锂离子电池镍基LiNi_(1-2x)Co_xMn_xO_2正极材料的合成及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状LiNi1-x-yCoxMnyO2材料兼具了LiNiO2、LiCoO2和LiMnO2三者的优点,成为极具应用前景的锂离子电池正极材料之一。但是,LiNi1-x-yCoxMnyO2依然存在一些问题,如容量衰减较快和倍率性能较差等,从而限制了其应用领域。因此,本文采用不同方法合成两种镍基LiNi1-2xCoxMnxO2(x=0.01和0.02)材料,并通过表面修饰及掺杂等手段,改善电化学性能。
     采用喷雾干燥法和共沉淀法合成了层状LiNi1-2xCoxMnxO2(x=0.01和0.02),研究合成条件及合成方法对材料结构和电化学性能的影响。通过Rietveld结构精修发现,采用喷雾干燥法合成的LiNi1-2xCoxMnxO2样品阳离子混排程度分别为5.5%(x=0.01)和4.3%(x=0.02);共沉淀法合成的LiNi1-2xCoxMnxO2样品阳离子混排程度低于喷雾干燥法合成的样品,分别为3.8%(x=0.01)和3.1%(x=0.02)。电化学阻抗与电化学测试表明,共沉淀法合成的LiNi1-2xCoxMnxO2电荷转移阻抗更小,电化学性能优于喷雾干燥法合成的样品。以LiNi0.8Co0.1Mn0.1O2为例,在2.8~4.3V电压范围内,喷雾干燥法合成的LiNi0.8Co0.1Mn0.1O2在0.1C、0.5C、1C、2C和5C的放电容量分别为194.4、177.8、166.5、153.5和127.5mAh g-1;在0.5C、1C和2C循环50次后的容量保持率分别为87.8%、82.9%和80.3%。共沉淀法合成的LiNi0.8Co0.1Mn0.1O2在0.1C、0.5C、1C、2C和5C的放电容量分别为186.6、173.7、165.7、155.8和138.6mAh g-1;在0.5C、1C和2C循环50次后的容量保持率分别为91.1%、86.5%和83.8%。
     采用喷雾干燥法合成了LiNi1-2xCoxMnxO2/RGO (Reduced Graphene Oxide,还原氧化石墨烯)复合材料。研究结果表明复合材料具有α-NaFeO2型层状结构,且LiNi1-2xCoxMnxO2颗粒被薄层RGO包裹。电化学测试表明LiNi0.6Co0.2Mn0.2O2/RGO复合材料的电化学性能优于LiNi0.6Co0.2Mn0.2O2材料,然而LiNi0.8Co0.1Mn0.1O2/RGO复合材料的电化学性能不如LiNi0.gCo0.1Mn0.1O2。以LiNi0.8Co0.1Mn0.1O2和RGO为原料,采用固相混合法合成了LiNi0.8Co0.1Mn0.1O2/RGO复合材料,其中RGO含量为2%。复合材料0.1C的首次放电容量为192.5mAhg-1,其倍率性能和循环性能均优于LiNi0.8Co0.1Mn0.1O2。电化学阻抗表明RGO的添加降低了复合材料的电荷转移阻抗,有利于改善电极充放电过程中的动力学性能。
     以LiNi1-2xCoxMnxO2和NH4F为原料,采用低温氟化反应合成了氟掺杂的LiNi1-2xCoxMnxO2-zFz,研究了不同的氟掺杂量对材料结构、元素价态及电化学性能的影响。LiNi1-2xCoxMnxO2-zFz(0≤z≤0.06)样品均为具有层状结构的纯相物质;随着氟掺杂量的提高,阳离子混排程度增加;XPS分析表明材料中过渡金属的元素价态发生变化,以对掺入的氟离子进行电荷补偿,进而引起材料晶格参数的变化。电化学测试表明适量的氟掺杂尽管略微降低了材料的初始放电容量,但改善了材料的倍率性能、循环性能和存储性能。TEM和XRD证实了氟掺杂有利于稳定材料的结构,抑制电解液中HF对材料颗粒表面的侵蚀。而电化学阻抗表明氟掺杂可以有效降低材料的电荷转移阻抗,改善充放电过程中的动力学性能。图99幅,表38个,参考文献271篇。
Layered LiNi1-x-yCoxMnyO2materials have been considered as a promising cathode material for lithium ion batteries in that it owns the advantages of LiNiO2, LiCoO2and LiMnO2. However, there are still some obstacles limiting its applications, such as the loss of capacity during cycling and insufficient rate capability. In this thesis, the Nickel-based LiNi1-2xCoxMnxO2(x=0.01and0.02) cathode materials have been synthesized by different methods, and modified to improve its electrochemical performance.
     Layered LiNi1-2xCoxCoxMnO2(x=0.01and0.02) cathode materials have been synthesized by spray drying and co-precipitation methods. The influences of synthesis conditions and methods on the structural and electrochemical performance of LiNi1-2xCoxMnxO2materials have been investigated. Rietveld refinement showed that the cation mixing degree of LiNi1-2xCoxMnxO2materials prepared by spray drying method were5.5%(x=0.01) and4.3%(x=0.02), LiNi1-2xCoxMnxO2materials prepared by co-precipitation method exhibited lower degree of cation mixing, which were3.8%(x=0.01) and3.1%(x=0.02). Electrochemical test and electrochemical impedance spectroscopy (EIS) showed that LiNi1-2xCoxMnxO2materials prepared by co-precipitation method exhibited lower charge transfer resistance and better electrochemical performance than sample prepared by spray drying method. Take LiNi0.8Co0.1Mn0.1O2materials as example, the discharge capacities of sample prepared by spray drying method were194.4,177.8,166.5,153.5and127.5mAh g-1at0.1C,0.5C,1C,2C and5C between2.8and4.3V. Capacity retentions after50cycles were87.8%,82.9%and80.3%at0.5C,1C and2C, respectively. LiNi0.8Co0.1Mn0.1O2materials prepared by co-precipitation method were186.6,173.7,165.7,155.8and138.6mAh g-1at0.1C,0.5C,1C,2C and5C between2.8and4.3V. Capacity retentions after50cycles were91.1%,86.5%and83.8%at0.5C,1C and2C, respectively.
     LiNi1-2xCoxMnxO2/RGO (Reduced Graphene Oxide) composites were prepared by a simple spray drying method. XRD showed that composites possessed a typical hexagonal structure. Raman and FTIR confirmed the existence of RGO in the composites. SEM and TEM verified that LiNi1-2xCoxMnO2particles were wrapped with RGO sheets. LiNi0.6Co0.2Mn0.2O2/RGO composite displayed improved electrochemical performance than pristine LiNi0.6Co0.2Mn0.2O2materials. However, LiNi0.8Co0.1Mn0.1O2/RGO composite prepared by spray drying method showed worse electrochemical performance. Thus, using LiNi0.8Co0.1Mn0.1O2and RGO as raw materials, composite with RGO content of2%was prepared by physical mixing method. The composite displayed an initial discharge capacity of192.5mAh g-1, and its electrochemical performance was better than that of pure LiNi0.8Co0.1Mn0.1O2materials. EIS showed that the RGO can greatly reduce the charge transfer resistance, improving the kinetic behaviors during charge/discharge process and affecting the electrochemical performance.
     Fluorine substituted LiNi1-2xCoxMnxO2-zFz cathode materials have been synthesized by calcining NH4F with corresponding LiNi1-2xCoxMnxO2materials at a relatively low temperature. The structure, ionic valency and electrochemical performance of LiNi1-2xCoxMnxO2-zFz materials have been investigated. LiNi1-2xCoxMnxO2-zFz(0
引文
[1]Wu F, Li X, Wang Z, et al. Preparation of TiO2 nanosheets and Li4Ti5O12 anode material from natural ilmenite [J]. Powder Technology,2011,213(1-3):192-198.
    [2]Wu F, Li X, Wang Z, et al. A novel method to synthesize anatase TiO2 nanowires as an anode material for lithium-ion batteries [J]. Journal of Alloys and Compounds,2011,509(8):3711-3715.
