锂离子电池正极材料磷酸钒锂及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚阴离子型正极材料磷酸钒锂(Li3V2(PO4)3,LVP)因具有结构稳定、电化学性能优良、安全性能好等优点而备受关注。然而,由于LVP结构中的VO6八面体被PO4四而体分离,导致该材料的电导率偏低,限制了其大规模应用。本文以提高LVP材料的电化学性能为主要目标,通过包覆、掺杂等方法对其进行改性研究。结果表明:
     采用固相法、溶胶凝胶法和喷雾干燥法制备Li3V2(PO4)3/C的工艺优化结果如下:当葡萄糖用量为15 wt%时,采用固相法在700℃烧结合成的Li3V2(PO4)3/C材料电化学性能最优,且经循环后其单斜结构仍保持不变。该材料在2.5-4.5 V和3.0-4.5 V区间循环稳定性好,但容量偏低;在2.5-4.8 V和3.0-4.8 V区间循环容量高,但稳定性差。以草酸和葡萄糖为双碳源,利用溶胶凝胶法制备了Li3V2(PO4)3/C复合正极材料。当草酸和V2O5为化学计量比时,额外加入葡葡糖能显著影响Li3V2(PO4)3的电化学性能。其中,添加15 wt%的葡萄糖所得产物的电化学性能最优,在0.1 C和10C下的放电比容量分别为171.2 mAhg-1和118.9 mAh g-1,远大于不添加葡萄糖样品的比容量(145.3 mAh g-1/0.1 C和13.7 mAh g-1/10 C)。采用喷雾干燥法制备LVP/C时,添加15 wt%羧甲基纤维素钠(CMC)制备的球形Li3V2(PO4)3/C电化学性能最优。CMC的加料顺序对Li3V2(PO4)3的形貌、振实密度及电化学性能影响显著。将原料预烧后进行喷雾造粒形成的是实心球结构,即LVP/C(A);而将原料直接进行喷雾造粒形成的则是空心球结构,即LVP/C(B)。而且,当以CMC为碳源时,虽然产生了Na3V2(PO4)3、Li2NaV2(PO4)3和Li4(P2O7)等杂相,但在3.0-4.8 V间循环,其单斜结构仍能得以保持。与LVP/C(B)相比,LVP/C(A)具有更优的电化学性能和更高的振实密度。
     对Li3V2(PO4)3进行了Nb和Si的包覆改性,发现:Nb改性Li3V2(PO4)3时,Nb没有进入Li3V2(PO4)3晶格,而是以β-NbOPO4形态存在于LVP颗粒表面。Nb引入后,由于颗粒尺寸减小和电导率提高,使得Li3V2(PO4)3的电化学性能显著改善。与未改性的Li3V2(PO4)3/C相比,Nb改性的样品Li3V1.97Nb0.03(PO4)3/C在容量、倍率性能和循环稳定性等方面均有显著的改善,在低倍率(0.1 C)下可释放出高达182 mAh g-1的比容量,循环50圈后其容量保持率为84.7%;其高倍率(1 C和5 C)放电容量分别为160mAh g-1和125mAh g-1。SiO2改性Li3V2(PO4)3/C的研究表明:V在纯LVP/C和LVP/C-2Si样品中的价态均为+3价;SiO2仅包覆在Li3V2(PO4)3/C颗粒表面,并未改变Li3V2(PO4)3的单斜结构。低含量(2 wt%)SiO2的引入能显著提高Li3V2(PO4)3的电化学性能(尤其是高倍率性能),原因是SiO2包覆能有效抑制V在电解液中的溶解,提高Li3V2(PO4)3|的结构稳定性,降低电荷转移电阻。
     对Li3V2(PO4)3进行了Fe和Na的掺杂改性,发现:Fe掺杂LVP/C时,Li3-xV2-yFe2+y(PO4)3、LiFePO4和FePO4共存于体系中。与纯LVP/C相比,Fe掺杂Li3V2(PO4)3/C复合材料的容量、循环性能和倍率性能得到了明显的提高,这是因为Fe引入后,材料的颗粒尺寸减小、电荷转移电阻降低以及结构稳定性得到了提高。Na掺杂LVP对其化学行为影响显著,在3.85 V附近出现的电化学反应平台和氧化/还原峰证实了Li3-xNaxV2(PO4)3或其它一些含Na+的电化学活性物质的存在。
     采用两步固相烧结法制备了一系列不同V掺杂量的LiFe1-xVxPO4/C(x=0,0.03,0.05,0.07,0.10,0.20,0.50,1.00)样品。结果表明,V掺杂能显著提高LiFePO4的电化学性能。当V掺杂量为5 at%时,材料的电化学性能最优,在5.0 C下循环50圈后仍能释放出高达129 mAh g-1的比容量,且在所有倍率下的容量保持率均高于97.5%。XAS分析表明,LiFe0.95V0.05PO4/C样品中V的价态介于+3和+4价之间。当V含量较低时(x≤0.03),V能进入LiFePO4晶格;而当V含量较高时(0.05As polyanion cathode material for lithium ion batteries, lithium vanadium phosphate (Li3V2(PO4)3, LVP) has attracted much attention due to the stable structure, excellent electrochemical performance and high safety. However, the poor intrinsic electronic conductivity of LVP, resulting from the separation of VO6 octahedra by PO4 tetrahedra in their structures, limits its practical application in lithium-ion batteries. This paper presents a thorough study of modification on LVP by doping and coating, with the purpose to improve their electrochemical performances. The results are as follows:
     Li3V2(PO4)3/C (LVP/C) composites were successfully synthesized via solid-state reaction, sol-gel process and spray-drying process, and the process parameters had been optimized. For solid-state reaction, the LVP/C composite with 15 wt% glucose as carbon source and sintered at 700℃, showed the best electrochemical performance, and also exhibited a stable monoclinic structure after cycling. This cathode material exhibited good cycle stability but low capacity when cycling between 2.5-4.5 V and 3.0-4.5 V; whereas showed high capacity but poor cycle stability when cycling between 2.5-4.8 V and 3.0-4.8 V. For sol-gel process, glucose, as a second carbon sources, has significant influence on the electrochemical performance of LVP when oxalic acid and V2O5 are in a stoichiometric ratio. The LVP/C sample prepared with 15 wt% glucose exhibits the best electrochemical performance with discharge capacity as high as 171.2 mAh g-1 at 0.1 C and 118.9 mAh g-1 at 10 C, which is much higher than that for the LVP/C sample without glucose (145.3 mAh g-1/0.1 C and 13.7 mAh g-1/10C). For spray-drying process, the effect of the amount and addition sequence of CMC on the performance of LVP was investigated. The LVP/C sample prepared with 15 wt% CMC exhibits the best electrochemical performance. Controllable spherical LVP/C composites were obtained, i.e., solid spherical particles for LVP/C(A) prepared by adding CMC after pre-sintering, and hollow spherical particles for LVP/C(B) prepared by adding CMC before pre-sintering. XRD results reveal that some impurities, such as Na3V2(PO4)3, Li2NaV2(PO4)3 and Li4(P2O7), appear when sodium salt of caboxy methyl cellulose (CMC) acts as carbon source, but the monoclinic structure of LVP remains after cycling between 3.0 and 4.8 V. Compared to LVP/C(B), LVP(A) presents better electrochemical performance at any C-rate and higher tap density.
