质出版社,2006.
    [4].陈戴生,王瑞英、李胜祥等.新疆伊犁盆地砂岩型铀矿成矿地质条件及找矿方向研究:[内部报告].北京:核工业北京地质研究院,1993.
    [5].陈德潜,陈刚.实用稀土元素地球化学.北京:冶金工业出版社,1990.
    [6].陈骏,王鹤年.地球化学.北京:科学出版社,2004.
    [7].陈岳龙,杨忠芳,赵志丹.同位素地质年代学与地球化学.北京:地质出版社,2005.
    [8].陈祖伊,陈戴生,古抗衡.中国铀矿研究评价,第三卷,砂岩型铀矿床..北京:中国核工业地质局,核工业北京地质研究院,2011.
    [9].陈祖伊,郭华,刘红旭等.中央亚洲活动带(中国境内段)多岛海地质演化与砂岩型铀矿时空定位模式及评价预测判据:[内部报告].北京:核工业北京地质研究院,2007.
    [10].陈祖伊,张书成,陈跃辉.沉积岩中稀有金属—铀的成矿作用.北京:核工业北京地质研究院,1997.
    [11].陈祖伊,周维勋,管太阳,等.产铀盆地的形成演化模式及其鉴别标志[J].世界核地质科学,2004,21(3):141~151.
    [12].从克卫,陈祖伊等.世界天然铀资源及开发前景分析:[国家能源局软科学研究课题报告].中国核工业地质局,中国海外铀业有限公司,2009.
    [13].崔彬,李忠.成矿空间初探[J].地质与勘探,2000,36(6):6~8.
    [14].党延霞,樊文军,刘照泉.五彩湾矿区沸石矿床地质特征及成因初探.新疆地质,2010,28(2):167~170.
    [15].邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用.北京:地质出版社.2009.
    [16].丁万烈.绿色蚀变带的地球化学性质及其找矿意义探讨.铀矿地质,2003,19(5):277~282.
    [17].丁振举,刘丛强,姚书振.海底热液系统高温流体的稀土元素组成及其控制因素.地球科学进展,2000,15(3):307~312.
    [18].杜乐天.中国热液铀矿成矿理论体系.铀矿地质.2011,27(2):65~80.
    [19].杜乐天.中国热液铀矿基本成矿规律和一般热液成矿学.北京:原子能出版社.2001.
    [20].范洪海,凌洪飞,王德滋,等.相山铀矿田成矿机理研究[J].铀矿地质,2003,19(4):208-213.
    [21].范洪海,凌洪飞,王德滋,等.江西相山铀矿田成矿物质来源的Nd、Sr、Pb同位素证据[J].高校地质学报,2001,7(2):139-145.
    [22].范洪海.邹家山铀矿床成矿条件及找矿方向[J].华东铀矿地质,1996,3-4:1-8.
    [23].冯彩霞,池国祥,胡瑞忠.遵义黄家湾Ni-Mo多金属矿床成矿流体特征:来自方解石流体包裹体、REE和C、O同位素证据.岩石学报,2011,27(12):3763~3776.
    [24].赴尼日尔铀矿地质考察组.尼日尔砂岩铀矿考察报告.北京:国外铀矿地质编辑部.1985.
    [25].郭庆银,刘红旭,陈祖伊,等.以识别砂体为主线的陆相盆地产铀远景评价体系[J].世界核地质科学,2004,21(2):69~92.
    [26].郭庆银.鄂尔多斯盆地西缘构造演化与铀成矿作用:[博士论文].北京:中国地质大学(北京),2010.
    [27].侯树仁、王强等.内蒙古巴音戈壁盆地地浸砂岩型铀资源调查评价项目成果报告:[内部报告].核工业208,2006.
    [28].简晓飞,秦立峰.浅谈中亚地区层间氧化带砂岩型铀矿成矿作用.铀矿地质,1996,12(2).
    [29].金景福,黄广荣.铀矿床学.北京:原子能出版社,1991.
    [30].金兴公司.2007年度阿泽里克矿区勘探总结:[内部报告].北京:金兴公司,2007.
    [31].金兴公司.尼日尔国阿加德兹省特吉达地区2009年度勘查总结报告:[内部报告].北京:金兴公司,2009.
    [32].旷文战等.内蒙古二连盆地努和廷矿床铀矿普查2008年度成果报告:[内部报告].包头:核工业208大队,2008.