    [3]Wu F, Li X, Wang Z, et al. Low-temperature synthesis of nano-micron Li4Ti5O12 by an aqueous mixing technique and its excellent electrochemical performance [J]. Journal of Power Sources,2012,202(0):374-379.
    [4]Wu F, Wang Z, Li X, et al. Characterization of spherical-shaped Li4Ti5O12 prepared by spray drying [J]. Electrochimica Acta,2012,78:331-339.
    [5]王红强,李新海,郭华军,等.石墨化中间相炭微球表面镀银的电化学性能[J].中南工业大学学报(自然科学版),2003,25(6):615-618.
    [6]张宝,郭华军,李新海,等.中间相炭微球的粒径对其结构和性能的影响[J].中南大学学报(自然科学版),2005,32(3):443-447.
    [7]Lai J, Guo H, Wang Z, et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries [J]. Journal of Alloys and Compounds,2012,530:30-35.
    [8]Wu X, Wang Z, Li X, et al. Effect of lithium difluoro(oxalato)borate and heptamethyldisilazane with different concentrations on cycling performance of LiMn2O4 [J]. Journal of Power Sources,2012,204(4):133-138.
    [9]刘建文,李新海,王志兴,等.锂离子电池电解质盐LiBF4的制备新方法及表征[J].无机化学学报,2009,25(1):31-36.
    [10]刘建文,李新海,王志兴,等.双草酸硼酸锂的制备新方法、表征及性能研究[J].无机材料学报,2009,24(4):808-812.
    [11]Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries [J]. Chemistry of Materials,2009,22(3):587-603.
    [12]Whittingham M S. Lithium Batteries and Cathode Materials [J]. Chemical Reviews,2004,104(50):4271-4301.
    [13]Paulsen J M, Mueller N J R, Dahn J R. Layered LiCoO2 with a Different Oxygen Stacking (O2 Structure) as a Cathode Material for Rechargeable Lithium Batteries [J]. Journal of The Electrochemical Society,2000,147(2):508-516.
    [14]Reimers J N, Dahn J R. Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2 [J]. Journal of The Electrochemical Society, 1992,139(8):2091-2097.
    [15]Mizushima K, Jones P C, Wiseman P J, et al. LiCoO2 (0≤x≤1):A new cathode material for batteries of high energy density [J]. Solid State Ionics,1981,3-4: 171-174.
    [16]Amatucci G G, Tarascon J M, Klein L C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries [J]. Solid State Ionics,1996,83(1-2): 167-173.
    [17]Pereira N, Al-Sharab J F, Cosandey F, et al. Thermodynamically Induced Surface Modification for the Stabilization of High-Capacity LiCoO2 [J]. Journal of The Electrochemical Society,2008,155(11):A831-A838.
    [18]Ohzuku T, Ueda A. Solid-State Redox Reactions of LiCo02 (R3m) for 4 Volt Secondary Lithium Cells [J]. Journal of The Electrochemical Society,1994, 141(11):2972-2977.
    [19]Laubach S, Laubach S, Schmidt P C, et al. Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation [J]. Physical Chemistry Chemical Physics,2009,11(17):3278-3289.
    [20]Ohzuku T, Ueda A, Nagayama M. Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells [J]. Journal of The Electrochemical Society,1993,140(7):1862-1870.
    [21]Ohzuku T, Ueda A, Nagayama M, et al. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells [J]. Electrochimica Acta,1993,38(9):1159-1167.
    [22]Liu H, Yang Y, Zhang J. Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2 [J]. Journal of Power Sources,2007,173(1): 556-561.
    [23]Rougier A, Gravereau P, Delmas C. Optimization of the Composition of the Li1-zNi1+zO2 Electrode Materials:Structural, Magnetic, and Electrochemical Studies [J]. Journal of The Electrochemical Society,1996,143(4):1168-1175.
    [24]叶乃清,刘长久,沈上越.锂离子电池正极材料LiNiO2存在的问题与解决办法[J].无机材料学报,2004,19(6):1217-1224.
    [25]Barboux P, Tarascon J M, Shokoohi F K. The use of acetates as precursors for the low-temperature synthesis of LiMn2O4 and LiCoO2 intercalation compounds [J]. Journal of Solid State Chemistry,1991,94(1):185-196.
    [26]Saadoune I, Delmas C. On the LixNi0.8Co0.2O2 System [J]. Journal of Solid State Chemistry,1998,136(1):8-15.
    [27]Periasamy P, Kim H S, Na S H, et al. Synthesis and characterization of LiNi0.8Co0.2O2 prepared by a combustion solution method for lithium batteries [J]. Journal of Power Sources,2004,132(1-2):213-218.
    [28]Li D, Peng Z, Ren H, et al. Synthesis and characterization of LiNi1-xCoxO2 for lithium batteries by a novel method [J]. Materials Chemistry and Physics,2008, 107(1):171-176.
    [29]Mahesh K C, Suresh G S, Bhattacharyya A J, et al. Synthesis and Electrochemical Characterization of LiNi0.8Co0.2O2 as Cathode Material for Aqueous Rechargeable Lithium Batteries [J]. Journal of The Electrochemical Society,2012,159(5):A571-A578.
    [30]Yang S H, Hackney S A, Armstrong A R, et al. Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging [J]. Journal of The Electrochemical Society,1999,146(7):2404-2412.
    [31]Hwang S J, Park H S, Choy J H, et al. Evolution of Local Structure around Manganese in Layered LiMnO2 upon Chemical and Electrochemical Delithiation/Relithiation [J]. Chemistry of Materials,2000,12(7):1818-1826.
    [32]Ammundsen B, Desilvestro J, Groutso T, et al. Formation and Structural Properties of Layered LiMnO2 Cathode Materials [J]. Journal of The Electrochemical Society,2000,147(11):4078-4082.
    [33]粟智,徐茂文,叶世海,等.锂离子电池正极材料LiMnO2的掺杂及其电化学性能[J].物理化学学报,2009,25(6):1232-1238.
    [34]Liu Z, Yu A, Lee J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries [J]. Journal of Power Sources, 1999,81-82(1):416-419.
    [35]Koyama Y, Yabuuchi N, Tanaka I, et al. Solid-State Chemistry and Electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for Advanced Lithium-Ion Batteries:I. First-Principles Calculation on the Crystal and Electronic Structures [J]. Journal of The Electrochemical Society,2004,151(10):A1545-A1551.
    [36]Koyama Y, Tanaka I, Adachi H, et al. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (0≤x≤1) [J]. Journal of Power Sources, 2003,119-121:644-648.
    [37]Lu Z, Macneil D D, Dahn J R. Layered Li[NixCo1-2xMnx]O2 Cathode Materials for Lithium-Ion Batteries [J]. Electrochemical and Solid-State Letters,2001, 4(12):A200-A203.
    [38]Ohzuku T, Makumura Y. Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries [J]. Chemistry Letters,2001,7(7): 642-643.
    [39]Reddy M V, Rao G V S, Chowdari B V R. Synthesis by molten salt and cathodic properties of Li(Ni1/3Co1/3Mn1/3)O2 [J]. Journal of Power Sources,2006,159(1): 263-267.
    [40]Dai K H, Xie Y T, Wang Y J, et al. Effect of fluorine in the preparation of Li(Ni1/3Co1/3Mn1/3)O2 via hydroxide co-precipitation [J]. Electrochimica Acta, 2008,53(8):3257-3261.
    [41]Woo S U, Park B C, Yoon C S, et al. Improvement of electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode materials by fluorine substitution [J]. Journal of The Electrochemical Society,2007,154(7):A649-A655.
    [42]Kim M H, Shin H S, Shin D, et al. Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mno.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation [J]. Journal of Power Sources,2006,159(2):1328-1333.
    [43]Shin H S, Park S H, Yoon C S, et al. Effect of fluorine on the electrochemical properties of layered LiNi0.43Co0.22Mn0.35O2 cathode materials via a carbonate process [J]. Electrochemical and Solid State Letters,2005,8(11):A559-A563.