     The effect of niobium and silicon coating on the electrochemical performance and mechanism of LVP was studied. Our results show that, for Nb-incorporated LVP, (3-NbOPO4 existed on the surface of LVP particles, rather than doped into the crystal lattice. The particle size is reduced and the electrical conductivity is enhanced for LVP after Nb-incorporation, therefore, electrochemical performance of LVP is remarkably improved. Compared with pristine LVP/C, the Li3V1-xNbxPO4)3/C (x=0.03) composite shows significant improvement in capacity, rate capability and cyclability, which delivers an initial discharge capacity as high as 182 mAh g-1 at 0.1 C with a capacity retention ratio of 84.7% after 50 cycles, and an excellent rate-capability of 160 mAh g-1 at 1 C and 125 mAh g-1 at 5 C. For SiO2modified LVP, the valence of V in both the pristine and SiO2-coated LVP are close to+3.SiO2 coating on the surface of LVP particles does not change the monoclinic structure of LVP. Furthermore, the electrochemical performance of LVP/C, especially high C-rate performance, can be significantly improved by low-level (2 wt%) SiO2 coating, which can suppress vanadium dissolution in the electrolyte, improve structural stability and reduce charge-transfer resistance.
     The effect of Fe and Na doping on the electrochemical performance and mechanism of LVP was also investigated. The experimental results show that, for Fe-doped LVP, Li3-xV2-yFe2+y(PO4)3, LiFePO4 and FePO4 co-exist in the Fe-doped LVP/C composite. Compared with pristine LVP/C, significant improvement in capacity, cycling stability and rate capability in LVP/C-Fe are achieved, which is attributed to reduced particle size, decreased charge-transfer resistance and enhanced structural stability of LVP. For Na-doped LVP, Na shows a notable effect on electrochemical behavior of LVP cathode material. The charge/discharge plateaus and the anodic/cathodic peaks around 3.85 V for LVP/C(A) and LVPC(B) electrodes confirmed the existence of Li3-xNaxV2(PO4)3 or some other electrochemically-active composites containing Na-
     A series of LiFe1-xVxPO4/C(x= 0.0.03,0.05,0.07,0.10.0.20.0.50,1.00) samples have been successfully prepared using a two-step solid-state reaction route. It is found that V-incorporation significantly enhances the electrochemical performance of LFP. Particularly, the LFP/C sample with 5 at% vanadium exhibited the best performance, i.e. a specific discharge capacity of 129 mAh g-1 at 5.0 C after 50 cycles and all capacity retention ratio was above 97.5% at C-rate from 0.1 to 5.0 C. X-ray absorption spectroscopy (XAS) results showed that the valence of V in LiFe1-xVxPO4/C (x= 0.05) is between+3 and+4. It was confirmed that the samples with x≤0.03 are in single phase while the samples with 0.05≤x<1.00 contain two impurity phases:Li3V2(PO4)3 and LiVOPO4.
引文
[1]吴宇平,戴晓兵,马军旗,程预江.锂离子二次电池.北京:化学工业出版社,2002.
    [2]郭炳锟,李新海,杨松青.化学电源—电池原理及制造技术.长沙:中南工业大学出版社,2000.
    [3]郭炳混,徐徽,王先友,肖立新.锂离子电池.长沙:中南大学出版社,2002.
    [4]Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LiACoO2 (0<x<-1):A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980,15:783-789.
    [5]Carlier D, Van der Ven A, Delmas C, Ceder G. First-principles investigation of phase stability in the O2-LiCoO2 system. Chemistry of Materials,2003,15:2651-2660.
    [6]Thackeray M M, David W I F. Bruce P G, Goodenough J B. Lithium insertion into manganese spinels. Materials Research Bulletin,1983,18:461-472.
    [7]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society,1997,144(4):1188-1194.
    [8]王连亮,马培华,李法强,诸葛芹.锂离子电池正极材料LiFePO4的结构和电化学反应机理.化学通报,2008,71(1):17-23.
    [9]于锋,张敬杰,王昌胤,袁静,杨岩峰,宋广智.锂离子电池正极材料的晶体结构及电化学性能.化学进展,2010,22(1):9-18.
    [10]Yuan L X, Wang, Z H, Zhang W X, Hu X L, Chen J T, Huang Y H, Goodenough J B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy &. Environmental Science,2011,4:269-284.
    [11]Huang Y H, Goodenough J B. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chemistry of Materials,2008,20: 7237-7241.
    [12]Wang G, Liu H. Liu J. Qiao S, Lu G M, Munroe P, Ahn H. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Advanced Materials,2010,22(42):4944-4948.
    [13]Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4. Journal of Power Sources,2001,97-98:498-502.
    [14]Ravet N, Chouinard Y, Magnan J F, Besner S, Gauthier M, Armand M. Electroactivity of natural and synthetic triphylite. Journal of Power Sources,2001, 97-98:503-507.
    [15]Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochimica Acta,2001,46:3517-3523.
    [16]Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. Journal of The Electrochemical Society,2005,152(3): A607-A610.
    [17]Oh S W, Myung S T, Oh S M, Yoon C S, Amine K, Sun Y K. Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries. Electrochimica Acta,2010, 55:1193-1199.
    [18]Wang L, Liang G C, Ou X Q, Zhi X K, Zhang J P, Cui J Y. Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. Journal of Power Sources,2009,189:423-428.
    [19]余红明,郑威,曹高劭,赵新兵.优化碳包覆对正极材料LiFePO4/C高倍率性能的影响.物理化学学报,2009,25(11):2186-2190.