    [33].李胜祥.松辽盆地地质演化史与砂岩型铀矿找矿方向研究:[博士论文].北京:核工业北京地质研究院,2002.
    [34].李胜祥等.松辽盆地地质演化与砂岩型铀矿找矿方向研究:[内部报告].北京:核工业北京地质研究院,2002.
    [35].李妩巍.热液型铀矿床可能的铀源—以俄罗斯斯特列措夫铀矿田为例.世界核地质科学,2007,24(2):68~72.
    [36].李占双,权志高等.吐哈盆地西南缘地浸砂岩铀矿勘查研究及区域铀资源评价:[内部报告].核工业203研究所,2003.
    [37].李占游,李保侠,何永振等.新疆吐鲁番市十红滩铀矿床男矿带31~32勘探线铀矿普查报告:[内部报告].核工业203研究所,2002.
    [38].李子颖,陈安平等.鄂尔多斯盆地北部地浸砂岩型铀矿时空定位和成矿机理研究:[内部报告].北京:核工业北京地质研究院,2005.
    [39].李子颖,黄文明,郭庆银等.内蒙古新巴尔虎左旗西湖里吐盆地砂岩型铀资源评价:[内部报告].北京:核工业北京地质研究院。2002.
    [40].李子颖,焦养泉,陈安平,等.鄂尔多斯盆地东北部侏罗系古河道中一种特殊的砂岩型铀矿床.世界核地质科学,2010,27(1).
    [41].李子颖,秦明宽,等.地浸砂岩型铀矿快速评价技术及应用研究:[内部报告].北京:核工业北京地质研究院。2007.
    [42].刘宝珺.沉积岩石学.北京:地质出版社.1980.
    [43].刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区同位素组成及其意义.矿床地质,2004,23(1):1~10.
    [44].刘家军,何明勤,李志明.2004.云南白秧坪银铜多金属矿集区同位素组成及其意义.矿床地质,23(1):1-10.
    [45].刘培伦,张文华,张扬绍.沥青铀矿中氧同位素测定方法.铀矿地质,1997,13(3):176~182.
    [46].刘武生,贾立城,陈戴生,等.二连盆地砂岩型铀矿资源潜力评价:[内部报告].北京,核工业地质局,2010.
    [47].刘武生,贾立城,汪远志,等.松辽盆地砂岩型铀矿资源潜力评价:[内部报告].北京,核工业地质局,2010.
    [48].刘武生,贾立城,汪远志,等.吐哈盆地砂岩型铀矿资源潜力评价:[内部报告].北京,核工业地质局,2010.
    [49].卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社,2004.
    [50].卢静文,彭晓蕾.金属矿物显微镜鉴定手册.北京:地质出版社,2006.
    [51].罗平,邓峋,康罗蛰.克拉玛依油田八区下乌尔禾组砾岩的成岩变化及对储层的影响.石油与天然气地质,1986,7(8):42~52.
    [52].罗毅,马汉峰,何中波.松辽盆地白兴吐铀矿床预测的关键技术.世界核地质科学,2012,29(2):63~66.
    [53].马汉峰,罗毅,李子颖.砂体特征对地浸砂岩型铀成矿的制约.铀矿地质,2011,27(1):30~35.
    [54].马汉峰.宋辽盆地钱家店铀矿床成矿机理研究:[博士论文].北京:核工业北京地质研究院,2010.
    [55].毛景文,李厚民,王义天,等.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据.地质学报,2005,79(6):839~857.
    [56].牟保磊.元素地球化学.北京:北京大学出版社,1999.
    [57].聂逢君,陈安平,彭云彪.二连盆地古河道砂岩型铀矿.北京:地质出版社,2010.
    [58].聂逢君,林双幸,严兆彬,等.尼日尔特吉达地区砂岩中铀的热流体成矿作用.地球学报,2010,31(6):819~831.
    [59].聂逢君.尼日尔特吉达地区铀矿控矿因素与成矿预测研究:[内部报告].南昌:东华理工大学,2009.
    [60].彭建堂,胡瑞忠.湘中锡矿山超大型锑矿床的碳、氧同位素体系.地质论评,2011,47(1):34~41
    [61].彭建新.新疆十红滩铀矿床成矿作用机制的地球化学研究:[博士论文].南京:南京大学,2003.
