星星草(Puccinellia tenuiflora)解剖结构特征及重要物质组分变化与耐盐性关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫是影响全世界作物产量的主要非生物胁迫之一,如何提高作物耐盐性、有效利用盐碱土资源已经成为亟待解决的重大课题。星星草是一种广泛分布于我国北方的天然耐盐植物,在含高Na~+和高pH值的土壤中能够生长良好,其优良的耐盐碱特性使其成为植物耐盐碱胁迫研究的理想材料。
     与NaCl胁迫相比,具有高pH值的NaHCO_3胁迫对植物的影响更加复杂。本文以星星草为研究对象,以水稻品种“日本晴”为对照,利用显微、超微观察、双向电泳等研究方法和手段,不但对NaHCO_3胁迫下星星草种子萌发、幼苗生长特点、气孔特性、叶片及根的表皮结构特征进行了观察,还对星星草体内钾、钠、钙三种重要离子组分的吸收与运输特点,以及星星草根部蛋白质图谱的变化进行了系统的研究,从微观形态、离子分布及蛋白表达三个不同层面揭示了盐生植物星星草的耐盐基础。研究结果对进一步了解星星草的耐盐特性具有很实际的指导意义,而且,蛋白质水平的研究还为了解星星草对NaHCO_3胁迫的响应提供了新的线索,为我们用遗传手段进一步研究这些基因的功能奠定了重要基础。
     上述研究的主要结论如下:
     1.总体讲,星星草种子发芽率与NaHCO_3浓度成反比,NaHCO_3胁迫对星星草幼苗株高及干物重影响不明显,对水稻幼苗株高和干物重有一定的抑制作用。
     2.星星草叶表气孔长度在短时间低浓度NaHCO_3胁迫下增加,高浓度下减小;高浓度和长时间的NaHCO_3胁迫均促进气孔宽度增加,两者的作用有叠加效应;低浓度NaHCO_3胁迫即可引起水稻叶表皮的气孔长度、宽度明显下降;无盐胁迫时,星星草叶表的气孔密度是水稻的7倍多。
     3.星星草与水稻的叶表都有蜡质层存在。NaHCO_3胁迫浓度增大及胁迫天数增多均能促进蜡质层密度增加,从增加的幅度比较,星星草>水稻;星星草叶表有分泌物质存在,分泌物质随NaHCO_3胁迫浓度增大及胁迫天数增多而增加,高浓度下,星星草叶表还有盐结晶析出,水稻叶表无盐结晶或其它分泌物质出现;星星草与水稻根的表皮上都具有侧根和分泌物质,从侧根的数量比较,星星草>水稻,长时间高浓度胁迫下侧根明显收缩变细;随胁迫浓度增大或胁迫时间增长,星星草分泌物质的量增多。水稻分泌物质的量则没有表现出任何规律性的变化。
     4.对盐胁迫后星星草幼苗根部及地上部Na~+、K~+及Ca~(2+)含量进行测定的结果表明,星星草体内两种K~+吸收系统对K~+的吸收能力及星星草根部K~+/Na~+均明显高于水稻;随Na~+浓度增加,星星草相比于水稻表现出了较强的吸收与运输Ca~(2+)的能力。
     5.以蒸馏水作对照,对150mmol/L NaHCO_3和NaCl胁迫5天的星星草根部全蛋白图谱进行了分析和比较,以期从蛋白质水平上找出NaHCO_3与NaCl逆境对星星草危害不同的原因。结果表明,在约400个可重复的蛋白质点中,有13个受NaHCO_3胁迫诱导而丰度上调,3个只在NaHCO_3胁迫下出现,经质谱鉴定得到了F3H、CYP450和果糖-1,6-二磷酸醛缩酶3个与抗逆性相关的蛋白。
Soil salinity is one of the main abiotic stresses that restrict the development of agriculture worldwide.How to improve crop salt tolerance and make good use of salinity-alkalinity soil has become a significant thesis urgent to be solved.Puccinellia tenuiflora is a natural salt tolerant plant widely distributed in the north of China,and it can grow well in the soil with high Na~+ concentration and high pH.The excellelant salt and alkali tolerance of P.tenuiflora made it become the perfect material of the research on salt and alkali tolerance.