    [44]Liao P Y, Duh J G, Sheen S R. Microstructure and electrochemical performance of LiNi0.6Co0.4-xMnxO2 cathode materials [J]. Journal of Power Sources,2005, 143(1-2):212-218.
    [45]Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries [J]. Journal of Materials Chemistry,2007,17(30):3112-3125.
    [46]Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3 component in'composite' xLi2MnO3·(1-x)LiMno.5Nio.502 electrodes [J]. Electrochemistry Communications,2004,6(10):1085-1091.
    [47]Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2 [J]. Journal of the American Chemical Society,2006, 128(26):8694-8698.
    [48]Lu Z, Dahn J R. Understanding the Anomalous Capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies [J]. Journal of The Electrochemical Society,2002, 149(7):A815-A822.
    [49]Arunkumar T A, Alvarez E, Manthiram A. Structural, Chemical, and Electrochemical Characterization of Layered Li[Li0.17Mn0.33Co0.5-yNiy]O2 Cathodes [J]. Journal of The Electrochemical Society,2007,154(8): A770-A775.
    [50]He Z, Wang Z, Guo H, et al. Synthesis and electrochemical performance of xLi2MnO3·(l-x)LiMn0.5Ni0.4Co0.1O2 for lithium ion battery [J]. Powder Technology,2013,235(0):158-162.
    [51]Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery [J]. Solid State Ionics,2008,179(27-32):1794-1799.
    [52]He Z, Wang Z, Guo H, et al. A simple method of preparing graphene-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium-ion batteries [J]. Materials Letters,2013, 91:261-264.
    [53]Shi S J, Tu J P, Tang Y Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method [J]. Electrochimica Acta,2013,88:671-679.
    [54]Jung Y S, Cavanagh A S, Yan Y, et al. Effects of Atomic Layer Deposition of Al2O3 on the Li[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode for Lithium-Ion Batteries [J]. Journal of The Electrochemical Society,2011,158(12):A1298-A1302.
    [55]Wu C, Fang X, Guo X, et al. Surface modification of Li1.2Mno.54Co0.13Ni0.13O2 with conducting polypyrrole [J]. Journal of Power Sources,2013,231:44-49.
    [56]Thackeray M M, De Kock A, David W I F. Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system [J]. Materials Research Bulletin,1993,28(10):1041-1049.
    [57]Xia Y, Zhou Y, Yoshio M. Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells [J]. Journal of The Electrochemical Society,1997,144(8):2593-2600.
    [58]Aurbach D, Levi M D, Gamulski K, et al. Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques [J]. Journal of Power Sources,1999,81-82:472-479.
    [59]Shin Y, Manthiram A. Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides [J]. Journal of The Electrochemical Society,2004,151(2): A204-A208.
    [60]Fang H S, Wang Z X, Li X H, et al. Low temperature synthesis of LiNi0.5Mn1.5O4 spinel [J]. Materials Letters,2006,60(9-10):1273-1275.
    [61]季勇,王志兴,尹周澜,等.正极材料LiNio.5Mn1.5O4的合成及性能[J].无机化学学报,2007,23(4):597-601.
    [62]Sun Q, Li X, Wang Z, et al. Synthesis and electrochemical performance of 5 V spinel LiNio.5Mn1.5O4 prepared by solid-state reaction [J]. Transactions of Nonferrous Metals Society of China,2009,19(1):176-181.
    [63]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414(6861):359-367.
    [64]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries [J]. Journal of The Electrochemical Society,1997,144(4):1188-1194.
    [65]王福庆,陈剑,张锋,等.锂离子电池聚阴离子型正极材料[J].化学进展,2012,24(8):1456-1465.
    [66]于锋,张敬杰,王昌胤,等.锂离子电池正极材料的晶体结构及电化学性能[J].化学进展,2010,22(1):9-18.
    [67]Zhang X, Guo H, Li X, et al. Studies of fast-ion conducting Li3V2(PO4)3 coated LiFePO4 via sol-gel method [J]. Solid State Ionics,2012,212:106-111.
    [68]Wu L, Wang Z, Li X, et al. Cation-substituted LiFePO4 prepared from the FeSO4·7H2O waste slag as a potential Li battery cathode material [J]. Journal of Alloys and Compounds,2010,497(1-2):278-284.
    [69]Wu L, Li X, Wang Z, et al. Preparation of synthetic rutile and metal-doped LiFePO4 from ilmenite [J]. Powder Technology,2010,199(3):293-297.
    [70]Wu L, Li X, Wang Z, et al. A novel process for producing synthetic rutile and LiFePO4 cathode material from ilmenite [J]. Journal of Alloys and Compounds, 2010,506(1):271-278.
    [71]Liu Y, Li X, Guo H, et al. Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery [J]. Journal of Power Sources,2008, 184(2):522-526.
    [72]Zheng J C, Li X H, Wang Z X, et al. LiFePO4 with enhanced performance synthesized by a novel synthetic route [J]. Journal of Power Sources,2008, 184(2):574-577.
    [73]Liu H P, Wang Z X, Li X H, et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method [J]. Journal of Power Sources,2008,184(2):469-472.
    [74]Yamada A, Chung S C. Crystal Chemistry of the Olivine-Type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as Possible 4 V Cathode Materials for Lithium Batteries [J]. Journal of The Electrochemical Society,2001,148(8): A960-A967.
    [75]Wolfenstine J, Allen J. LiNiPO4-LiCoPO4 solid solutions as cathodes [J]. Journal of Power Sources,2004,136(1):150-153.
    [76]Wolfenstine J, Allen J. Ni3+/Ni2+ redox potential in LiNiPO4 [J]. Journal of Power Sources,2005,142(1-2):389-390.
    [77]Chang X Y, Wang Z X, Li X H, et al. Synthesis and performance of LiMno.7Feo.3P04 cathode material for lithium ion batteries [J]. Materials Research Bulletin,2005,40(9):1513-1520.
    [78]Pieczonka N P W, Liu Z, Huq A, et al. Comparative study of LiMnPO4/C cathodes synthesized by polyol and solid-state reaction methods for Li-ion batteries [J]. Journal of Power Sources,2013,230:122-129.
    [79]Martha S K, Grinblat J, Haik O, et al. LiMn0.8Fe0.2PO4:An Advanced Cathode Material for Rechargeable Lithium Batteries [J]. Angewandte Chemie International Edition,2009,48(45):8559-8563.
    [80]Zaghib K, Ait Salah A, Ravet N, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate [J]. Journal of Power Sources,2006, 160(2):1381-1386.
    [81]Xu Y, Li Y, Liu S, et al. Nanoparticle Li2FeSiO4 as anode material for lithium-ion batteries [J]. Journal of Power Sources,2012,220:103-107.
    [82]Wu X, Jiang X, Huo Q, et al. Facile synthesis of Li2FeSiO4/C composites with triblock copolymer P123 and their application as cathode materials for lithium ion batteries [J]. Electrochimica Acta,2012,80:50-55.
    [83]Fan X Y, Li Y, Wang J J, et al. Synthesis and electrochemical performance of porous Li2FeSiO4/C cathode material for long-life lithium-ion batteries [J]. Journal of Alloys and Compounds,2010,493(1-2):77-80.
    [84]Guo H, Cao X, Li X, et al. Optimum synthesis of Li2Fe1-xMnxSiO4/C cathode for lithium ion batteries [J]. Electrochimica Acta,2010,55(27):8036-8042.
    [85]Deng C, Zhang S, Yang S Y. Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Fe1-xMnxSiO4 synthesized via citric acid assisted sol-gel method [J]. Journal of Alloys and Compounds, 2009,487(1-2):L18-L23.
    [86]Rui X, Sim D, Wong K, et al. Li3V2(PO4)3 nanocrystals embedded in a nanoporous carbon matrix supported on reduced graphene oxide sheets: Binder-free and high rate cathode material for lithium-ion batteries [J]. Journal of Power Sources,2012,214:171-177.