    [20]Kadoma Y, Kim J M, Abiko K. Ohtsuki K, Ui K, Kumagai N. Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochimica Acta.2010,55:1034-1041.
    [21]Liu Y, Cao C. Li J. Enhanced electrochemical performance of carbon nanospheres-LiFePO4 composite by PEG based sol-gel synthesis. Flectrochimica Acta. 2010.55:3921-3926.
    [22]Xu Y, Lu Y, Yan L, Yang Z, Yang R. Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials. Journal of Power Sources,2006,160:570-576.
    [23]曹雁冰,胡国荣,杜柯,彭忠东,唐春,张罗虎.多元醇还原法合成锂离子电池正极材料LiFePO4无机化学学报,2010,26:1061-1065.
    [24]Huang Y, Ren H, Yin S, Wang Y, Peng Z, Zhou Y. Synthesis of LiFePO4/C composite with high-rate performance by starch sol assisted rheological phase method. Journal of Power Sources,2010,195:610-613.
    [25]Yang X L, Mou F, Zhang L L, Peng G, Dai Z X, Wen Z Y. Enhanced rate performance of two-phase carbon coated LiFePO4/(C+G) using natural graphite as carbon source, Journal of Power Sources,2012,204:182-186.
    [26]Li X, Kang F, Bai X, Shen W. A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications,2007,9:663-666.
    [27]Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochemistry Communications,2010,12:10-13.
    [28]Croce F. Epifanio A D', Hassoun J. Deptula A, Olczac T, Scrosati B. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters,2002,5(3):A47-A50.
    [29]Park K S, Son J T, Chung H T, Kim S J, Lee C H, Kang K T, Kim H G. Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Communications,2004,129:311-314.
    [30]Li Y D, Zhao S X, Nan C W, Li B H. Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery. Journal of Alloys and Compounds, 2011.509:957-960.
    [31]Yao J. Wu F. Qiu X, Li N, Su Y. Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material. Electrochimica Acta.2011.56: 5587-5592.
    [32]Jin Y, Yang C P, Rui X H, Cheng T, Chen C H. V2O3 modified LiFePO4/C composite with improved electrochemical performance. Journal of Power Sources,2011,196: 5623-5630.
    [33]Cui Y, Zhao X, Guo R. High rate electrochemical performances of nanosized ZnO and carbon co-coated LiFePO4 cathode. Materials Research Bulletin,2010,45: 844-849.
    [34]Cui Y, Zhao X, Guo R. Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating. Journal of Alloys and Compounds,2010,490: 236-240.
    [35]Chang H H, Chang C C, Su C Y, Wu H C, Yang M H, Wu N L. Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. Journal of Power Sources,2008,185:466-472.
    [36]Liu H, Wang G X, Wexler D, Wang J Z, Liu H K. Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochemistry Communications,2008,10:165-169.
    [37]Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. Journal of The Electrochemical Society,2001,148(3):A224-229.
    [38]Gaberscek M, Dominko R, Jamnik J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochemistry Communications,2007,9:2778-2783.
    [39]Dominko R, Goupil J M, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J. Impact of LiFePO4/C composites porosity on their electrochemical performance. Journal of The Electrochemical Society,2005,152(5):A858-A863.
    [40]Doherty C M, Caruso R A, Smarsly B M, Drummond C J. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chemistry of Materials,2009,21:2895-2903.
    [41]Qian J, Zhou M, Cao Y. Ai X. Yang H. Template-Free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. Journal of Physical Chemistry C,2010,114:3477-3482.
    [42]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials,2002,1:123-128.
    [43]Herle P S, Ellis B, Coombs N, Nazar L F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials,2004,3:147-152.
    [44]Liu H, Li C, Cao Q, Wu Y P, Holze R. Effects of heteroatoms on doped LiFePO4/C composites. Journal of Solid State Electrochemistry,2008,12:1017-1020.
    [45]Chung S Y, Chiang Y M. Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochemical and Solid-State Letters,2003,6(12):A278-A281.
    [46]Mi C H, Zhang X G, Li H L. Electrochemical behaviors of solid LiFePO4 and Li0.99Nb0.01FePO4 in Li2SO4 aqueous electrolyte. Journal of Electroanalytical Chemistry,2007,602:245-254.
    [47]Roberts M R, Vitins G, Owen J R. High-throughput studies of Li1-xMgx'2FePO4 and LiFe1-yMgyPO4 and the effect of carbon coating. Journal of Power Sources,2008,179: 754-762.
    [48]Abbate M, Lala S M, Montoro L A, Rosolen J M. Ti-, Al-, and Cu-Doping induced gap states in LiFePO4 [J]. Electrochemical and Solid-State Letters,2005,8(6): A288-A290.
    [49]Lee K T, Lee K S. Electrochemical properties of LiFe0.9Mn0.1PO4/Fe2P cathode material by mechanical alloying. Journal of Power Sources,2009,189:435-439.
    [50]Wen Y, Zeng L, Tong Z, Nong L, Wei W. Structure and properties of LiFe0.9V0.1PO4. Journal of Alloys and Compounds,2006,416:206-208.
    [51]Yang M R, Ke W H. The Doping Effect on the electrochemical properties of LiFe0.95M0.05PO4 (M=Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells. Journal of the Electrochemical Society.2008,155(10):A729-A732.
    [52]Sun C S. Zhou Z. Xu Z G, Wang D G,Wei J P. Bian X K, Yan J. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. Journal of Power Sources, 2009,193:841-845.
    [53]Ma J, Li B, Du H, Xu C, Kang F. The effect of Vanadium on physicochcmical and electrochemical performances of LiFePO4 cathode for lithium battery. Journal of The Electrochemical Society,2011,158(1):A26-A32.
    [54]Galinetto P, Mozzati M C, Grandi M S, Bini M, Capsoni D, Ferrari S, Massarotti V. Phase stability and homogeneity in undoped and Mn-doped LiFePO4 under laser heating. Journal of Raman Spectroscopy.2010,41(10),1276-1282.
    [55]Bo Pei, Qiang Wang, Weixin Zhang, Zeheng Yang, Min Chen. Enhanced performance of LiFePO4 through hydrothermal synthesis coupled ith carbon coating and cupric ion doping. Electrochimica Acta,2011,56:5667-5672.
    [56]Yang R, Song X, Zhao M, Wang F. Characteristics of Li0.98Cu0.01FePO4 prepared from improved co-precipitation. Journal of Alloys and Compounds,2009,468:365-369.