     Compared with NaC1 stress,the impact of NaHCO_3 stress with high pH on plant is more complex.In this paper,we choose P tenuiflora as experimental material and rice cultivar Nipponbare(Oryza sativa L.) as comparison.Using methods of micro and ultra-structure observation,2-D electrophoresis ect,not only seed germination,seedling growth character, stoma as well as leaf and root epidermis Character of P.tenuiflora were observed,but also the absorption and transportation Character of three important ion component K~+,Na~~ and Ca~(2+) in P.tenuiflora,and the changes of protein expression of its root were studied in detail.The purpose is to reveal the salt tolerant base of P tenuiflora from three different aspects of microstructure,ion distribution and protein expression.The result has practically instructional significance on the understanding of salt tolerant character of P.tenuiflora.Moreover,study on protein level provides new clew to the understanding on response of P.tenuiflora to NaHCO_3, and it also lays vital foundation to the further study of these genes by genetic measures.
     Main results of the above research are as follows:
     1.Generally speaking,with the increasing of NaHCO_3 concentrate,the seed germination rates of P.tenuiflora decline.Although seedling height and dry weight of P.tenuiflora were not obviously affected by NaHCO_3 stress,those of Rice were restrained under the same stress.
     2.Length of P.tenuiflora stoma increase under short time of low concentrate NaHCO_3 stress,while it decrease under high concentrate of NaHCO_3;Width of P.tenuiflora stoma increase under high concentrate or long time of NaHCO_3 stress,and the effects of the two factors can be combined with each other.Length and width of rice stoma decrease obviously under low concentrate of NaHCO_3 stress;Density of stoma on P.tenuiflora leaf epidermis is 7 times that of Rice.
     3.There are wax layers on both P.tenuiflora and rice.Density of wax layers enhances with the increasing of NaHCO_3 concentrate and stress time length,the increasing extent follows the order of P.tenuiflora>rice;There are secretion on P tenuiflora leaf epidermis, and the amount of secretion increased with the increasing of NaHCO_3 concentrate and stress time length.Salt crystal can be excluded by P.tenuiflora leaf epidermis under high concentrate of NaHCO_3 stress,while no salt crystal of secretion can be found on the leaf epidermis of rice. Lateral roots and secretion can be found on both P.tenuiflora and rice root epidermis,and the numbers of lateral roots follows the order of P.tenuiflora>rice;Lateral roots become thinner after long time of high concentrate NaHCO_3 stress.With the increasing of NaHCO_3 concentrate and stress time length,the amount of secretion on P.tenuiflora root epidermis increases,while that of rice doesnot show any changes.
     4.Na~+,K~+ and Ca~(2+) content in roots and shoots of P.tenuiflora seedlings were determined after NaHCO_3 stress.The result shows that the ability of two kind of K~+ absorption system of P.tenuiflora is both higher than rice,so does the K~+/Na~+ of P.tenuiflora roots;With the increasing of Na~+ concentrate,P.tenuiflora shows higher Ca~(2+) absorption and transportation ability than rice.
     5.Roots protein of P.tenuiflora plates under 150mmol/L concentrate of NaHCO_3 and NaC1 stress was compared with distilled water in order to find the reason why NaHCO_3 and NaC1 stress showed different harm effect on plant.The results are as follows,among about 400 protein spots,there are 13 spots increased in abundance after NaHCO_3 stress,3 spots only appear under NaHCO_3 stress.3 stress correlative proteins were obtained by MS analysis,they are F3H、CYP450 and fructose-bisphosphate aldolase.