    [87]Liu H, Gao P, Fang J, et al. Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries [J]. Chemical Communications,2011,47(32): 9110-9112.
    [88]Zhang X, Guo H, Li X, et al. High tap-density Li3V2(PO4)3/C composite material synthesized by sol spray-drying and post-calcining method [J]. Electrochimica Acta,2012,64:65-70.
    [89]Zheng J C, Li X H, Wang Z X, et al. Novel synthesis of LiFePO4-Li3V2(PO4)3 composite cathode material by aqueous precipitation and lithiation [J]. Journal of Power Sources,2010,195(9):2935-2938.
    [90]Zheng J C, Li X H, Wang Z X, et al. Characteristics of xLiFePO4·yLi3V2(PO4)3 electrodes for lithium batteries [J]. Ionics,2009,15(6):753-759.
    [91]郑俊超,李新海,王志兴,等.锂离子电池复合正极材料xLiFePO4·yLi3V2(PO4)3的复合机制[J].物理化学学报,2009,25(9):1916-1920.
    [92]Barker J, Gover R K B, Burns P, et al. Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F [J]. Journal of Power Sources, 2005,146(1-2):516-520.
    [93]李宇展,任俊霞,周震,等.锂离子二次电池正极材料LiVPO4F的制备及其电化学性能的研究[J].无机化学学报,2005,21(10):1597-1600.
    [94]Wang J, Li X, Wang Z, et al. Synthesis and characterization of LiVPO4F/C using precursor obtained through a soft chemical route with mechanical activation assist [J]. Electrochimica Acta,2013,91:75-81.
    [95]Wang J, Wang Z, Li X, et al. xLi3V2(PO4)3·LiVPO4F/C composite cathode materials for lithium ion batteries [J]. Electrochimica Acta,2013,87:224-229.
    [96]Nanjundaswamy K S, Padhi A K, Goodenough J B, et al. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds [J]. Solid State Ionics,1996, 92(1-2):1-10.
    [97]Barpanda P, Recham N, Chotard J N, et al. Structure and electrochemical properties of novel mixed Li(Fe1-xMx)SO4F (M=Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis [J]. Journal of Materials Chemistry, 2010,20(9):1659-1668.
    [98]Dong Y Z, Zhao Y M, Shi Z D, et al. The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material [J]. Electrochimica Acta,2008,53(5):2339-2345.
    [99]Chang C C, Kim J Y, Kumta P N. Divalent cation incorporated Li(1+x)MMgxO2(1+x) (M=Ni0.75Co0.25):viable cathode materials for rechargeable lithium-ion batteries [J]. Journal of Power Sources,2000,89(1):56-63.
    [100]Zaheena C N, Nithya C, Thirunakaran R, et al. Microwave assisted synthesis and electrochemical behaviour of LiMg0.1Co0.9O2 for lithium rechargeable batteries [J]. Electrochimica Acta,2009,54(10):2877-2882.
    [101]Xiang J, Chang C, Zhang F, et al. Effects of Mg doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material [J]. Journal of Alloys and Compounds,2009,475(1-2):483-487.
    [102]Liu Z, Zhang X, Hong L. Preparation and electrochemical properties of spherical LiFePO4 and LiFe0.9Mg0.1PO4 cathode materials for lithium rechargeable batteries [J]. Journal of Applied Electrochemistry,2009,39(12): 2433-2438.
    [103]Luo W, Zhou F, Zhao X, et al. Synthesis, Characterization, and Thermal Stability of LiNi1/3Mn1/3Co1/3-zMgzO2, LiNi1/3-zMn1/3Co1/3MgzO2, and LiNi1/3Mn1/3-zCo1/3MgzO2 [J]. Chemistry of Materials,2009,22(3):1164-1172.
    [104]Xiang J, Chang C, Zhang F, et al. Rheological Phase Synthesis and Electrochemical Properties of Mg-Doped LiNi0.8Co0.2O2 Cathode Materials for Lithium-Ion Battery [J]. Journal of The Electrochemical Society,2008,155(7): A520-A525.
    [105]Liu L, Sun K, Zhang N, et al. Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution [J]. Journal of Solid State Electrochemistry,2009,13(9):1381-1386.
    [106]Arumugam D, Kalaignan G P, Vediappan K, et al. Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn2O4 cathode materials for rechargeable lithium batteries [J]. Electrochimica Acta,2010, 55(28):8439-8444.
    [107]Chen Y, Chen R, Tang Z, et al. Synthesis and characterization of Zn-doped LiCo0.3Ni0.4-xMn0.3ZnxO2 cathode materials for lithium-ion batteries [J]. Journal of Alloys and Compounds,2009,476(1-2):539-542.
    [108]Fey G T K, Subramanian V, Chen J G. Electrochemical performance of Sr2+-doped LiNi0.8Co0.2O2 as a cathode material for lithium batteries synthesized via a wet chemistry route using oxalic acid [J]. Materials Letters, 2002,52(3):197-202.
    [109]Fang H, Yi H, Hu C, et al. Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries [J]. Electrochimica Acta,2012,71:266-269.
    [110]Wang C, Ma X, Cheng J, et al. Effects of Ca doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material [J]. Solid State Ionics,2006, 177(11-12):1027-1031.
    [111]Sha O, Qiao Z, Wang S, et al. Improvement of cycle stability at elevated temperature and high rate for LiNi0.5-xCuxMn1.5O4 cathode material after Cu substitution [J]. Materials Research Bulletin,2013,48(4):1606-1611.
    [112]Zhang B, Chen G, Xu P, et al. Effect of equivalent and non-equivalent Al substitutions on the structure and electrochemical properties of LiNi0.5Mn0.5O2 [J]. Journal of Power Sources,2008,176(1):325-331.
    [113]Yang M R, Ke W H. The Doping Effect on the Electrochemical Properties of LiFe0.95Mo.o5P04 (M=Mg2+,Ni2+,Al3+,or V3+) as Cathode Materials for Lithium-Ion Cells [J]. Journal of The Electrochemical Society,2008,155(10): A729-A732.
    [114]Luo W, Dahn J R. Comparative study of Li[Co1-zAlz]O2 prepared by solid-state and co-precipitation methods [J]. Electrochimica Acta,2009,54(20): 4655-4661.
    [115]Xiao L, Zhao Y, Yang Y, et al. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method [J]. Electrochimica Acta, 2008,54(2):545-550.
    [116]Park S C, Han Y S, Lee P S, et al. Effects of iron substitution for nickel on electrochemical properties of LiNio.8Co0.2O2 for lithium rechargeable batteries [J]. Journal of Power Sources,2001,102(1-2):130-134.
    [117]Liu J, Manthiram A. Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiMn1.5Ni0.5O4 [J]. The Journal of Physical Chemistry C,2009,113(33):15073-15079.
    [118]Park S B, Eom W S, Cho W I, et al. Electrochemical properties of LiNio.5Mn1.5O4 cathode after Cr doping [J]. Journal of Power Sources,2006, 159(1):679-684.
    [119]Li L J, Wang Z X, Liu Q C, et al. Effects of chromium on the structural, surface chemistry and electrochemical of layered LiNi0.8-xCo0.1Mn0.1CrxO2 [J]. Electrochimica Acta,2012,77:89-96.
    [120]Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Cr]O2 (x=0,0.02,0.04, 0.06,0.08) as cathode materials for lithium secondary batteries [J]. Journal of Power Sources,2007,167(1):178-184.
    [121]Wilcox J, Patoux S, Doeff M. Structure and Electrochemistry of LiNi1/3Co1/3MyMn1/3O2 (M=Ti, Al, Fe) Positive Electrode Materials [J]. Journal of The Electrochemical Society,2009,156(3):A192-A198.
    [122]Liu H, Li J, Zhang Z, et al. Structural, electrochemical and thermal properties of LiNi0.8-yTiyCo0.2O2 as cathode materials for lithium ion battery [J]. Electrochimica Acta,2004,49(7):1151-1159.