    [57]Gao H, Jiao L, Peng W, Liu G, Yang J, Zhao Q, Qi Z, Si Y, Wang Y, Yuan H. Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site. Electrochimica Acta,2011,56:9961-9967.
    [58]Ma J, Li B, Du H, Xu C, Kang F. Effects of tin doping on physicochemical and electrochemical performances of LiFe1-xSnxPO4/C (0≤x≤0.07) composite cathode materials. Electrochimica Acta,2011.56:7385-7391.
    [59]Yang J, Bai Y, Qing C, Zhang W. Electrochemical performances of Co-doped LiFePO4/C obtained by hydrothermal method. Journal of Alloys and Compounds, 2011,509:9010-9014.
    [60]Liu H, Xie J. Synthesis and characterization of LiFe0.9Mg0.1PO4/nano-carbon webs composite cathode. Journal of Materials Processing Technology,2009,209:477-481.
    [61]Wang C, Hong J. Ionic-electronic conducting characteristics of LiFePO4 cathode materials. The determining factors for high rate performance. Electrochemical and Solid-State Letters,2007.10(3):A65-A69.
    [62]Li L, Li X. Wang Z. Wu L. Zheng J. Guo H. Stable cycle-life properties of Ti-doped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method. Journal of Physics and Chemistry of Solids,2009,70:238-242.
    [63]Xie H, Zhou Z. Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery. Electrochimica Acta,2006,51: 2063-2067.
    [64]Ying J, Lei M, Jiang C, Wan C, He X, Li J, Wang L, Ren J. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries. Journal of Power Sources,2006,158:543-549.
    [65]Wu Z J, Yue H F, Li L S, Jiang B F, Wu X R, Wang P. Synthesis and electrochemical properties of multi-doped LiFePO4/C prepared from the steel slag. Journal of Power Sources,2010,195:2888-2893.
    [66]Pang L, Zhao M, Zhao X, Chai Y. Preparation and electrochemical performance of Gd-doped LiFePO4/C composites. Journal of Power Sources,2012,201:253-258.
    [67]Chung S Y, Kim J G, Kim Y M, Lee Y B. Three-dimensional morphology of iron phosphide phases in a polycrystalline LiFePO4 matrix. Advanced Materials,2011,23: 1398-1403.
    [68]Zhang Q, Wang S, Zhou Z, Ma G, Jiang W, Guo X, Zhao S. Structural and electrochemical properties of Nd-doped LiFePO4/C prepared without using inert gas. Solid State Ionics,2011,191:40-44.
    [69]Wang Y, Yang Y, Hu X, Yang Y, Shao H. Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries. Journal of Alloys and Compounds,2009,481:590-594.
    [70]Hong J, Wang C S, Chen X, Upreti S, Whittingham M S. Vanadium modified LiFePO4 cathode for Li-ion batteries. Electrochemical and Solid-State Letters,2009, 12(2):A33-A38.
    [71]Huang Y H, Park K S, Goodenough J B. Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrolc. Journal of The Electrochemical Society.2006, 153(12):A2282-A2286.
    [72]Chen W M. Qie L. Yuan L X. Xia S A. Hu X L, Zhang W X. Huang Y H. Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode. Electrochimica Acta,2011,56:2689-2695.
    [73]Boyano I, Blazquez J A, Meatza I de, Bengoechea M, Miguel O, Grande H, Huang Y, Goodenough J B. Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. Journal of Power Sources,2010,195: 5351-5359.
    [74]Wang G X, Yang L, Chen Y, Wang J Z, Bewlay S, Liu H K. An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochimica Acta,2005,50:4649-4654.
    [75]Fedorkova A, Orinakova R, Orinak A, Heile A, Wiemhofer H D, Arlinghaus H F. Electrochemical and TOF-SIMS investigations of PPy/PEG-modified LiFePO4 composite electrodes for Li-ion batteries. Solid State Sciences,2011,13(5):824-830.
    [76]Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K. Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature. Solid State Ionics,2000,135:137-142.
    [77]Huang H, Yin S C, Kerr T, Taylor N, Nazar L F. Nanostructured Compositions:A high capacity, fast rate Li3V3(PO4)3/carbon cathode for rechargeable lithium batteries. Advanced Materials,2002,14(21):1525-1528.
    [78]Li Y, Zhou Z, Ren M, Gao X, Yan J. Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method. Electrochimica Acta,2006,51:6498-6502.
    [79]Pan A, Liu J, Zhang J G, Xu W, Cao G, Nie Z, Arey B W, Liang S. Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochemistry Communications,2010,12:1674-1677.
    [80]Du X, He W, Zhang X, Yue Y. Liu H, Zhang X. Min D. Ge X, Du Y. Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres. Journal of Materials Chemistry.2012,22,5960-5969.
    [81]Patoux S, Wurm C. Morerette M. Rousse G. Masquelier C. A-comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and LisV2(PO4)3. Journal of Power Sources,2003,119-121:278-284.
    [82]Chang C, Xiang J, Shi X, Han X, Yuan L, Sun J. Hydrothermal synthesis of carbon-coated lithium vanadium phosphate. Electrochimica Acta,2008,54:623-627.
    [83]Rui X H, Li C, Chen C H. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochimica Acta, 2009,54:3374-3380.
    [84]Wang L, Zhang L C, Lieberwirth I, Xu H W, Chen C H. A Li3V2(PO4)3/C thin film with high rate capability as a cathode material for lithium-ion batteries. Electrochemistry Communications,2010,12:52-55.
    [85]Zhou X, Liu Y, Guo Y. Effect of reduction agent on the performance of LisV2(PO4)3/C positive material by one-step solid-state reaction. Electrochimica Acta,2009,54: 2253-2258.
    [86]Ren M M, Zhou Z, Gao X P, Peng W X, Wei J P. Core-shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. Journal of Physical Chemistry C,2008,112:5689-5693.
    [87]Wang L, Zhou X, Guo Y. Synthesis and performance of carbon-coated Li3V2(PO4)3 cathode materials by a low temperature solid-state reaction. Journal of Power Sources, 2010,195:2844-2850.
    [88]Yu F, Zhang J, Yang Y, Song G. Preparation and electrochemical performance of Li3V2(PO4)3/C cathode material by spray-drying and carbothermal method. Journal of Solid State Electrochemistry,2010,14:883-888.