引文
[1]Flowers TJ.Improving Crop Salt Tolerance.J Exp Bot.2004,(55):307-319
    [2]姜虎生,张常钟,韩丽娟,陆静梅.碱茅抗盐性的研究进展.长春师范学院学报,2001,20(2):51-53
    [3]徐恒刚,包纯志,葛澄明,张萍,李临杭.重度耐盐牧草星星草和朝鲜碱茅的比较研究.中国草地,1995,2(4):43-47
    [4]阎秀峰,孙国荣.星星草生理生态学研究.北京:科学出版社,2000.1-17
    [5]肖雯,张振霞,贾恢先.几种盐地植物根解剖结构的研究.甘肃农业大学学报,1998,33(6):90-93
    [6]朱宇旌,张勇等.小花碱茅根适应盐胁迫的显微结构研究.中国草地,2001,23(1):37-40
    [7]朱宇旌,张勇等.小花碱茅茎适应盐胁迫的显微结构研究.中国草地,2000,(5):6-9
    [8]朱宇旌,张勇等.小花碱茅叶适应盐胁迫的显微结构研究.中国草地,2001,23(2):19-22
    [9]陆静梅,李建东,景德章等.星星草Puccinellia tenuiflora(Turcz.)Scribn.Et Merr.解剖研究.东北师范大学自然科学学报,1994(1):63-66
    [10]朱宇旌,张勇.盐胁迫下小花碱茅超微结构的研究.中国草地,2000(4):30-32
    [11]沈禹颖.三种盐生境植物叶表的扫描电镜观察.草业学报,1997,6(3):32-36
    [12]阎顺国.碱茅叶表面超微结构的观察——碱茅不是泌盐植物的结构证据.草业学报,1997,6(3):55-59
    [13]韦存虚,王建波,陈义芳,周卫东,孙国荣.盐生植物星星草叶表皮具有泌盐功能的蜡质层.生态学报,2004,24(11):51-56
    [14]韦存虚,王建军,王建波,周卫东,孙国荣,梁建生.Na_2CO_3胁迫对星星草叶肉细胞超微结构的影响.生态学报,2006,26(1):108-114
    [15]孙国荣,阎秀峰,李晶.星星草对碱化土壤物理性质的影响.草业学报,2002,10(2):118-123
    [16]孙国荣,阎秀峰,李晶,余政哲.星星草对碱化土壤化学性质的影响.草地学报,2002,10(3):179-183
    [17]范亚文,孙国荣等.种植星星草对盐碱草地土壤养分状况的改良作用.植物研究,2001,21(4):600-604
    [18]岳中辉,于东.种植星星草对盐碱土壤氮素和磷素含量的影响.东北农业大学学报,2003,34(3):266-269
    [19]阎顺国.碱茅营养吸收对盐胁迫及渗透胁迫的反应.草业学报,1995,4(2):66-70
    [20]王锁民,朱兴运,舒孝喜.碱茅离子吸收与分配特性研究.草业学报,1994,3(1):39-43
    [21]王锁民.不同程度盐胁迫对碱茅离子吸收与分配的影响.草业学报,1996,4(3):186-93
    [22]孙国荣,阎秀峰.星星草耐盐碱生理机制的初步研究.武汉植物学研究,1997,15(2):162-166
    [23]阎秀峰,孙国荣.生长不同年数星星草光合能力的比较研究.植物生态学 报,1998,22(3):231-236
    [24]张崇邦,施时迪.碱茅土壤微生物生物量季节动态模型的研究.中国草地,2001,23(4):48-52
    [25]金兰,丁莉.盐胁迫下星星草种子萌发过程中淀粉酶活性及可溶性糖含量变化.青海师范大学学报(自然科学版),2003,(1):86-90
    [26]肖玮,金建丽等.盐胁迫下星星草种子的抗氰呼吸.哈尔滨师范大学自然科学学报,2002,15(5):65-69
    [27]孙国荣,关旸,阎秀峰.盐胁迫对星星草幼苗保护酶系统的影响.草地学报,2001,9(1):34-38
    [28]李昀,沈禹颖,阎顺国.NaCl胁迫下5种牧草种子萌发的比较研究.草业科学,1997,14(2):50-53
    [29]阎顺国,沈禹颖,任继周.盐分对碱茅种子发芽影响的机制.草地学报,1991,2(2):12-19
    [30]阎顺国,沈禹颖.生态因子对碱茅种子萌发期耐盐性影响的数量分析.植物生态学报,1996,20(5):414-422
    [31]徐安凯,姜健等.野生小花碱茅种子发芽生理研究.草原与牧草,1996(2):20-24
    [32]郝志刚,胡自治,朱兴运,碱茅耐盐性的研究,草业学报,1994,3(3):27-36
    [33]阎顺国,沈禹颖等.盐胁迫下苗期与拔节期碱茅植株生长及与离子关系的比较研究.植物生态学报,1996,20(5):404-413
    [34]郎百宁,马玉寿等.碱茅生长发育节律的研究.青海畜牧兽医杂志,1995,25(3):6-9
    [35]Strogonov B.P.,Kabanov V.V.,Shevjakova N.I.,Lapina L.P.,Komizerko E.L.,Popov B.A.,and Dostanova R.K,Structure and function of plant cells under salinity,Moscow:Nauka,1970,41-42
    [36]石德成,殷立娟,盐与碱对星星草胁迫作用的差异.植物学报,1993,35(2):144-149
    [37]刘桂丰,褚延广等.cDNA微阵列技术研究NaHCO_3胁迫下星星草基因表达谱.西北植物学报,2005,25(5):887-892
    [38]王玉成,杨传平等.差异显示技术研究了NaHCO_3胁迫下星星草基因表达.植物学通报,2005,22(3):307-312
    [39]Peng YanHui Zhu YaFang Mao YongQiang Wang SuoMin Su WeiAi Tang ZhangCheng Alkali grass resists salt stress through high[K~+]and an endodermis barrier to[Na~+].Journal of Experimental Botany.Oxford University Press,Oxford,UK:2004.55:398,939-949.39ref.