    [123]Wu L, Wang Z X, Li X H, et al. Electrochemical performance of Ti4+-doped LiFePO4 synthesized by co-precipitation and post-sintering method [J]. Transactions of Nonferrous Metals Society of China,2010,20(5):814-818.
    [124]Shu J, Shui M, Xu D, et al. Tartaric acid-assisted sol-gel synthesis of LiNi0.5Co0.5-xTixO2 (0≤x≤0.5) as cathode materials for lithium-ion batteries [J]. Journal of Electroanalytical Chemistry,2011,663(2):90-97.
    [125]张爱波,刘建睿,李岚,等.掺杂钒对锂离子电池正极材料LiCo0.5Ni0.5O2结构的影响[J].西北工业大学学报,2004,22(4):473-476.
    [126]Yi T F, Yin L C, Ma Y Q, et al. Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material [J]. Ceramics International,2013,39(4): 4673-4678.
    [127]Xia Y, Zhang W, Huang H, et al. Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries [J]. Materials Science and Engineering:B,2011,176(8):633-639.
    [128]Gao H, Jiao L, Peng W, et al. Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site [J]. Electrochimica Acta,2011,56(27): 9961-9967.
    [129]Wang L Q, Jiao L F, Yuan H, et al. Synthesis and electrochemical properties of Mo-doped Li[Ni13Mn1/3Co1/3]O2 cathode materials for Li-ion battery [J]. Journal of Power Sources,2006,162(2):1367-1372.
    [130]Mohan P, Kalaignan G P, Muralidharan V S. Improved the Electrochemical Performance of LiCe1-xNixO2 Cathode Material for Rechargeable Lithium Ion Battery [J]. Journal of Nanoscience and Nanotechnology,2012,12(9): 7052-7059.
    [131]Liu L, Su G, Xiao Q, et al. Structural, electrochemical and thermal properties of LiNi0.8-xCo0.2CexO2 as cathode materials for lithium ion batteries [J]. Materials Chemistry and Physics,2006,100(2-3):236-240.
    [132]Ding Y, Zhang P, Jiang Y, et al. Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery [J]. Solid State Ionics,2007,178(13-14):967-971.
    [133]Zhong S, Liu L, Jiang J, et al. Preparation and electrochemical properties of Y-doped Li3V2(PO4)3 cathode materials for lithium batteries [J]. Journal of Rare Earths,2009,27(1):134-137.
    [134]Kim G H, Kim M H, Myung S T, et al. Effect of fluorine on LiNi1/3Co1/3Mn1/3O2-zFz as lithium intercalation material [J]. Journal of Power Sources,2005,146(1-2):602-605.
    [135]Oh S W, Park S H, Kim J H, et al. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution [J]. Journal of Power Sources,2006,157(1):464-470.
    [136]Kang S H, Belharouak I, Sun Y K, et al. Effect of fluorine on the electrochemical properties of layered Li(Ni0.5Mn0.5)O2 cathode materials [J]. Journal of Power Sources,2005,146(1-2):650-653.
    [137]Lu F, Zhou Y, Liu J, et al. Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route [J]. Electrochimica Acta,2011,56(24):8833-8838.
    [138]Kubo K, Arai S, Yamada S, et al. Synthesis and charge-discharge properties of Li1+xNi1-x-yCoyO2-zFz[J]. Journal of Power Sources,1999,81-82:599-603.
    [139]Kang S H, Amine K. Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.5-0.5z)02-zFz cathode materials for Li-ion secondary batteries [J]. Journal of Power Sources,2005, 146(1-2):654-657.
    [140]Son J T, Kim H G New investigation of fluorine-substituted spinel LiMn2O4-xFx by using sol-gel process [J]. Journal of Power Sources,2005, 147(1-2):220-226.
    [141]Yan J, Yuan W, Tang Z Y, et al. Synthesis and electrochemical performance of Li3V2(PO4)3-xClx/C cathode materials for lithium-ion batteries [J]. Journal of Power Sources,2012,209:251-256.
    [142]Yang L, Jiao L, Miao Y, et al. Improvement of electrochemical properties of LiFePO4/C cathode materials by chlorine doping [J]. Journal of Solid State Electrochemistry,2009,13(10):1541-1544.
    [143]Huang Y, Jiang R, Jia D, et al. Preparation, microstructure and electrochemical performance of nanoparticles LiMnO3.9Br0.1 [J]. Materials Letters,2011, 65(23-24):3486-3488.
    [144]Woo S W, Myung S T, Bang H, et al. Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution [J]. Electrochimica Acta,2009,54(15): 3851-3856.
    [145]Ding Y, Zhang P, Jiang Y, et al. Synthesis and electrochemical properties of LiNi0.375Co0.25Mn0.375-xCrxO2-xFx cathode materials prepared by so-gel method [J]. Materials Research Bulletin,2008,43(8-9):2005-2009.
    [146]Liao L, Wang X, Luo X, et al. Synthesis and electrochemical properties of layered Li[Ni0.333Co0.333Mn0.293Al0.04]O2-zFz cathode materials prepared by the sol-gel method [J]. Journal of Power Sources,2006,160(1):657-661.
    [147]Chowdari B V R, Subba Rao G V, Chow S Y. Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2 [J]. Solid State Ionics,2001,140(1-2):55-62.
    [148]Ding Y, Zhang P, Gao D. Synthesis and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]0.96Ti0.04O1.96F0.04 as cathode material for lithium-ion batteries [J]. Journal of Alloys and Compounds,2008,456(1-2):344-347.
    [149]Wu Y, Manthiram A. Effect of Al3+ and F" Doping on the Irreversible Oxygen Loss from Layered Li[Li0.17Mn0.58Ni0.25]O2 Cathodes [J]. Electrochemical and Solid-State Letters,2007,10(6):A151-A154.
    [150]Zhang B, Li L, Zheng J. Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery [J]. Journal of Alloys and Compounds,2012,520:190-194.
    [151]Xiang J, Chang C, Yuan L, et al. A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery [J]. Electrochemistry Communications,2008,10(9):1360-1363.
    [152]Kim Y, Kim H S, Martin S W. Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries [J]. Electrochimica Acta,2006,52(3):1316-1322.
    [153]Lee S W, Kim K S, Moon H S, et al. Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery [J]. Journal of Power Sources,2004,126(1-2):150-155.
    [154]Sclar H, Haik O, Menachem T, et al. The Effect of ZnO and MgO Coatings by a Sono-Chemical Method, on the Stability of LiMn1.5Ni0.5O4 as a Cathode Material for 5 V Li-Ion Batteries [J]. Journal of The Electrochemical Society, 2012,159(3):A228-A237.
    [155]Yoon W S, Nam K W, Jang D, et al. Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD [J]. Journal of Power Sources,2012,217:128-134.
    [156]Fey G T K, Lu C Z, Prem Kumar T, et al. TiO2 coating for long-cycling LiCoO2: A comparison of coating procedures [J]. Surface and Coatings Technology, 2005,199(1):22-31.
    [157]Yu L, Qiu X, Xi J, et al. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery [J]. Electrochimica Acta,2006,51(28):6406-6411.
    [158]Myung S T, Izumi K, Komaba S, et al. Role of Alumina Coating on Li-Ni-Co-Mn-O Particles as Positive Electrode Material for Lithium-Ion Batteries [J]. Chemistry of Materials,2005,17(14):3695-3704.
    [159]Sun Y K, Lee M J, Yoon C S, et al. The Role of A1F3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries [J]. Advanced Materials,2012,24(9):1192-1196.
    [160]Song G M, Wu Y, Liu G, et al. Influence of AIF3 coating on the electrochemical properties of LiFePO4/graphite Li-ion batteries [J]. Journal of Alloys and Compounds,2009,487(1-2):214-217.
    [161]Chen Q, Wang Y, Zhang T, et al. Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries [J]. Electrochimica Acta, 2012,83:65-72.
    [162]Shi S J, Tu J P, Mai Y J, et al. Structure and electrochemical performance of CaF2 coated LiMn1/3Ni1/3Co1/3O2 cathode material for Li-ion batteries [J]. Electrochimica Acta,2012,83:105-112.