    [89]Qiao Y Q, Tu J P, Mai Y J, Cheng L J, Wang X L, Gu C D. Enhanced electrochemical performances of multi-walled carbon nanotubes modified Li3V2(PO4)3/C cathode material for lithium-ion batteries. Journal of Alloys and Compounds,2011,509:7181-7185.
    [90]Liu H, Gao P, Fang J, Yang G. Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chemical Communications.2011.47:9110-9112.
    [91]Zhang Y, Lv Y, Wang L, Zhang A, Song Y, Li G. Synthesis and electrochemical properties of Li3V2(PO4)3/MWCNTs composite cathodes. Synthetic Metals, 2011,161(19-20):2170-2173.
    [92]Zhong S, Wang J, Liu L, Liu J, Li Y. Investigations on the synthesis and electrochemical performance of Li3V2(PO4)3/C by different methods. Ionics,2010,16: 117-121.
    [93]Rui X H, Ding N, Liu J, Li C, Chen C H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochimica Acta,2010, 55:2384-2390.
    [94]Rui X H, Li C, Liu J, Cheng T, Chen C H. The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol-gel route. Electrochimica Acta, 2010,55:6761-6767.
    [95]Jiang T, Pan W, Wang J, Bie X, Du F, Wei Y, Wang C, Chen G. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method. Electrochimica Acta,2010,55:3864-3869.
    [96]Wang J, Zhang X, Liu J, Yang G, Ge Y, Yu Z, Wang R, Pan X. Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source. Electrochimica Acta,2010,55:6879-6884.
    [97]Qiao Y Q, Tu J P, Wang X L, Gu C D. The low and high temperature electrochemical performances of Li3V2(PO4)3//C cathode material for Li-ion batteries. Journal of Power Sources,2012,199:287-292.
    [98]Wang J, Liu J, Yang G, Zhang X, Yan X, Pan X, Wang R. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochimica Acta,2009,54:6451-6454.
    [99]Qiao Y Q. Wang X L, Xiang J Y, Zhang D, Liu W L, Tu J P. Electrochemical performance of Li3V2(PO4)3/C cathode materials using stcaric acid as a carbon source. Electrochimica Acta.2011.56:2269-2275.
    [100]Zheng J. Li X, Wang Z, Niu S. Liu D. Wu L. Li L, Li J, Guo H. Novel synthesis of LiFePO4-Li3V2(PO4)3 composite cathode material by aqueous precipitation and lithiation. Journal of Power Sources,2010,195:2935-2938.
    [101]Wang L, Tang Z, Ma L, Zhang X. High-rate cathode based on Li3V2(PO4)3/C composite material prepared via a glycine-assisted sol-gel method. Electrochemistry communications,2011,13:1233-1235.
    [102]Arumugam D, Kalaignan G P. Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries. Journal of Electroanalytical Chemistry,2008,624:197-204.
    [103]Fan Y, Wang J, Tang Z, He W, Zhang J. Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochimica Acta,2007,52:3870-3875.
    [104]Chang W, Choi J W, Im J C, Lee J K. Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries. Journal of Power Sources,2010,195:320-326.
    [105]Liu H, Cheng C, Hu Z, Keli Zhang. The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries. Materials Chemistry and Physics,2007,101:276-279.
    [106]Tu J, Zhao X B, Xie J, Cao G S, Zhuang D G, Zhu T J, Tu J P. Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries. Journal of Alloys and Compounds,2007,432:313-317.
    [107]Moon S M, Chang W, Byun D, Lee J K. Comparative studies on ZnO-coated and uncoated LiCoO2 cycled at various rates and temperatures. Current Applied Physics, 2010,10(4):e122-e126.
    [108]Ha H W, Yun N J. Kim K. Improvement of electrochemical stability of LiMn:O4 by CeO2 coating for lithium-ion batteries. Electrochimica Acta.2007,52:3236-3241.
    [109]Wu F. Wang M, Su Y. Bao L. Chen S. Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2-coating. Electrochimica Acta.2009,54:6803-6807
    [110]Ha H W. Jeong K H. Yun N J. Hone M Z. Kim K. Effects of surface modification on the cycling stability of LiNi0.8Co0.2O2 electrodes by CeO2 coating. Electrochimica Acta, 2005,50:3764-3769.
    [111]Zhang Z R, Liu H S, Gong Z L, Yang Y. Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials. Journal of Power Sources,2004,129:101-106.
    [112]Wu F, Wang M, Su Y, Chen S, Xu B. Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2. Journal of Power Sources,2009,191:628-632.
    [113]Fey G T K, Lu C Z, Kumar T P, Chang Y C. TiO2 coating for long-cycling LiCo02: A comparison of coating procedures. Surface and Coatings Technology,2005,199(1): 22-31.
    [114]Walz K A, Johnson C S, Genthe J, Stoiber L C, Zeltner W A, Anderson M A, Thackeray M M. Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings. Journal of Power Sources,2010,195:4943-4951.
    [115]Hu S K, Cheng G H, Cheng M Y, Hwang B J, Santhanam R. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Journal of Power Sources,2009,188:564-569.
    [116]Wu H M, Belharouak I, Abouimrane A, Sun Y K, Amine K. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. Journal of Power Sources.2010.195:2909-2913.
    [117]Hwang B J, Chen C Y, Cheng M Y, Santhanam R. Ragavendran K. Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. Journal of Power Sources,2010,195:4255-4265.
    [118]Huang Y. Chen J, Ni J, Zhou H. Zhang X. A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. Journal of Power Sources.2009.188:538-545.
    [119]Liu G Q. Kuo H. Liu R S, Shen C H. Shy I) S, Xing X K, Chen J M. Study of electrochemical properties of coating ZrO; on LiCoO2. Journal of Alloys and Compounds,2011,496:512-516.
    [120]Lee S M, Oh S H, Cho W Ⅱ, Jang H. The effect of zirconium oxide coating on the lithium nickel cobalt oxide for lithium secondary batteries. Electrochimica Acta,200,6, 52:1507-1513.
    [121]Lee S M, Oh S H, Ahn J P, Cho Won Ⅱ, H J. Electrochemical properties of ZrO2-coated LiNio.sCo0.2O2 cathode materials. Journal of Power Sources,2006,159: 1334-1339.
    [122]Oh S, Lee J K, Byun D, Cho W I, Cho B W. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. Journal of Power Sources,2004,132:249-255.
    [123]Liu L, Wang Z, Li H, Chen L, Huang X. Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics,2002,152-153:341-346.