    [62].秦明宽,李子颖,田华,等.我国地浸砂岩型铀矿床研究现状及发展方向.核地质科技论文集,2009:25~35.
    [63].秦明宽.新疆伊犁盆地南缘可地浸层间氧化带型砂岩型铀矿床成因及定位模式:[博士学位论文].北京:核工业北京地质研究院.1997.
    [64].秦明宽,等.鄂尔多斯盆地地浸砂岩型铀矿资源潜力综合评价:[内部报告].北京:核工业北京地质研究院,2006.
    [65].秦明宽,等.二连、海拉尔盆地地浸砂岩型铀矿成矿地质研究:[内部报告].北京:核工业北京地质研究院,2005.
    [66].秦明宽,等.二连盆地地浸砂岩型铀矿资源潜力综合评价:[内部报告].北京:核工业北京地质研究院,2005.
    [67].邱家骧,林景仟.岩石化学.北京:地质出版社,1991.
    [68].商朋强,胡瑞忠,毕献武.花岗岩型热液铀矿床C,O同位素研究—以粤北下庄铀矿田为例矿物岩石,2006,26(3):71~76.
    [69].宋国明.尼日尔金属矿业概览.中国金属通报,2009(47):36~37.
    [70].宋继叶,蔡煜琦,姚春玲.古陆块及其边缘与铀成矿关系.铀矿地质,2011,27(1):8~12.
    [71].苏明迪,戴长禄.中国东部中生代火山岩中沸石岩的地质特征和成因.地质科,1983,2:116~126.
    [72].王剑锋.铀地球化学教程.北京:原子能出版社,1986.
    [73].王金平、王果等.天山造山带山间盆地地浸砂岩铀矿化特征及成矿规律研究:[内部报告].核工业203研究所,核工业216队,2005.
    [74].王驹,杜乐天.论铀成矿过程中的气还原作用.铀矿地质,1995,11(1):19-24.
    [75].王濮,潘兆橹,翁玲宝.系统矿物学.北京:地质出版社,1982.
    [76].王四利,赵宝光,何涛.盆地地质特征与铀矿找矿方向.地质学报,2009,29(1):1~4.
    [77].王正邦.国外地浸砂岩型铀矿地质发展现状与展望.铀矿地质,2012,18(1):9~21.
    [78].王中刚,于学元,赵振华.稀土元素地球化学.北京:科学出版社,1989.
    [79].魏观辉,等.伊犁盆地512矿床富铀段控矿因素及成矿模式研究:[内部报告].核工业203研究所,1997.
    [80].吴仁贵,陈安平,余达淦,等.沉积体系分析与河道砂岩型铀矿成矿条件讨论—以鄂尔多斯中新生代盆地东胜地区为例.铀矿地质,2003,19(2):94-99.
    [81].向伟东.吐哈盆地西南部层间氧化地型砂岩型铀矿成矿条件与成矿规律:[博士论文].北京:核工业北京地质研究院,1999.
    [82].肖新建,李子颖,方锡珩,等.东胜砂岩型铀矿床低温热液流体的证据及意义.矿物岩石地球化学通报,2004,23(4):301-304.
    [83].徐邦梁.沸石.北京:地质出版社,1979.
    [84].许强,秦明宽,范洪海,等.尼日尔阿泽里克砂岩型铀矿控矿因素初探[J].世界核地质科学,2012,29(3):149~155.
    [85].薛春纪,池国祥,薛伟,等.鄂尔多斯盆地砂岩型铀成矿中两种流体系统相互作用——地球化学证据和流体动力学模拟.矿床地质,2010,29(1):134-142.
    [86].薛春纪,薛伟,康明.鄂尔多斯盆地流体动力学过程及其砂岩型铀矿化.现代地质,2008,22(1):1~8.
    [87].薛春纪,薛伟,康明,等.鄂尔多斯盆地流体动力学过程及其砂岩型铀矿化.现代地质,2008,22(1):1-8.
    [88].薛伟,薛春纪,池国祥.鄂尔多斯盆地东胜砂岩型铀矿微量和稀土元素地球化学特征.现代地质,2010,24(4):776~784.
    [89].扬殿忠.吐哈盆地西南部侏罗系划分及铀有机地球化学研究:[博士论文].北京:核工业北京地质研究院,2002.
    [90].尹海生.古流向分析及储层技术评价在砂岩型铀矿床勘探中的应用.四川地质学报,2005,25(3):131-134.