    [163]Cho J, Kim Y W, Kim B, et al. A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with AIPO4 Nanoparticles [J]. Angewandte Chemie International Edition,2003,42(14): 1618-1621.
    [164]Qing C, Bai Y, Yang J, et al. Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating [J]. Electrochimica Acta,2011,56(19):6612-6618.
    [165]Hu G R, Deng X R, Peng Z D, et al. Comparison of AlPO4- and Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode materials for Li-ion battery [J]. Electrochimica Acta,2008,53(5):2567-2573.
    [166]Kim H S, Kong M, Kim K, et al. Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries [J]. Journal of Power Sources,2007,171(2):917-921.
    [167]Yang T, Zhang N, Lang Y, et al. Enhanced rate performance of carbon-coated LiNi0.5Mn1.5O4 cathode material for lithium ion batteries [J]. Electrochimica Acta,2011,56(11):4058-4064.
    [168]Yang Y, Liao X Z, Ma Z F, et al. Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55℃ [J]. Electrochemistry Communications, 2009,11(6):1277-1280.
    [169]Pasquier A D, Orsini F, Gozdz A S, et al. Electrochemical behaviour of LiMn2O4-PPy composite cathodes in the 4 V region [J]. Journal of Power Sources,1999,81-82:607-611.
    [170]Albertus P, Christensen J, Newman J. Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries [J]. Journal of The Electrochemical Society,2009,156(7):A606-A618.
    [171]Numata T, Amemiya C, Kumeuchi T, et al. Advantages of blending LiNi0.8Co0.2O2 into Li1+xMn2-xO4 cathodes [J]. Journal of Power Sources,2001, 97-98:358-360.
    [172]Z. F. Ma X Q Y, X. Sun and J. Mcbreen. Charge-discharge characteristics and phase transitions of mixed LiNio0.8Co0.2O2 and LiMn2O4 cathode materials for lithium-ion batteries [J]. Journal of New Materials for Electrochemical Systems, 2001,9(2):121-125.
    [173]Whitacre J F, Zaghib K, West W C, et al. Dual active material composite cathode structures for Li-ion batteries [J]. Journal of Power Sources,2008, 177(2):528-536.
    [174]Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts [J]. Journal of Power Sources,2009,191(2):644-647.
    [175]Wang H, Zhang W D, Zhu L Y, et al. Effect of LiFePO4 coating on electrochemical performance of LiCoO2 at high temperature [J]. Solid State Ionics,2007,178(1-2):131-136.
    [176]Kim W S, Kim S B, Jang I C, et al. Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 [J].Journal of Alloys and Compounds,2010,492(1-2):L87-L90.
    [177]Liu D Q, Liu X Q, He Z Z. The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery [J]. Materials Chemistry and Physics,2007,105(2-3):362-366.
    [178]Takada K, Ohta N, Zhang L, et al. Interfacial modification for high-power solid-state lithium batteries [J]. Solid State Ionics,2008,179(27-32): 1333-1337.
    [179]Sun Y K, Myung S T, Kim M H, et al. Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core-Shell Structure as the Positive Electrode Material for Lithium Batteries [J]. Journal of the American Chemical Society,2005,127(38):13411-13418.
    [180]Sun Y K, Myung S T, Park B C, et al. Synthesis of Spherical Nano-to Microscale Core-Shell Particles Li[(Nio.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2 and Their Applications to Lithium Batteries [J]. Chemistry of Materials,2006, 18(22):5159-5163.
    [181]Lee K S, Myung S T, Sun Y K. Synthesis and electrochemical performances of core-shell structured Li[(Ni1/3Co1/3Mn1/3)0.8(Ni1/2Mn1/2)0.2]O2 cathode material for lithium ion batteries [J]. Journal of Power Sources,2010,195(18): 6043-6048.
    [182]Ju J H, Ryu K S. Synthesis and electrochemical performance of Li(Nio.8Co0.15Al0.05)0.8(Nio.5Mno.5)o.202 with core-shell structure as cathode material for Li-ion batteries [J]. Journal of Alloys and Compounds,2011, 509(30):7985-7992.
    [183]Sun Y K, Myung S T, Shin H S, et al. Novel Core-Shell-Structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via Coprecipitation as Positive Electrode Material for Lithium Secondary Batteries [J]. The Journal of Physical Chemistry B,2006,110(13):6810-6815.
    [184]Myung S T, Komaba S, Kurihara K, et al. Synthesis of Li[(Ni0.5Mn0.5)1-xLix]O2 by Emulsion Drying Method and Impact of Excess Li on Structural and Electrochemical Properties [J]. Chemistry of Materials,2006,18(6): 1658-1666.
    [185]Sun Y K, Myung S T, Park B C, et al. High-energy cathode material for long-life and safe lithium batteries [J]. Nature Materials,2009,8(4):320-324.
    [186]Sun Y K, Kim D H, Yoon C S, et al. A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries [J]. Advanced Functional Materials,2010,20(3):485-491.
    [187]Sun Y K, Kim D H, Jung H G, et al. High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries [J]. Electrochimica Acta,2010,55(28):8621-8627.
    [188]Chen Y, Xie K, Pan Y, et al. Nano-sized LiMn2O4 spinel cathode materials exhibiting high rate discharge capability for lithium-ion batteries [J]. Journal of Power Sources,2011,196(15):6493-6497.
    [189]Jo M, Hong Y S, Choo J, et al. Effect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries [J]. Journal of The Electrochemical Society,2009,156(6):A430-A434.
    [190]Sclar H, Kovacheva D, Zhecheva E, et al. On the Performance of LiNi1/3Mn1/3Co1/3O2 Nanoparticles as a Cathode Material for Lithium-Ion Batteries [J]. Journal of The Electrochemical Society,2009,156(11): A938-A948.
    [191]Zhu H L, Chen Z Y, Ji S, et al. Influence of different morphologies on electrochemical performance of spinel LiMn2O4 [J]. Solid State Ionics,2008, 179(27-32):1788-1793.
    [192]Hwang B J, Hsu K F, Hu S K, et al. Template-free reverse micelle process for the synthesis of a rod-like LiFePO4/C composite cathode material for lithium batteries [J]. Journal of Power Sources,2009,194(1):515-519.
    [193]Wang Y, Shao X, Xu H, et al. Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries [J]. Journal of Power Sources,2013,226:140-148.
    [194]Huang Z D, Liu X M, Zhang B, et al. LiNi1/3Co1/3Mn1/3O2 with a novel one-dimensional porous structure:A high-power cathode material for rechargeable Li-ion batteries [J]. Scripta Materialia,2011,64(2):122-125.
    [195]Liu J, Conry T E, Song X, et al. Spherical nanoporous LiCoPO4/C composites as high performance cathode materials for rechargeable lithium-ion batteries [J]. Journal of Materials Chemistry,2011,21(27):9984-9987.
    [196]王希敏,王先友,易四勇,等.层状锂离子电池正极材料LiNi0.8Co0.1 Mn0.1O2的制备及性能[J].过程工程学报,2007,7(4):817-821.
    [197]Cho T H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method [J]. Journal of Power Sources,2005, 142(1-2):306-312.
    [198]Luo X, Wang X, Liao L, et al. Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation [J]. Journal of Power Sources,2006,158(1):654-658.
    [199]Miyazaki T, Doi T, Kato M, et al. Structure and catalysis of layered rock-salt type oxides for methane oxidation [J]. Applied Surface Science,1997,121-122: 492-495.
    [200]Wu H M, Tu J P, Yuan Y F, et al. Structural, morphological and electrochemical characteristics of spinel LiMn2O4 prepared by spray-drying method [J]. Scripta Materialia,2005,52(6):513-517.
    [201]Dahn J R, Von Sacken U, Michal C A. Structure and electrochemistry of Li-±yNiO2 and a new Li2Ni02 phase with the Ni(OH)2 structure [J]. Solid State Ionics,1990,44(1-2):87-97.