    [124]Lee S W, Kim K S, Moon H S, Kim H J, Cho B W, Cho Won-Ⅱ, Ju J B, Park J W. Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery. Journal of Power Sources,2004,126: 150-155.
    [125]Xiang J, Chang C, Yuan L, Sun J. A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery. Electrochemistry Communications,2008,10:1360-1363.
    [126]Huang Y, Chen J, Cheng F, Wan W, Liu W, Zhou H, Zhang X. A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process. Journal of Power Sources, 2010,195:8267-8274.
    [127]Kim Y, Kim H S, Martin S W. Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries. Electrochimica Acta.2006,52:1316-1322.
    [128]Fey G T K, Muralidharan P, Cho Y D. Synthesis and electrochemical studies or. Al2O3 coated LiNi0.5Co0.44Fe0.06VO4 for lithium ion batteries. Journal of Power Sources,2006,160:1294-1301.
    [129]Fey G T K, Muralidharan P, Lu C Z, Cho Y D. Surface modification of LiNi0.8Co0.2O2 with La2O3 for lithium-ion batteries. Solid State Ionics,2005,176: 2759-2767.
    [130]Fey G T K, Muralidharan P, Lu C Z, Cho Y D. Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2 Electrochimica Acta,2006, 51:4850-4858.
    [131]Kweon H J, Kim S J, Park D G. Modification of LixNi1-yCoyO2 by applying a surface coating of MgO. Journal of Power Sources,2000,88:255-261.
    [132]Sahan H, Goktepe H, Patat S, Ulgen A. Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ionics,2010,181:1437-1444.
    [133]Wu F, Wang M, Su Y, Chen S. Surface modification of LiCo1/3Ni1/3Mn1/3O2 with Y2O3 for lithium-ion battery. Journal of Power Sources,2009,189:743-747.
    [134]Zhai J, Zhao M, Wang D, Qiao Y. Effect of MgO nanolaycr coated on Li3V2(PO4)3/C cathode material for lithium-ion battery. Journal of Alloys and Compounds,2010,502: 401-406.
    [135]Morgan D, Ceder G, Saidi M Y, Barker J, Swoycr J, Huang H, Adamson G. Experimental and computational study of the structure and electrochemical properties of monoclinic LiAM2(PO4)3 compounds. Journal of Power Sources,2003,119-121: 755-759.
    [136]Ren M, Zhou Z, Li Y, Gao X P, Yan J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Journal of Power Sources,2006.162:1357-1362.
    [137]Chen Y, Zhao Y. An X. Liu J, Dong Y, Chen L. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochimica Acta.2009.54:5844-5850.
    [138]Zhong S. Zhao B. Li Y. Liu Y, Liu J. Li F. Synthesis and Electrochemical Properties of Cr-doped Li3V2(PO4)3 Cathode Materials for Lithium-ion Batteries. Journal of Wuhan University of Technology-Materials Science Edition,2009,24(3):343-346.
    [139]Dai C, Chen Z, Jin H, Hu X. Synthesis and performance of Li3(Vi1-xMgx)2(PO4)3 cathode materials. Journal of Power Sources,2010,195:5775-5779.
    [140]Huang J S, Yang L, Liu K Y, Tang Y F. Synthesis and characterization of Li3V(2-2x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries. Journal of Power Sources,2010,195:5013-5018.
    [141]Jiang B, Hu S, Wang M, Ouyang X, Gong Z. Synthesis and electrochemical performance of La-doped Li3V2-xLax(PO4)3 cathode materials for lithium batteries. Rare Metals,2011,30(2):115-119.
    [142]Kuang Q, Zhao Y, An X, Liu J, Dong Y, Chen L. Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochimica Acta,2010,55:1575-1581.
    [143]Dong Y Z, Zhao Y M, Duan H. The effect of doping Mg2+on the structure and electrochemical properties of Li3V2(PO4)3 cathode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry,2011,660:14-21.
    [144]Kuang Q, Zhao Y, Liang Z. Synthesis and electrochemical properties of Na-doped Li3V2(PO4)3 cathode materials for Li-ion batteries. Journal of Power Sources,2011,196:10169-10175.
    [145]Deng C, Zhang S, Yang S Y, Gao Y, Wu B, Ma L, Fu B L, Wu Q, Liu F L. Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries. Journal of Physical Chemistry C,2011,115: 15048-15056.
    [146]Sun C, Rajasekhara S, Dong Y, Goodenough J B. Hydrothermal Synthesis and Electrochemical Properties of Li3V2(PO4)3/C Based Composites for Lithium-ion Batteries. ACS Applied Materials Interfaces,2011,3(9):3772-3776.
    [147]Ai D, Liu K. Lu Z, Zou M, Zeng D, Ma J. Aluminothermal synthesis and characterization of Li3V2-xAlx(PO4)3 cathode materials for lithium ion batteries. Electrochimica Acta,2011,56:2823-2827.
    [148]Bini M, Ferrari S, Capsoni D, Massarotti V. Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochimica Acta,2011,56:2648-2655.
    [149]Xia Y, Zhang W, Huang H, Gan Y, Li C, Tao X. Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Materials Science and Engineering B,2011,176:633-639.
    [150]Mateyshina Y G, Uvarov N F. Electrochemical behavior of Li3-xM'xV2-yM"y(PO4)3 (M'= K, M"=Sc, Mg+Ti)/C composite cathode material for lithium-ion batteries. Journal of Power Sources,2011,196:1494-1497.
    [151]Yan J, Yuan W, Tang Z Y, Xie H, Mao W Fe, Ma L. Synthesis and electrochemical performance of Li3V2(PO4)3-xClx/C cathode materials for lithium-ion batteries. Journal of Power Sources,2012,209:251-256.
    [152]Morgan D, Ceder G, Saidi M Y, Barker J, Swoyer J, Huang H, G. Adamson. Experimental and Computational Study of the Structure and Electrochemical Properties of Li3V2(PO4)3 Compounds with the Monoclinic and Rhombohcdral Structure. Chemistry of Materials,2002,14:4684-4693.
    [153]Saidi M Y, Barker J, Huang H, Swoyer J L, Adamson G. Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries. Electrochemical and Solid-State Letters,2002,5(7):A149-A151.
    [154]Yin S C, Grondey H, Strobel P, Hunag H, Nazar L F. Electrochemical Property: Structure Relationships in Monoclinic Li3-yV2(PO4)3. Journal of the American Chemical Society,2003,125(34):10402-10411.
