锂离子电池LiNi_(0.8)Co_(0.15)Al_(0.05)O_2正极材料的合成、改性及储存性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在锂离子电池富镍系LiNiO2基正极材料中,LiNi0.8Co0.15Al0.05O2作为LiNiO2、LiCoO2和LiAlO2三者的固溶体,同时具备了容量高,热稳定性好和价廉低毒等优点,被认为是能够取代LiCoO2的第二代绿色锂离子电池正极材料。但是,LiNi0.8Co0.15Al0.05O2仍然存在充放电过程中容量衰减较快、倍率性能不好和储存性能极差等缺陷,严重阻碍了其大规模的应用。为此,本文采用不同的方法对其进行制备和改性研究,以改善其电化学性能和储存性能。
     以控制结晶法制备的球形Ni0.8Co0.15Al0.05(OH)2.05为前驱体,采用加压氧化法制备了LiNi0.8Co0.15Al0.05O2正极材料。分析了LiOH·H2O用量、氧气压力、温度和时间等因素对材料结构和电化学性能的影响。在优化工艺条件下,所得LiNi0.8Co0.15Al0.05O2正极材料振实密度为2.57g·cm-3,在2.8~4.3V电位范围内,以0.2C进行充放电,首次放电比容量达到190mAh·g-1,30次循环后容量保持率为91%。
     采用共氧化-控制结晶法制备了球形Ni0.8Co0.15Al0.05OOH前驱体,详细讨论了Ni0.8Co0.15Al0.05OOH的形成机理,(NH4)2S2O8用量、pH值、温度和时间等因素对前驱体振实密度和镍离子平均氧化态的影响。结果发现,反应初期,以[Ni0.8Co0.5Al0.05(H2O)x-y(NH3)y]2.05+络离子的先沉淀后氧化为主,反应中后期,以[Ni0.8Co0.15Al0.05(H2O)x-y(NH3)y]2.05+络离子的先氧化后沉淀为主,最终得到Ni0.8Co0.15Al0.05OOH。在优化工艺条件下,所得前驱体振实密度达到1.88g.cm-3,镍离子平均氧化态为3。以该前驱体制备的LiNi0.8Co0.15Al0.05O2正极材料几乎不存在阳离子混排,层状结构最完整,显示出了优异的电化学性能,在2.8~4.3V电位范围内,以0.2C充放电,首次放电比容量达到196.8mAh·g-1,50次循环后容量保持率为96.1%。
     对熔盐法制备LiCoO2表相改性LiNi0.8Co0.15Al0.05O2正极材料作了系统研究。研究结果表明,优化工艺条件下,可在LiNi0.8Co0.15Al0.05O2基体材料表面均匀而又牢固地沉积一层厚度约为50nm的LiCoO2薄膜。3.0wt.%LiCoO2表相改性的LiNi0.8Co0.15Al0.05O2正极材料首次放电比容量高达196.2mAh·g-1,与基体材料相当;50次循环后容量保持率为98.7%,相对于基体材料的96.1%有所提高;而且,改性材料的倍率性能和高温性能均得到了提高。电化学阻抗谱分析表明,LiCoO2有效地覆盖在基体材料的表面,阻碍了Ni3+与电解液的直接接触,减少了Ni3+的还原机会,减少了NiO的生成量,降低了充放电过程中阻抗的增加幅度,改善了材料的电化学性能。而沉淀法制备的LiCoO2表相改性LiNi0.8Co0.15Al0.05O2正极材料,只有少部分LiCoO2沉积在基体材料的表面,大部分LiCoO2自行团聚在一起;相对于基体材料而言,改性材料的循环性能基本没有改变,放电比容量反而降低了。
     系统地研究了去离子水和乙醇洗涤及LiCoO2表相改性对LiNi0.8Co0.15Al0.05O2正极材料储存性能的影响。研究结果表明,采用低温水洗可以有效地除去LiNi0.8Co0.15Al0.05O2材料表面残留的含锂杂质,对材料的结构和放电比容量几乎不造成影响,且能小幅度地改善材料的储存性能,在空气中储存3个月后,材料的首次放电比容量由洗涤前的127.5mAh·g1增加至洗涤后的160mAh·g-1左右,30次循环后的容量保持率由洗涤前的66.5%增加至洗涤后的82%。水洗后的热处理温度对水洗材料的结构和储存性能有着显著的影响,450~600℃热处理材料因表面生成了NiO而提高了其储存性能,但是放电比容量降低了;而热处理温度过低或过高,所得材料与新制备材料显示出了相似的储存性能。储存过程中的空气湿度对新制备材料有着显著的影响,湿度越大,放电比容量和容量保持率下降越多;但是,空气湿度对低温水洗再450℃热处理过的材料的储存性能影响不大。新制备的LiNi0.8Co0.15Al0.05O2正极材料立即采用乙醇洗涤2次后,亦能有效地除去材料表面的锂杂质,与低温水洗的效果相当。
     熔盐法制备的3.0wt.%LiCoO2表相改性LiNi0.8Co0.15Al0.05O2正极材料,其储存性能得到了大幅提高。在相对湿度80%的空气中储存3个月后,基体材料的首次放电比容量只有127.5mAh·g-1,30次循环后的容量保持率仅仅66.5%;而改性材料的首次放电比容量高达186.6mAh·g-1,30次循环后的容量保持率达到95.3%,50次循环后的容量保持率仍有90%。XPS分析表明,LiCoO2改性层中的Co3+具有很好的化学稳定性,能耐环境中CO2和H2O的腐蚀;覆盖在基体材料表面后有效地抑制了Ni3+的还原,大大降低了NiO和Li2CO3的生成量,从而改善了LiNi0.8Co0.15Al0.05O2的储存性能。
Among the nickel-rich LiNiO2-based cathode materials for lithium-ion batteries, LiNi0.8Co0.15Al0.05O2has been considered as the substitution for LiCoO2in that it owns the advantages of LiNiO2, LiCoO2and LiAlO2, such as high capacity, good thermal stability, low cost and low toxicity. However, the loss of capacity during cycling, insufficient rate capability and poor storage performance have seriously hindered its application in large scale. In this dissertation, in order to improve its electrochemical properties and storage performance, the LiNi0.8Co0.15Al0.05O2cathode material was prepared and modified using different methods.