    [202]Choi Y M, Pyun S I, Moon S I. Effects of cation mixing on the electrochemical lithium intercalation reaction into porous Li1-δNi1-yCoyO2 electrodes [J]. Solid State Ionics,1996,89(1-2):43-52.
    [203]Reale P, Privitera D, Panero S, et al. An investigation on the effect of Li+/Ni2+ cation mixing on electrochemical performances and analysis of the electron conductivity properties of LiCo0.33Mno.33Nio.3302 [J]. Solid State Ionics,2007, 178(23-24):1390-1397.
    [204]Hwang B J, Santhanam R, Chen C H. Effect of synthesis conditions on electrochemical properties of LiNi1-yCoyO2 cathode for lithium rechargeable batteries [J]. Journal of Power Sources,2003,114(2):244-252.
    [205]苏继桃,苏玉长,赖智广.制备镍、钴、锰复合氢氧化物的热力学分析[J].电池工业,2008,13(1):18-22.
    [206]胡国荣,刘艳君,彭忠东,等.控制结晶法合成球形正极材料LiNi0.8Co0.2O2及其电化学性能[J].中国有色金属学报,2007,17(1):59-67.
    [207]Wang F, Zhang Y, Zou J, et al. The structural mechanism of the improved electrochemical performances resulted from sintering atmosphere for LiNi0.5Co0.2Mn0.3O2 cathode material [J]. Journal of Alloys and Compounds, 2013,558:172-178.
    [208]Lu C H, Lee W C. Reaction mechanism and kinetics analysis of lithium nickel oxide during solid-state reaction [J]. Journal of Materials Chemistry,2000, 10(6):1403-1407.
    [209]Todorov Y M, Numata K. Effects of the Li:(Mn+Co+Ni) molar ratio on the electrochemical properties of LiMn1/3Co1/3Ni1/3O2 cathode material [J]. Electrochimica Acta,2004,50(2-3):495-499.
    [210]Kim J M, Kumagai N, Kadoma Y, et al. Synthesis and electrochemical properties of lithium non-stoichiometric Li1+x(Ni1/3Co1/3Mn1/3)O2+δ prepared by a spray drying method [J]. Journal of Power Sources,2007,174(2):473-479.
    [211]Prabu M, Reddy M V, Selvasekarapandian S, et al. Synthesis, impedance and electrochemical studies of lithium iron fluorophosphate, LiFePO4F cathode [J]. Electrochimica Acta,2012,85:572-578.
    [212]Reddy M V, Subba Rao G V, Chowdari B V R. Long-term cycling studies on 4 V cathode, lithium vanadium fluorophosphate [J]. Journal of Power Sources, 2010,195(17):5768-5774.
    [213]Levi E, Levi M D, Salitra G, et al. Electrochemical and in-situ XRD characterization of LiNiO2 and LiCo0.2Ni0.8O2 electrodes for rechargeable lithium cells [J]. Solid State Ionics,1999,126(1-2):97-108.
    [214]Levi M D, Salitra G, Markovsky B, et al. Solid-State Electrochemical Kinetics of Li-Ion Intercalation into Li1-xCoO2:Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS [J]. Journal of The Electrochemical Society,1999,146(4):1279-1289.
    [215]Shaju K M, Subba Rao G V, Chowdari B V R. Electrochemical Kinetic Studies of Li-Ion in O2-Structured Li2/3(Ni1/3Mn2/3)O2 and Li2/3+x(Ni1/3Mn2/3)O2 by EIS and GITT [J]. Journal of The Electrochemical Society,2003,150(1):A1-A13.
    [216]Feng C, Li H, Zhang C, et al. Synthesis and electrochemical properties of non-stoichiometric Li-Mn-spinel (Li1.02MxMn1.95O4-yFy) for lithium ion battery application [J]. Electrochimica Acta,2012,61:87-93.
    [217]Sha O, Tang Z, Wang S, et al. The multi-substituted LiNi0.475Al0.01Cr0.04Mn1.475O3.95F0.05 cathode material with excellent rate capability and cycle life [J]. Electrochimica Acta,2012,77:250-255.
    [218]Jouanneau S, Eberman K W, Krause L J, et al. Synthesis, Characterization, and Electrochemical Behavior of Improved Li[NixCo1-2xMnx]O2 (0.1≤x≤0.5) [J]. Journal of The Electrochemical Society,2003,150(12):A1637-A1642.
    [219]Sun Y K, Lee B R, Noh H J, et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries [J]. Journal of Materials Chemistry,2011,21(27):10108-10112.
    [220]Lee Y S, Ahn D, Cho Y H, et al. Improved Rate Capability and Thermal Stability of LiNi0.5Co0.2Mn0.3O2 Cathode Materials via Nanoscale SiP2O7 Coating [J]. Journal of The Electrochemical Society,2011,158(12): A1354-A1360.
    [221]Lin B, Wen Z, Gu Z, et al. Morphology and electrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode material by a slurry spray drying method [J]. Journal of Power Sources,2008,175(1):564-569.
    [222]Santhanam R, Rambabu B. Improved High Rate Cycling of Li-rich Li1.1Ni1/3Co1/3Mn1/3O2 Cathode for Lithium Batteries [J]. International Journal of Electrochemical Science,2009,4(4):1770-1778.
    [223]Cao H, Zhang Y, Zhang J, et al. Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries [J]. Solid State Ionics,2005,176(13-14):1207-1211.
    [224]Kanamura K, Toriyama S, Shiraishi S, et al. Studies on Electrochemical Oxidation of Nonaqueous Electrolytes Using In Situ FTIR Spectroscopy:I The Effect of Type of Electrode on On-Set Potential for Electrochemical Oxidation of Propylene Carbonate Containing 1.0 mol dm-3 [J]. Journal of The Electrochemical Society,1995,142(5):1383-1389.
    [225]Cao F F, Guo Y G, Zheng S F, et al. Symbiotic Coaxial Nanocables:Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem [J]. Chemistry of Materials,2010,22(5):1908-1914.
    [226]Yu Y, Gu L, Wang C, et al. Encapsulation of Sn@carbon Nanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries [J]. Angewandte Chemie International Edition,2009, 48(35):6485-6489.
    [227]Wu X L, Jiang L Y, Cao F F, et al. LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix:Superior Cathode Material for Electrochemical Energy-Storage Devices [J]. Advanced Materials,2009,21(25-26):2710-2714.
    [228]Zhang P, Zhang L, Ren X, et al. Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-PPy composites cathode materials for lithium-ion battery [J]. Synthetic Metals,2011,161(11-12):1092-1097.
    [229]吴诗德,宋彦良,李超,等.石墨烯材料的制备及其在电化学领域的应用[J].材料导报,2011,25(5):55-59.
    [230]袁小亚.石墨烯的制备研究进展[J].无机材料学报,2011,26(6):561-570.
    [231]Zhang M, Jia M, Jin Y. Fe3O4/reduced graphene oxide nanocomposite as high performance anode for lithium ion batteries [J]. Applied Surface Science,2012, 261:298-305.
    [232]Sathish M, Tomai T, Honma I. Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage [J]. Journal of Power Sources,2012,217: 85-91.
    [233]Xiao W, Wang Z, Guo H, et al. Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries [J]. Applied Surface Science,2013,266:148-154.
    [234]Venkateswara R C, Reddy L M A, Ishikawa Y, et al. LiNi1/3CO1/3Mni/3O2-Graphene Composite as a Promising Cathode for Lithium-Ion Batteries [J]. ACS Applied Materials Interfaces,2011,3(8): 2966-2972.
    [235]Yoon S, Jung K N, Yeon S H, et al. Electrochemical properties of LiNi0.8Co0.15Al0.05O2-graphene composite as cathode materials for lithium-ion batteries [J]. Journal of Electroanalytical Chemistry,2012,683:88-93.
    [236]Jiang K C, Wu X L, Yin Y X, et al. Superior Hybrid Cathode Material Containing Lithium-Excess Layered Material and Graphene for Lithium-Ion Batteries [J]. ACS Applied Materials Interfaces,2012,4(9):4858-4863.