    [40]Wang SuoMin,Zhao GuiQin,Gao YongSheng,Tang ZhangCheng,Zhang ChengLie.Puccinellia tenuiflora exhibits stronger selectivity for K~+ over Na~+ than wheat.Journal of Plant Nutrition.Marcel Dekker,Inc.,Monticello,USA:2004.27(10):1841-1857.
    [41]卓仁英,陈益泰,木本植物抗涝性研究进展,林业科学研究,2001,14(2):215-222
    [42]Steudle E.,and Peterson C.,How does water get through roots? Journal of Experimental Botany,1998,49(332):775-788
    [43]Zimmol/Lermmol/Lann H.M.,and Steudle E.,Apoplastic transport across young maize root,effect of the exodermis,Planta,1998,206(1):7-19
    [44]Hans-Werner K.,Ultrastructural and physiological changes in root cells of sorghum plants (Sorghum bicolor×S.sudanensis cv.Sweet Sioux) induced by NaCl,Journal of Experimental Botany,1997,48(3):693-706
    [45]Stelzer R.,and Lfiuchli,A.Salt and flooding tolerance of Puccinellia pesonis L.,Plant physiology,1978,88:437-448
    [46]倪才英,陈英旭,骆永明,田光明.紫云英(Astragalus siniucus L.)对重金属胁迫的响应,中国环境科学,2003,23(5):503-508
    [47]Jackson M.B.,and Armstrong W.,Formation of aerenchyma and processes of plant ventilation in relation to soil flooding and submergence,Plant Biology,1999,1:274-287
    [48]Blom C.W.P.M.,Adaptations to flooding stress:from plant commol/Lunity to molecule,Plant Biol.,1999,1:261-273
    [49]Yeo A.R.,Kramer D.,Liuchli A.,and Gullasch J.,Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention of sodium,Journal of Experimental Botany,1977,28(102):17-29
    [50]Eleftheriou E.P.,Moustakas M.,and Fragiskos N.,Aluminate-lnduced changes in morphology and ultrastructure of Thinopyrum Roots,Journal of Experimental Botany,1993,44(259):427-436
    [51]李正理,旱生植物的形态和结构,生物学通报,1981,4:9-12
    [52]朱宇旌,张勇,盐胁迫下小花碱茅超微结构的研究,中国草地,2000,4:30-32,58
    [53]Anjana,Shahid U.,and Muhammol/Lad iqbal,functional and structural changes associated with cadmium in mustard plant:effect of applied sulphur,Commol/Lunications in Soil Science and Plant Analysis,2006,37;1205-1217
    [54]Chartzoulakis K.,Patakas A.,Kofidis G.,Bosabalidis A.,and Nastou A.,Water stress affects leaf anatomy,gas exchange,water relations and growth of twoavocado cultivars,Scientia Horticulturae,2002,95(1-2):39-50
    [55]Hill A.E.,Ion and water transport in Limoni um.Ⅲ Time constants of the transport system.Biochim Biophys Acta,1970,196(1):66-72
    [56]Marcum K.B.,Anderson S.J.,and Engelke M.C.,Salt gland ion secretion:a salinity tolerance mechanism among five zoysiagrass species,Crop Science,1998,38(3):806-810
    [57]Larkum AW,Hill AE.Ion and water transport in Limonium.Ⅴ.The ionic status of chloroplasts in the leaf of Limonium vulgare in relation to the activity of the salt glands,Biochim.Biophys Acta.,203:133-138
    [58]Mitsuya S.,Takeoka Y.,and Miyake H.,Effects of NaC1 on foliar ultra structure of sweet potato plantlet s grown under light and dark conditions in vitro,Plant Physiol.,2000,157: 661-667
    [59]Bruns S.,and Hecht-Buchholz C.,Light and electron-microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages,Potato Res.,1990,33:33-41
    [60]Khavari-Nejad R.A.,and Chaparzadeh N.,The effect s of NaCl and CaCl_2 on photosynthesis and growth of alfalfa plants,Photosynthetica,1998,35:461-466
    [61]Parida A.K.,Das A.B.,and Mohanty P.,Defense potentials to NaCl in a mangrove,Bruguiera parviflora:differential changes of isoforms of some antioxidative enzymes,Plant Physiology,2004,161(5):531-542
    [62]郑文菊,徐兰义,王勋陵,盐分对植物结构的影响,草业学报,1993,2(1):78-80
    [63]贾恢光,赵蔓蓉,典型盐地植物叶绿体超微结构的研究,西北植物学报,1990,10(1):70-72
    [64]Giles K.L.,Cohen D.,and Beardsell M.F.,Effect of water stress on the ultrastructure of leaf cells ofSorghu Bicolor,Plant physiology,1976,57(1):11-14
    [65]Ilker R,Waring A J,Lyons JM,and Briedenbach RW.The cytological responses of tomato seedling cotyledons to chilling and the influence of membrane modifications upon these responses.Protoplasma 1976,90,229-252.