     The LiNi0.8Co0.15Al0.05O2cathode material was synthesized under the elevated oxygen pressure from the spherical Ni0.8Co0.15Al0.05(OH)2.05precursor prepared by a controlled crystallization method. The effects of molar ratio of Li to Ni+Co+Al, oxygen pressure, temperature and time on the structure and electrochemical properties of LiNi0.8Co0.15Al0.05O2were examined. The spherical LiNi0.8Co0.15Al0.05O2cathode material with tap density of2.57g·cm-3was prepared under the optimum condition. The initial discharge specific capacity of these powders was190mAh·g-1at0.2C in the voltage range of2.8-4.3V, and91%of the initial discharge capacity was maintained after30cycles.
     The spherical Ni0.8Co0.15Al0.05O2OOH precursor was synthesized by a co-oxidation-controlled crystallization method. The effects of (NH4)2S2O8, pH value, temperature and time on the precursor's tap density and nickel ions' average oxidation state, as well as the precursor's forming mechanism were studied systematically. In the initial stage, the [Ni0.8Co0.15Al0.05(H2O)x-y(NH3)y]2.05+ions were precipitated and later oxidized. In the middle and final stages, the [Ni0.8Co0.15Al0.05(H2O)x-y(NH3)y]2.05+ions were oxidized and later precipitated. Eventually, Ni0.8Co0.15Al0.05OOH with tap density of1.88g·cm-3and nickel ions' average oxidation state of three was obtained. The LiNi0.8Co0.15Al0.05O2cathode material prepared from this Ni0.8Co0.15Al0.05OOH precursor had the best-ordered hexagonal layer structure and least cation mixing. The charge-discharge tests demonstrated that these powders exhibited excellent electrochemical properties, with an initial discharge capacity of196.8mAh·g-1and capacity retention of96.1%after50cycles when cycled at a current density of0.2C between2.8and4.3V.
     The LiCoO2-coated LiNi0.8Co0.15Al0.05O2cathode material was prepared successfully via a molten salt method. The results showed that a uniform LiCoO2layer with a thickness of~50nm was coated on the surface of LiNi0.8Co0.15Al0.05O2under the optimum condition. The3.0wt.%LiCoO2-coated LiNi0.8Co0.15Al0.05O2showed an initial discharge capacity of196.2mAh·g-1and capacity retention of98.7%after50cycles. While the corresponding values of the bare LiNi0.8Co0.15Al0.05O2were196.8mAh·g-1and96.1%, respectively. Moreover, the coated sample exhibited better rate capability and high-temperature performance than the bare sample. The electrochemical impedance spectroscopy analyses indicated that the LiCoO2layer coated on the LiNi0.8Co0.15Al0.05O2hindered effectively the direct contact between Ni3+and electrolyte, and decrease of NiO amount on the coated material reduced impedance during charge and discharge, which improved the electrochemical performance of LiNi0.8Co0.15Al0.05O2. On the other hand, the LiCoO2-coated LiNi0.8Co0.15Al0.05O2cathode material prepared by a precipitation method showed lower discharge capacity than the pristine LiNi0.8Co0.15Al0.05O2and the same cycle performance as the bare sample, which was attributed to the formation of the mixture of LiCoO2and LiNi0.8Co0.15Al0.05O2, with a few LiCoO2coated on LiNi0.8Co0.15Al0.05O2.