    [155]Qiao Y Q. Tu J P, Xiang J Y, Wang X L. Mai Y J, Zhang D, Liu W L. Effects of synthetic route on structure and electrochemical performance of Li3V2(PO4)3/C cathode materials. Electrochimica Acta,2011,56:4139-4145.
    [156]Pan A, Choi D, Zhang J G, Liang S, Cao G, Nie Z, Arcy B W. Liu J. High-rate cathodes based on Li3V2(PO4)3 nanobelts prepared via surfactant-assisted fabrication. Journal of Power Sources.2011.196:3646-3649.
    [157]Huang B, Fan X, Zheng X, Lu M. Synthesis and rate performance of lithium vanadium phosphate as cathode material for Li-ion batteries. Journal of Alloys and Compounds,2011,509:4765-4768.
    [158]Zhang L, Wang X L, Xiang J Y, Zhou Y, Shi S J, Tu J P. Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode. Journal of Power Source,2010,195:5057-5061.
    [159]Huang J S, Yang L, Liu K Y. One-pot syntheses of Li3V2(PO4)3/C cathode material for lithium ion batteries via ascorbic acid reduction approach. Materials Chemistry and Physics,2011,128:470-474.
    [160]Yang G, Liu H, Ji H, Chen Z, Jiang X. Temperature-controlled microwave solid-state synthesis of Li3V2(PO4)3 as cathode materials for lithium batteries. Journal of Power Sources,2010,195:5374-5378.
    [161]Wu F, Wang F, Wu C, Bai Y. Rate performance of Li3V2(PO4)3/C cathode material and its Li-ion intercalation Behavior. Journal of Alloys and Compounds 2012,513: 236-241.
    [162]Zheng J C. Li X H, Wang Z X, Guo H J, Hu Q Y, Peng W J. Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method. Journal of Power Sources,2009,189:476-479.
    [163]Yuan W, Yan J, Tang Z, Sha O, Wang J, Mao W, Ma L. Synthesis of Li3V2(PO4)3 cathode material via a fast sol-gel method based on spontaneous chemical reactions. Journal of Power Sources,2012.201:301-306.
    [164]Wang L, Jiang X, Li X, Pi X. Ren Y, Wu F. Rapid preparation and electrochemical behavior of carbon-coated Li3V2(PO4)3 from wet coordination. Electrochimica Acta, 2010,55:5057-5062.
    [165]Ko Y N. Koo H Y. Kim J H. Yi J H. Kang Y C, Lee J H. Characteristics of Li3V2(PO4)3 C powders prepared by ultrasonic spray pyrolysis. Journal of Power Sources.2011.196:6682-6687.
    [166]Wang X Y, Yin S Y, Zhang K. L, Zhang Y X. Preparation and characteristic of spherical Li3V2(PO4)3. Journal of Alloys and Compounds,2009,486:L5-L7.
    [167]Chang C, Xiang J, Shi X, Han X, Yuan L, Sun J. Rheological phase reaction synthesis and electrochemical performance of Li3V2(PO4)3/carbon cathode for lithium ion batteries. Electrochimica Acta,2008,53:2232-2237.
    [168]Qiao Y Q, Wang X L, Zhou Y, Xiang J Y, Zhang D, Shi S J, Tu J P. Electrochemical performance of carbon-coated Li3V2(PO4)3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis. Electrochimica Acta,2010,56: 510-516.
    [169]Zhang X, Guo H, Li X, Wang Z, Wu L. High tap-density Li3V2(PO4)3/C composite material synthesized by sol spray-drying and post-calcining method. Electrochimica Acta,2012,64:65-70.
    [170]Zhang B, Zheng J. Synthesis of Li3V2(PO4)3/C with high tap-density and high-rate performance by spray drying and liquid nitrogen quenching method. Electrochimica Acta,2012,67:55-61.
    [171]Dahn J R, Jiang J, Moshurchak L M, Fleischauer M D, Buhrmester C, Krause L J. High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-ditertbutyl-1,4-dimethoxybenzene. Journal of The Electrochemical Society,2005,152(6):A1283-1289.
    [172]Oh S W, Myung S T, Oh S M, Oh K H, Amine K, Scrosati B, Sun Y K. Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Advanced Materials,2010,22(43):4842-4845.
    [173]Wilcox J D, Doeff M M, Marcinek M, Kostecki R. Factors influencing the quality of carbon coatings on LiFePO4. Journal of The Electrochemical Society,2007,154(5): A389-A395.
    [174]Reddy M V, Pecquenard B, Vinaticr P. Levasseur A. Cyclic voltammetry and galvanostatic cycling characteristics of LiNiVO4 thin films during lithium insertion and rede-insertion. Electrochemistry Communications.2007,9:409-415.
    [175]Gao F, Tang Z. Xue J. Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method. Electrochimica Acta, 2007,53:1939-1944.
    [176]Huang B, Zheng X, Fan X, Song G, Lu M. Enhanced rate performance of nano-micro structured LiFePO4/C by improved process for high-power Li-ion batteries. Electrochimica Acta,2011,56:4865-4868.
    [177]Wu H M, Tu J P, Chen X T, Shi D Q, Zhao X B, Cao G S. Synthesis and characterization of abundant Ni-doped LiNixMn2-xO4 (x=0.1-0.5) powders by spray-drying method. Electrochimica Acta,2006,51:4148-4152.
    [178]Yue P, Wang Z, Peng W, Li L, Chen W, Guo H, Li X. Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries. Powder Technology,2011,214:279-282.
    [179]Li Y, Wan C, Wu Y, Jiang C, Zhu Y. Synthesis and characterization of ultrafine LiCoO2 powders by a spray-drying method. Journal of Power Sources,2000, 85:294-298.
    [180]Tu J P, Wu H M, Yang Y Z, Zhang W K. Spray-drying technology for the synthesis of nanosized LiMn2O4 cathode material. Materials Letters,2007,61:864-867.
    [181]Wan C, Wu M, Wu D. Synthesis of spherical LiMn2O4 cathode material by dynamic sintering of spray-dried precursors. Powder Technology,2010,199:154-158.
    [182]Gushing B L, Goodenough J B. Li2NaV2(PO4)3:A 3.7V lithium-insertion cathode with the rhombohedral NASICON structure. Journal of Solid State Chemistry,2001, 162(2):176-181.
    [183]Qiao Y Q, Wang X L, Mai Y J, Xiang J Y, Zhang D, Gu C D, Tu J P. Synthesis of plate-like Li3V2(PO4)3/C as a cathode material for Li-ion batteries. Journal of Power Sources.2011,196:8706-8709.