    [66]Heber U.,Freezing injury relation to loss of enzyme activities and protection against treezing,Cryobiology,1968,5(3):188-201
    [67]Lyons J.M.,Chilling injury in plants,Annual Review of Plant Physiology,1973,24:445-466
    [68]吕芝香,赵长青,NaCl对小麦幼苗叶肉细胞超微结构的影响,武汉植物学研究,1990,8(2):122-124
    [69]Smith M M.Salt induced ultrastructrual damage to mitochondria in root tips of a Salt sensitive ecotype ofAigrostis stolonifere,Journal of Experimental Botany,1982,33(136):886-895
    [70]李军超,赵一鹗,康博文,姚支春,宁夏盐地草原常见植物同化枝解剖结构观察,西北植物学报,1989,9(3):191-196)
    [71]Wilkins M R,Sanchez J C,Gooley A A,et al.Progress with proteome projects:Why all proteins expressed by a genome should be identified and how to do it.Biotechnol Genet Eng Rev,1996,13:19-50
    [72]Yan S,Tang Z,Su W,Sun W.Proteomic analysis of salt stress-responsive proteins in rice root.Proteomics,2005,5:235-244
    [73]Salekdeh G.H,Siopongco J,Wade L J,Ghareyazie B,Bennett J.A proteomic approach to analyzing drought-and salt-responsiveness in rice.Field Crop Res,2002,76:199-2t9
    [74]阮松林 童建新 赵杭苹 植物响应逆境胁迫蛋白质组学研究进展杭州农业科技2007(2):15-18
    [75]Szabolcs I.Salt-affected soil.CRC Press,Inc.Boca Raton,Fla,1989,274
    [76]Greenway H,Munns R.Mechanism of salt tolerance in non-halophytes.Annu Rev Plant Physiol Mol Biol,1980,31:149-190
    [77]石德成,殷立娟.盐(NaCl)与碱(Na_2CO_3)对星星草胁迫作用的差异.植物学报,1993,35(2):144-149
    [78]Salekdeh G.H,Siopongco J,Wade L J,Ghareyazie B,Bennett J.A proteomic approach to analyzing drought-and salt-responsiveness in rice.Field Crop Res,2002,76:199-219
    [79]赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993.
    [80]马丁.气孔.张崇浩译.北京:科学出版社,1987:1-73.
    [81]赵瑞霞,张齐宝,吴秀英,王英.干旱对小麦叶片下表皮细胞、气孔密度及大小的影响,内蒙古农业科技,2001(6):6-7
    [82]杨建昌,乔钠圣.威尔斯,朱庆森,彭志勇.水分胁迫对叶片气孔频度、气孔导度及脱落酸含量的影响.作物学报,1995,21(5):533-539
    [83]赵姝丽,陈温福,马殿荣,赵飞.盐胁迫对水稻叶片气孔特性的影响.垦殖与稻作,2006(6):26-29
    [84]张川红,尹伟伦,沈应柏.盐胁迫对国槐与核桃气孔的影响.北京林业大学学报,2002,24(2):1-5
    [85]孟庆伟,邹琦,许长成,赵世杰,小麦和大豆叶片的气孔不均匀关闭现象,植物生理学报,1997,23(1):53-60
    [86]Terashima I,Wong SC,Osmond CB et al.Characterisation of nonuniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies.Plant Cell Physiology,1988,29:385
    [87]许大全.气孔的不均匀关闭与光合作用的非气孔限制,植物生理学通讯,1995,31(4):246-252
    [88]黄荣峰,王学臣.气孔运动机理研究进展,应用与环境生物学报,1996,2(3):320-326
    [89]Sun G R,Peng Y Z,Shao H B,et al.Do Puccinellia tenuiflora have the ability of salt exudation? Colloids and SurfacesB:Biointerfaces,2005,46:197-203.