    [91].于兴河.碎屑岩系油气储层沉积学.北京:石油工业出版社.2008.
    [92].余达淦,吴仁贵,陈培荣.铀资源地质学.哈尔滨:哈尔滨工程大学出版社.2005.
    [93].余达淦.还原体(体系)与富铀矿的形成.铀矿地质,1989,5(6):343~349.
    [94].袁见齐.朱上庆,翟裕生.矿床学.北京:地质出版社.1985.
    [95].张宏飞,高山.地球化学.北京:地质出版社,2012.
    [96].张明林,刘建军.世界天然铀资源、勘察及生产状况.世界核地质科学,2011,28(1):18~24.
    [97].张书成,谈成龙.非洲三国铀矿.北京:核工业北京地质研究院,2010.
    [98].赵澄林,朱筱敏.沉积岩石学.北京:石油工业出版社,2001.
    [99].赵振华.微量元素地球化学原理.北京:科学出版社,1997.
    [100].郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000.
    [101].周家喜,黄智龙,周国富.黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学.大地构造与成矿学,2012,36(1):93~101.
    [102].朱西养,汪云亮,王志畅,等. REE地球化学在砂岩型铀成矿研究中的应用—以川北砂岩型铀矿床为例.地质论评,2005,51(4):401~408.
    [103].Adams S S, Smith R B. Geology and recognition criteria for sandstone uranium deposits inmixed fluvial-shallow marine sedimentary sequences, South Texas. U.S. Dept. of Energy.1981.
    [104].Andre Banning, Antonio Cardona, Thomas R Rüde. Uranium and arsenic dynamics involcano-sedimentary basins–An exemplary study in North-Central Mexico. AppliedGeochemistry.2012,27(2012)2160–2172.
    [105].Azuma Lijima. Geological Occurrences of zeolite in marine environments. In: L B Sand, FA Mumpton(ed),1978,Natural zeolites—occurrence,properties,use. Pergamon Press.
    [106].Bach W, Irber W. Rare earth element mobilit y in the ocean iclower sheet ed dykecomplex:evidence f rom geochemical data and leach ing exp eriments.Chemical Geology,1998,151(2):309~326.
    [107].Bau M, U sui A, Pracejus B, et al. Geochemistry of low—temperature water—rockinteraction:evidence f rom nature waters,and esie, and iron-oxyhydroxide precipitates at
    [108].C Moreau, D Demaiffe, Y Bellion,et al. A tectonic model for the location of Palaeozoicring complexes in A r(Niger, West Africa).Tectonophysics,1994,234(1994):129~146.
    [109].C R Acad.D'uranium d'Akouta (Republique du Niger). Sci. Paris S4r. II,1984,298:647-650.
    [110].CAZOULAT M.Geological environment of the uranium deposits in the Carboniferous andJurassic sandstones of the Western margin of the Air Mountains in the Republic ofNiger.IAEA.Geological Environment of Sandstone Type Uranium Deposits.Vienna:IAEA,1995,TECDOC—328:247~263.
    [111].Chipley D, Polito P A. Kyser T K. Measurement of U-Pb ages of uraninite and davidite bylaser ablation-HR-ICP-MS. American Mineralogist,2007,92(11-12):1925-1935.
    [112].Colella C,Aiello R, Porcelli C.Hydration as an early stage in the zeolitization of Naruralglass. In: L B Sand, F A Mumpton(ed),1978,Natural zeolites—occurrence,properties,use.Pergamon Press.
    [113].Crawley R A. Sandstone uranium deposits in the United States. U.S.Dept. of Energy.1983.
    [114].Daniel Demaiffe, Christian Moreau, William L Brown, et al. Geochemical and isotopic (Sr,Nd and Pb) evidence on the origin of the anorthosite—bearing anorogenic complexes of theA r province, Niger. Earth and Planetary Science Letters,1991,105(1991):28~46.
    [115].David A Lindsey,Reino F Clark. Copper and uranium in Pennsylvanian and Permiansedimentary rocks, northern Sangre de Cristo Range, Colorado. U.S. GPO.1995.
    [116].Dickinson K A. Geologic controls of uranium deposition, Karnes County, Texas.U.S. Geol.Surv.1976.