    [184]Rui X H, Jin Y, Feng X Y, Zhan L C, Chen C H. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. Journal of Power Sources.2011,196:2109-2114.
    [185]Fu P. Zhao Y. Dong Y, An X, Shen G. Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine. Journal of Power Sources, 2006,162:651-657.
    [186]Yang G, Ji H, Liu H, Qian B, Jiang X. Crystal structure and electrochemical performance of Li3V2(PO4)3 synthesized by optimized microwave solid-state synthesis route. Electrochimica Acta,2010,55:3669-3680.
    [I87]Zhong S(钟胜奎),Liu L(刘乐通),Jiang J(蒋吉琼),LiY(李延伟),Wang J (王健),Liu J(刘洁群),LiY(李艳红)Preparation and electrochemical properties of Y-doped Li3V2(PO4)3 cathode materials for lithium batteries. Journal of Rare Earths,2009, 27(1):134-137.
    [188]Ouyang C Y Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. Journal of Physics:Condensed Matter,2004,16:2265-2272.
    [189]Delacourt C, Wurm C, Laffont L, Leriche J B, Masquelier C. Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites. Solid State Ionics,2006,177:333-341.
    [190]Doeff M M, Hu Y, McLarnon F, Kostecki R. Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4. Electrochemical and Solid-State Letters, 2003,6(10):A207-A209.
    [191]Nakamura T, Miwa Y, Tabuchi M, Yamada Y. Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. Journal of The Electrochemical Society,2006,153(6):A1108-A1114.
    [192]Baddour-Hadjean R, Percira-Ramos, J P. Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chemical Reviews,2010,110: 1278-1319.
    [193]Sai'di M Y, Barker.J, Huang H. Swoyer J L, Adamson G. Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Journal of Power Sources.2003.119-121:266-272.
    [194]Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources,2000,89:206-218.
    [195]Tasaki K, Kanda K, Nakamura S, Ue M. Decomposition of LiPF6 and stability of PF5 in Li-ion battery electrolytes:Density functional theory and molecular dynamics studies. Journal of The Electrochemical Society,2003,150(12):A1628-A1636.
    [196]Nan C W, Fan L, Lin Y, Cai Q. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Physical Review Letters,2003,91:266104.
    [197]Wang X L, Mei A, Li X L, Lin Y H, Nan C W. Novel polymer electrolytes based on triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) with ionically active SiO2. Journal of Power Sources,2007,171:913-916.
    [198]Yang G, Ni H, Liu H, Gao P, Ji H, Roy S, Pinto J, Jiang X. The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4(M=Mg, V, Fe, Co, Gd). Journal of Power Sources,2011,196:4747-4755.
    [199]Muraliganth T, Manthiram A. Understanding the shifts in the redox potentials of olivine LiM1-yMyPO4 (M=Fe, Mn, Co, and Mg) solid solution cathodes. Journal of Physical Chemistry C,2010,114:15530-15540.
    [200]Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances halide and chalcogenides. Acta Crystallographica,1976, A32:751-767.
    [201]Yang Z, Li S, Xia S A, Jiang Y, Zhang W X, Huang Y H. Significant Improved Electrochemical Performance of Spinel LiMn2O4 Promoted by FePO4 Incorporation. Electrochemical and Solid-State Letters,2011,14 (8):A109-A112.
    [202]Delmas C, Maccario M, Croguennec L, Cras F Le, Weill F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Materials,2008,7: 665-671.
    [203]Mestre-Aizpurua F, Hamelet S, Masquelier C, Palacin M R. High temperature electrochemical performance of nanosized LiFePO4. Journal of Power Sources,2010, 195:6897-6901.
    [204]Wang D. Li H, Shi S, Huang X. Chen L. Improving the rate performance of LiFePO4 by Fe-site doping. Electrochimica Acta.2005.50:2955-2958.
    [205]Sakamoto J S, Dunn B. Hierarchical battery electrodes based on inverted opal structures. Journal of Materials Chemistry,2002,12:2859-2861.
    [206]Le Meins J M, Crosnier-Lopez M P, Hemon-Ribaud A, Courbion G. Phase Transitions in the Na3M2(PO4)2F3 family (M=Al3+,V3+, Cr3+,Fe3+, Ga3+):Synthesis, thermal, structural, and magnetic studies. Journal of Solid State Chemistry,1999, 148(2):260-277.
    [207]Gover R K B, Bryan A, Burns P, Barker J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics,2006,177: 1495-1500.
    [208]Azmi B M, Ishihara T, Nishiguchi H, Takita Y. Vanadyl phosphates of VOPO4 as a cathode of Li-ion rechargeable batteries. Journal of Power Sources,2003,119-121: 273-277.
    [209]Barker J, Saidi M Y, Swoyer J L. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. Journal of The Electrochemical Society, 2003,150(10):A1394-A1398.
    [210]Gaubicher J, Le Mercier T, Chabre Y, Angenault J, Quarton M. Li/β-VOPO4:A new 4 V system for lithium batteries. Journal of The Electrochemical Society,1999, 146(12):4375-4379.
    [211]Yang M R, Ke W H, Wu S H. Improving electrochemical properties of lithium iron phosphate by addition of vanadium. Journal of Power Sources,2007,165:646-650.
    [212]Zheng J C, Li X H, Wang Z X, Li J H, Li L J, Wu L, Guo H J. Characteristics of xLiFePO4·yLi3V2(PO4)3 electrodes for lithium batteries. Ionics,2009,15:753-759.
    [213]Wang L, Li Z, Xu H, Zhang K. Studies of Li3V2(PO4)3 Additives for the LiFePO4-Based Li Ion Batteries. Journal of Physical Chemistry C.2008,112: 308-312.
    [214]Liang G, Park K, Li J, Benson R, Vaknin D, Markert J T. Croft M. Anisotropy in magnetic properties and electronic structure of single-crystal LiFePO4. Physical Review B,2008,77:064414.
    [215]Haas O, Deb A, Cairns E J, Workaun A. Synchrotron X-ray absorption study of LiFePO4 electrodes. Journal of The Electrochemical Society,2005,152(1): A191-A196.
    [216]Westre T E, Kennepohl P, DeWitt J G, Hedman B, Hodgson K O, Solomon E I. A multiplet analysis of Fe K-edge 1s→3d pre-edge features of iron complexes. Journal of the American Chemical Society,1997,119(27):6297-6314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700