    [90]Fahn A.Secretory tissues in vascular plants.New Phytol.,1988,108:229-257.
    [91]龚明,丁念诚,贺子义,等.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系.植物学报,1989,31(1):841-846.
    [92]Mariani C,Wolters M.Complex waxes.Plant Cell,2000,12:1795-1798.
    [93]Sieber P,Schorderet M,Ryser U,et al.TransgenicArabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusion.Plant Cel,2000,12:721-737.
    [94]Kolattukudy P E.Biosynthetic pathyways of cutin and waxes and their sensitivity to environmental stresses//G Kerstiens.Plant Cuticles.Oxford:BIOS Scientific Publishers,1996:83-108.
    [95]Chen Xinbo,Mark Goodwin S,Virginia L,et al.Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production.PlantCell,2003,15:1170-1185.
    [96]Broun P,Pointdexter P,Osborne E,et al.WIN1,a transcriptional activator of epidermal wax accumulation in Arabidopsis[J].Proc Natl Acad Sci USA,2004,101(13):4706-4711.
    [97]Monica Sturaro,Hans Hartings,Elmon Schmelzer,et al.Cloning and characterization of GLOSSY1,a maize gene involved in cuticle membrane and wax production[J].Plant Physiol,2005,138:478-489.
    [98]Reinhard Jetter,Stefanie Schaffer.Reinhard composition of the Prunus laurocerasus leaf surface.Dynamic change of the epicuticular wax film during leaf development.Plant Physiol,2001,126:1725-1737.
    [99]Haque M M,Mackill D J,Ingram K T.Inheritance of leaf epicuticular wax.content in rice.Crop Sci,1992,32:865-868.
    [100]O'Toole J C,Cruz R T,Seiber J N.Epicuticular wax and cuticular resistance in rice.Physiol Plant,1979,47:239-244.
    [101]杨秉耀,陈新芳,刘向东,郭海滨,水稻不同品种叶表面硅质细胞的扫描电镜观察,电子显微学报 2006,25(2):146-150
    [102]Wei C X,Wang J B,Chen Y F,et al.Ep icuticular wax of leaf ep idermis:a functional structure for salt excretion in a halophyte Puccinelia tenuiflora.Acta Ecologica Sinica,2004,24(11):2451-2456.
    [103]张小冰.根系分泌物及其作用,生物学教育,2004,29(11):6-7
    [104]黄立华,梁正伟,王志春,杨福,陈渊.苏打盐碱胁迫对长穗冰草幼苗生长和K~+、Na~+含量的影响,中国草地学报,2006,28(5):59-65
    [105]潘瑞炽,董愚得.植物生理学(第三版).北京:高等教育出版社,2000:29-30.
    [106]Gaxiola R A,Rao R,Sherman A,et al.The Arabidopsis thaliana proton transporters,AtNhxl and Avp1,can function in cation detoxification in yeast.Proc.Natl.Acad.Sci.USA,1999,96:1480-1485
    [107]M(a|¨)ser P,Eckelman B,Vaidyanathan R,Horie T,Fairbairn DJ,Kubo M,Yamagami M,Yamaguchi K,Nishimura M,Uozumi N,Robertson W,Sussman MR.Altered shoot/root Na~+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na~+ transporter AtHKT1.FEBS Lett 2002,531,157-161.
    [108]BLUMWAL D E.Sodium transport and salt to lerance in plants.Current Op inion in Cell Biology,2000,12:431-434.