    [117].Faure H. Reconnaissance geologique des formations sdimentaires post-paleozo'fques duNiger Oriental.B.R.G.M.(Bur. Rech. Geol. Min.), Paris, Mem. No.47.1996.
    [118].Fehn U. Hydrothermal convection and uranium deposits in abnormally radioactiveplutons.Harvard University: Department of Geology Sciences.1978.
    [119].Forbes P, Dubessy J, Kosztolanyi C. Vibrational spectroscopy of the alteration ofmontroseite ((V,Fe)OOH): comparison with goethite and diaspore. Terra Cognita,1986,7(1):16(abstract).
    [120].Forbes P, Landais P, Pagel M,et al. Thermal evolution of the Guezouman formation in theAkouta uranium deposit (Niger). Terra Cognita.1987,7(2-3):343(abstract).
    [121].Forbes P, Landais P. Organic matter in the Akouta uranium deposit (Niger). Terra Cognita,1987,7(2-3):343-344.
    [122].Forbes P, Page M, Cazoulat M,et al. The Akouta uranium deposit (Niger), I. Geologypetrology and mineralogy. Econ. Geol.(submitted),1989.
    [123].Forbes P,Pacquet A,Chantret F,et al.Marqueurs du volcanisme dans le gisement d'uraniumd'Akouta(République du Niger). C.R.Acad.Sci.Paris,1984,298,Sér.Ⅱ,15:647~650.
    [124].G Bigotte,J M Obelliqne. Découverte de minéralisations uranifères au Niger.MineraliumDeposita,1968,3(4):317~333.
    [125].Galloway W E. Depositional and ground-water flow systems in the exploration foruranium.Bureau of Economic Geology.1979.
    [126].Galloway W E. Depositional framework, hydrostratigraphy, and uranium mineralization ofthe Oakville Sandstone (Miocene), Texas Coastal Plain.The Univ.1982.
    [127].GARY Nichols.Sedimentology and Stratigraphy.Second Edition.United Kingdom:Wiley-BlackWll,2009.
    [128].Granger H C. The Importance of dissolved free oxygen during formation of sandstone-typeuranium deposits.U.S.Geol. Surv.1979.
    [129].Harris R E. Alteration and mineralization associated with sandstone uranium occurrences,Morton Ranch area, Wyoming.The Geological Survey of Wyom.1984.
    [130].IAEA. Age, sedimentary environments, and other aspects of sandstone and related hostrocks for uranium deposits; results of correspondence from members of the IAEA UraniumGeology Working Group Project II on Sedimentary Basins and Sandstone-type.InternationalAtomic Energy Agency.1983.
    [131].IAEA. Correlation of uranium geology between South America and Africa.InternationalAtomic Energy Agency.1986.
    [132].IAEA. Geological environments of sandstonetype uranium deposits.International AtomicEnergy Agency.1985.
    [133].IAEA. Geology and recognition criteria for rolltype uranium deposits in continentalsandstones.International Atomic Energy Agency.1984.
    [134].IAEA. Uranium deposits in Africa.International Atomic Energy Agency.1979.
    [135].J D MEUNIER, P LANDAIS, M PAGEL. Experimental evidence of uraninite formationfrom diagenesis of uranium-rich organic matter. Geochemical Cosmoehimica Acfa,1990,54:809-817
    [136].J P Liégeius, R Black, J Navez,et al. Early and lage Pan—African orogenies in the A rassembly of terranes(Thareg shield, Niger). Precambrian Research,1994,67(1994):59~88.
    [137].J R Adetunji, C A Kogbe. The masstrichtian marine environment in the south—eastern flankof the Illummeden basin of West Africa. Journal of African Earth Sciences,1985,5(6):635~639
    [138].Jean—Christophe Maurin,René Guiradu. Basement control in the development of the EarlyCretaceous West and Central African Rift System. Tectonophysics,1993,228(1993):81~95.
    [139].Laurent Turpin,Norbert Clauer,Pierre Forbes,et al. U-Pb,Sm-Nd and K-Ar systematicsof the Akouta uranium deposits,Niger. Chemical Geology(Isotope Geoscience Section),1991,87(1991):217~230.
    [140].Laurent Tutpin, Norbert Clauer,Pierre Forbes,et al.U-Pb, Sm-Nd and K-Ar systematics ofthe Akouta uranium deposit, Niger. Chemical Geology (Isotope Geoscience Section),1991,87(1991):217-230.