    [237]Sinha N N, Shivakumara C, Munichandraiah N. High Rate Capability of a Dual-Porosity LiFePO4/C Composite [J]. ACS Applied Materials Interfaces, 2010,2(7):2031-2038.
    [238]Park K S, Song C H, Stephan A M, et al. Influence of solvents on the synthesis and electrochemical properties of Li[Li1/5Ni1/10Co1/5Mn1/2]O2 for the applications in lithium-ion batteries [J]. Journal of Materials Science,2006, 41(22):7628-7635.
    [239]Noh H J, Youn S, Yoon C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3,0.5,0.6,0.7, 0.8 and 0.85) cathode material for lithium-ion batteries [J]. Journal of Power Sources,2013,233:121-130.
    [240]Andersson A M, Abraham D P, Haasch R, et al. Surface Characterization of Electrodes from High Power Lithium-Ion Batteries [J]. Journal of The Electrochemical Society,2002,149(10):A1358-A1369.
    [241]Zhuang G V, Chen G, Shim J, et al. Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power [J]. Journal of Power Sources,2004, 134(2):293-297.
    [242]Mijung N, Lee Y, Cho J. Water Adsorption and Storage Characteristics of Optimized LiCoO2 and LiNi1/3Co1/3Mn1/3O2 Composite Cathode Material for Li-Ion Cells [J]. Journal of The Electrochemical Society,2006,153(5): A935-A940.
    [243]Liu H S, Zhang Z R, Gong Z L, et al. Origin of Deterioration for LiNiO2 Cathode Material during Storage in Air [J]. Electrochemical and Solid-State Letters,2004,7(7):A190-A193.
    [244]Liu H, Yang Y, Zhang J. Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries [J]. Journal of Power Sources,2006,162(1):644-650.
    [245]Xiong X, Wang Z, Yue P, et al. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries [J]. Journal of Power Sources,2013,222: 318-325.
    [246]Li L, Li X, Wang Z, et al. Synthesis, structural and electrochemical properties of LiNi0.79Co0.1Mn0.1Cr0.01O2 via fast co-precipitation [J]. Journal of Alloys and Compounds,2010,507(1):172-177.
    [247]Sun Y K, Jeon Y S, Leeb H J. Overcoming Jahn-Teller Distortion for Spinel Mn Phase [J]. Electrochemical and Solid-State Letters,2000,3(1):7-9.
    [248]Shin H S, Shin D, Sun Y K. Improvement of electrochemical properties of Li[Nio.4Coo.2Mn(0.4-x)Mgx]O2-yFy, cathode materials at high voltage region [J]. Electrochimica Acta,2006,52(4):1477-1482.
    [249]Kim G H, Kim J H, Myung S T, et al. Improvement of High-Voltage Cycling Behavior of Surface-Modified Li(Ni1/3Co1/3Mn1/3)O2 Cathodes by Fluorine Substitution for Li-Ion Batteries [J]. Journal of The Electrochemical Society, 2005,152(9):A1707-A1713.
    [250]Pan M, Lin X, Zhou Z. Electrochemical performance of LiFePO4/C doped with F synthesized by carbothermal reduction method using NH4F as dopant [J]. Journal of Solid State Electrochemistry,2011,16(4):1615-1621.
    [251]He Y S, Pei L, Liao X Z, et al. Synthesis of LiNi1/3Co1/3Mn1/3O2-zFz cathode material from oxalate precursors for lithium ion battery [J]. Journal of Fluorine Chemistry,2007,128(2):139-143.
    [252]Choi W, Manthiram A. Influence of Fluorine on the Electrochemical Performance of Spinel LiMn2-y-ziyZn-O4-δFδ Cathodes [J]. Journal of The Electrochemical Society,2007,154(7):A614-A618.
    [253]Choi W, Manthiram A. Factors Controlling the Fluorine Content and the Electrochemical Performance of Spinel Oxyfluoride Cathodes [J]. Journal of The Electrochemical Society,2007,154(8):A792-A797.
    [254]Choi W, Manthiram A. Influence of fluorine substitution on the electrochemical performance of 3 V spinel Li4Mn5O12-ηF, cathodes [J]. Solid State Ionics,2007, 178(27-28):1541-1545.
    [255]Stroukoff K R, Manthiram A. Thermal stability of spinel Li1.1Mn1.9-yMyO4-zFz (M=Ni, Al, and Li,0≤y≤0.3, and 0≤z≤0.2) cathodes for lithium ion batteries [J]. Journal of Materials Chemistry,2011,21(27):10165-10170.
    [256]Luo Q, Muraliganth T, Manthiram A. On the incorporation of fluorine into the manganese spinel cathode lattice [J]. Solid State Ionics,2009,180(9-10): 703-707.
    [257]Kageyama M, Li D, Kobayakawa K, et al. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2-xFx prepared by solid state reaction [J]. Journal of Power Sources,2006,157(1):494-500.
    [258]Amine K, Chen Z, Kang S H. Impacts of fluorine on the electrochemical properties of LiNio.5Mn0.5O2 and LiLi0.2Ni0.15Co0.1Mno.55O2 [J]. Journal of Fluorine Chemistry,2007,128(4):263-268.
    [259]Lochel B P, Strehblow H H. Breakdown of Passivity of Nickel by Fluoride [J]. Journal of The Electrochemical Society,1984,131(4):713-723.
    [260]Endo E, Yasuda T, Yamaura K, et al. LiNiO2 electrode modified by plasma chemical vapor deposition for higher voltage performance [J]. Journal of Power Sources,2001,93(1-2):87-92.
    [261]Li W, Reimers J N, Dahn J R. In situ x-ray diffraction and electrochemical studies of Li1-xNiO2 [J]. Solid State Ionics,1993,67(1-2):123-130.
    [262]Wanger C D, Riggs W M, Davis L E. Handbook of X ray photoelectron spectroscopy [M]. USA:Perkin-Elmer corporation,1979.
    [263]王蓉,杨承旭,时迎国,等.1200℃合成Mn3O4-Fe2O3体系的物相关系、结构和阳离子分布[J].物理化学学报,2012,28(5):1021-1029.
    [264]Manivannan V, Chennabasappa M, Garrett J. Optimization and Characterization of Lithium Ion Cathode Materials in the System (1-x-y)LiNi0.8Co0.2O2·Li2MnO3·yLiCoO2 [J]. Energies,2010,3(4):847-865.
    [265]Zhong J H, Wang A L, Li G R, et al. Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications [J]. Journal of Materials Chemistry,2012,22(12):5656-5665.
    [266]Thomas M G S R, David W I F, Goodenough J B, et al. Synthesis and structural characterization of the normal spinel LiNi2O4 [J]. Materials Research Bulletin,1985,20(10):1137-1146.
    [267]Hwang B J, Tsai Y W, Chen C H, et al. Influence of Mn content on the morphology and electrochemical performance of LiNi1-x-yCoxMnyO2 cathode materials [J]. Journal of Materials Chemistry,2003,13(8):1962-1968.
    [268]Naghash A R, Lee J Y. Lithium nickel oxyfluoride (Li1-zNi1+zFyO2-y) and lithium magnesium nickel oxide (Li1-z(MgxNi1-x)1+zO2) cathodes for lithium rechargeable batteries:Part Ⅰ. Synthesis and characterization of bulk phases [J]. Electrochimica Acta,2001,46(7):941-951.
    [269]Naghash A R, Lee J Y. Lithium nickel oxyfluoride (Li1-xNi1+zFyO2-y) and lithium magnesium nickel oxide (Li1-z(MgxNi1-x)1+zO2) cathodes for lithium rechargeable batteries:Ⅱ. Electrochemical investigations [J]. Electrochimica Acta,2001,46(15):2293-2304.
    [270]Yue P, Wang Z, Peng W, et al. Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries [J]. Scripta Materialia,2011,65(12):1077-1080.
    [271]Choi W, Manthiram A. Superior Capacity Retention Spinel Oxyfluoride Cathodes for Lithium-Ion Batteries [J]. Electrochemical and Solid-State Letters, 2006,9(5):A245-A248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700