    [109]郭瑞娣,水样中钾、钠离子检测干扰问题的探讨,江苏预防医学2005,16(10):62-63
    [110]MAATHUISF J M,SANDER S D.Mechanism of potassium absorption by higher plant roots[J].P lant P hysiol.,1996,96:158-168.。
    [111]韩宁,山东师范大学博士学位论文,盐地碱蓬液泡膜Ca~(2+)主动运输体及其在耐盐性中的作用,2005,4,20
    [112]梁滨,周青.UV-B辐射对植物类黄酮影响的研究进展.中国生态农业学报,2007,15(3):191-194
    [113]Kakani V.G.,Reddy K.R.,Zhao D.,et al.Field crop responses to ultraviolet-B radiation.Agricultural and Forest Meteorology.2003,120(1/4):191-218
    [114]Frohnmeyer H.,Staiger D.Ultraviolet-B radiation-mediated responses in plants balancing damage and protection.Plant Physiology,2003,133(4):1420-1428
    [115]B6n6dicte Charrier,Christine Leroux,Adam Kondorosi and Pascal Ratet,The expression pattern of alfalfaflavanone 3-hydroxylase promoter-gus fusion in Nicotiana benthamiana correlates with the presence of flavonoids detected in situ Plant Molecular Biology 1996,30:1153-1168.
    [116]AH-Mackerness S.,Johan C.F.,Jordan B.,et al.Early signalling componets in ultraviolet- B responses:distinct roles for different reactive oxygen species and nitric oxide.FEBS Lett.,2001,489(2):237-242
    [117]SIMONE D.CASTELLARIN,ANTONELLA PFEIFFER,PAOLO SIVILOTTI,MIRKO DEGAN,ENRICO PETERLUNGER & GABRIELE DI GASPERO,Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit Plant,Cell and Environment 2007(30),1381-1399
    [118]C C.BL(O|¨)DNER,C.GOEBEL,I.FEUSSNER,C.GATZ & A.POLLE.Warm and cold parental reproductive environments affect seed properties,fitness,and cold responsiveness in Arabidopsis thaliana progenies.Plant.Cell and Environment 2007,(30):165-175
    [119]戴素明,周程爱,谢丙炎,冯东昕,肖启明,细胞色素P450表达在植物防御反应中的作用,石河子大学学报(自然科学版),2004,22,Sup,184-187
    [120]Makoto Hashimoto,and Setsuko Komatsu.Proteomic analysis of rice seedlings during cold stress.Proteomics 2007.7,1293-1302
    [121]汤章城.植物抗逆性生理生化研究的某些进展,植物生理学通讯,1991,27(2):146-148
    [122]张晓宁,林长发,陈火英,王昊,曲志才,张宏伟,姚剑虹,沈大棱。受NaCl诱导的盐藻果糖-1,6-二磷酸醛缩酶cDNA的克隆及其在烟草中的表达,中国科学(C辑),2002,32(5):392-398
    [123]Guo Y,Qiu Q,Quintero FJ,Pardo JM,et al.Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana.Plant Cell,2004,16:435-449
    [124]Shi H,Wu S J,Zhu J K.Overexpression of a plasma membrane Na~+ /H~+ antiporter improves salt tolerance in Arabidopsis.Nature Biotech,2003,21:81-85
    [125]Ohta M,Hayashi Y.Introduction of a Na~+ /H~ + antiporter gene from A triplexgm elini confer salt tolerance to rice.FEBS Lett,2000,532(3):279-282
    [126]Jeong M,Park S,and Byun M.Improvement of Salt Tolerance in Transgenic Potato Plants by Glyceraldehyde-3 Phosphate Dehydrogenase Gene Transfer.Mol.Cells,12(2):185-189
    [127]Chen,Z.,Hong X.,Zhang,H.,Wang,Y.,et al.Disruption of the cellulose synthase gene,AtCesA8/IRx1,enhances drought and osmotic stress tolerance in Arabidopsis.Plant J,2005,43:273-283
    [128]Valeria D,William J S,Marcello D and Ron R D C.Changes in the tobacco leaf apoplast proteome in response to salt stress.Proteomics 2005,5:737-745
    [129]Bongani K N,Stephen C,William J S and Antoni R S.Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry.Proteomics,2005,5:4185-4196
    [130]Kim D,Rakwal R,Agrawal G,Jung Y,Shibato J,et al.A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf.Electrophoresis.2005,26:4521-4539
    [131]Yan S,Tang Z,Su W,Sun W.Proteomic analysis of salt stress-responsive proteins in rice root.Proteomics,2005,5:235-244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700