    [141].Leventhal J S. Relative importance of organic carbon and sulfide sulfur in a Wyomingroll-type uranium deposit.U.S.Geol.Surv.1981.
    [142].Li Rongxi, WangXili. Isotope geochemistry of ore fluids for the Dongsheng sandstone typeuranium deposit,China. Chiness journal of Geochemistry,2007,26(2):114~122.
    [143].Ling Mingxing,Yang Xiaoyong,Sun Wei, et al. Ree/trace element characteristics ofsandstone type uranium deposits in the Ordos basin. Chiness journal of Geochemistry,2006,25(4):355~365.
    [144].M Fayek, J Horita, E M Ripley. The oxygen isotopic composition of uranium minerals: Areview. Ore Geology Reviews2011,41(2011):1~21.
    [145].M Harouna, J R Disnar, L Martinez, et al.Discrepancies between different organic maturityindicators in a coal series affected by an abnornnal thermal event(viséan, Niger).ChemicalGeology,1993,106(1993)397~413.
    [146].M Zanguina, A Bruneton, R G Gronnard.An introduction to the petroleun potential ofNiger.Journal of petroleum geology,1998,21(1):83~103.
    [147].MAURICE Pagel,SABINE Cavellec,Pierre Forbes,et al.Uranium deposits in the Arlit area(Niger).MAO Jingwen,Frank P.Mineral Deposit Research:Meeting the Global ChallengeProceedings of the Eighth Biennial SGA Meeting Beijing,China,2005.Berlin:Springer,Session3,303~305.
    [148].Michel Ritz, William L Brown, Christian Moreau, et al. An audiomagnetotelluric study ofthe Meugueur—Meugueur ring structure, A r, Niger: ring dyke or cone sheet?. Journal ofapplied Geophysics1996,34(1996):229~236.
    [149].Neil J Tabor,Roger M H Smith,J Sebastien Steyer,et al.The Permian Moradi Formationof northern Niger:Paleosol morphology,petrography and mineralogy.Palaeogeography,Palaeoclimatology,Palaeoecology,2011,299(2011):200~21.
    [150].P Forbes, P Landais, P Bertrand, et al. Chemical transformations of type-ill organic matterassociated with the akouta uranium deposit (niger):geological implications. Chemicalgeology,1988,71(1988)267-282.
    [151].P Unternehr, D Curie, J L Olivet, et al South Atlantic fits and intraplate boundaries in Africaand South America. Tectonophysics,1988,155(1988):169~179.
    [152].Peter M Zaborski, Noel J Morris. The late Cretaceous ammonite genus Libycoceras in thIullemmeden basin(West Africa) and its palaeogeographical significance. Cretaceous research,1991,20(1991):63~79.
    [153].R C Selley.African Basins.New York:Elsevier,1997.
    [154].R Guiraud, W Bosworth, J Thierry, et al. Phanerozoic geological evolution of Northern andCentral Africa:An overview. Journal of African Earth Sciences,2005,43(2005):83–143.
    [155].R T J Moody, P J C Sutcliffe. The Cretaceous deposits of the Iullemmeden basin of Niger,central West Africa. Cretaceous research,1991,12(1991):137~157.
    [156].RenéGuiraud,William Bosworth. Senonian basin inversion and rejuvenation of rifting inAfrica and Arabia: synthesis and implications to plate-scale tectonics.Tectonophysics,1997,282(1997):39-82.
    [157].Rich Robert A. Hydrothermal uranium deposits.Elsevier.1977.
    [158].Spangenberg J,Fontbote L,Sharp ZD,et al.Carbon and oxygen isotope study ofhydrothermal carbonates in the zinc-lead deposits of the San Vicente district,central Peru: Aquantitative modeling on mixing processes and CO2degassing.Chemica Geology,1996,133:289~315
    [159].Springer. Uranium deposits of the world.Springer.2009.
    [160].Stephen B Castor, Christopher D Henry. Geology, geochemistry, and origin of volcanicrock-hosteduranium deposits in northwestern Nevada and southeasternOregon, USA. OreGeology Reviews2000,16(2000).1–40
    [161].Sverjen sky D A.Europium equilibria in aqueous solution. Earth Pl anet Sci Let t,1984,67(1):70~78.
    [162].Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf,trace element and REE analyses. Geostandards and Geoanalytical Research,1995,19:1-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700