     The effects of washing LiNi0.8Co0.15Al0.05O2with deionized water and ethanol, and surface coating with LiCoO2on its storage performance were systematically studied. The results showed that washing with low-temperature deionized water could effectively eliminate the lithium impurity (LiOH and Li2CO3) on the surface of LiNi0.8Co0.15Al0.05O2powders, and improve slightly its storage capability without changing structure and discharge capacity. After storage in air for three months, the initial discharge specific capacity of the fresh LiNi0.8Co0.15Al0.05O2material was127.5mAh·g-1, and the capacity retention was66.5%after30cycles. While the corresponding values of the washed sample were160mAh·g-1and82%, respectively. The heat-treatment temperature after washing had obvious influence on the structure and storage capability of washed LiNi0.8Co0.15Al0.05O2. After heat treatment under450-600℃, the storage performance of the material was enhanced due to the formation of NiO on the material surface, but the discharge capacity was decreased. However, the cathode material treated under higher than600℃or lower than450℃showed the similar storage performance with the fresh sample. In addition, the air humidity during storage had remarkable effects on the fresh LiNi0.8Co0.15Al0.05O2material. The higher the humidity was, the more the discharge capacity and capacity retention decreased. However, the moisture had little influence on the storage capability of the material treated with washing and heat treatment under450℃. More meaningfully, washing twice the fresh LiNi0.8Co0.15Al0.05O2material with ethonal showed the same effect as the said washing with low-temperature water.
     The storage performance of the3.0wt.%LiCoO2-coated LiNi0.8Co0.15Al0.05O2cathode material prepared by the molten salt method was substantially enhanced. After storage in air with80%relative humidity for three months, the bare LiNi0.8Co0.15Al0.05O2material delivered an initial discharge capacity of127.5mAh·g-1and the capacity retention was66.5%after30cycles. Contrastively, the initial discharge capacity of the LiCoO2-coated LiNi0.8Co0.15Al0.05O2material was186.6mAh·g-1, and the capacity retention was95.3%after30cycles,90%after50cycles, respectively. XPS analyses demonstrated that Co3+in the LiCoO2coating layer has excellent chemical stability and can resist the erosion of CO2and H2O in the air. Thus, the reduction of Ni3+to Ni2+on the surface of LiNi0.8Co0.15Al0.05O2was effectively suppressed by the LiCoO2coating, and the formation amounts of NiO and Li2CO3were decreased greatly, which was responsible for the improvement of storage property of LiNi0.8Co0.15Al0.05O2.
引文
[1]吴宇平,戴晓兵,马军旗,等.锂离子电池——应用与实践[M].北京:化学工业出版社,2004:1-5.
    [2]M.Armand, J.M.Tarascon. Building better batteries[J]. Nature,2008,451(7179): 652-657.
    [3]郭炳煜,徐徽,王先友,等.锂离子电池[M].长沙:中南大学出版社,2002:35.
    [4]R. Yazami, N. Lebrun, M. Bormeau, et al. High Performance LiCoO2 Positive electrode material [J]. Journal of Power Sources,1995,54(2):389-392.
    [5]G. A. Nazri, G Pistoia. Lithium batteries science and technology[M]. New York: Springer Science Business Media,2009:317.
    [6]S. G. Kang, S. Y. Kang, K. S. Ryu, et al. Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method[J]. Solid State Ionics,1999,120:155-161.
    [7]K. Amine, H. Yasuda, M. Yamachi. Olivine LiCoPO4 as 4.8 V Electrode Material for Lithium Batteries. Electrochemical and Solid-State Letters[J].2000,3(4): 178-179.
    [8]B. Jin, H. B. Gu, K. W. Kim. Effect of different conductive additives on charge/discharge properties of LiCoPO4/Li batteries[J]. Journal of Solid State Electrochemistry,2008,12:105-111.
    [9]R. Sharabi, E. Markevich, V. Borgel, et al. Significantly improved cycling performance of LiCoPO4 cathodes[J]. Electrochemistry Communications,2011, 13:800-802.
    [10]J. Wolfenstine, J. Read, J. L. Allen. Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4[J]. Journal of Power Sources,2007, 163:1070-1073.
    [11]W. Luo, J. R. Dahn. Comparative study of Li[Co1-zAl2]O2 prepared by solid-state and co-precipitation methods[J]. Electrochimica Acta,2009,54:4655-4661.
    [12]M. Carewska, S. Scaccia, F. Croce, et al. Electrical conductivity and 6,7Li NMR studies of Li1+yCoO2[J]. Solid State Ionics,1997,93:227-237.
    [13]H. S. Kim, T. K. Ko, B. K. Na, et al. Electrochemical properties of LiMxCo1-xO2 [M=Mg, Zr] prepared by sol-gel process[J]. Journal of Power Sources,2004, 138:232-239.
    [14]Z. X. Yang, W. S. Yang, Z. F. Tang. Pillared layered Li1-2xCaxCoO2 cathode materials obtained by cationic exchange under hydrothermal conditions[J]. Journal of Power Sources,2008,184:557-561.
    [15]R. J. Gummow, M. M. Thackeray. Characterization of LT-LixCo1-yNiyO2 electrodes for rechargeable lithium cells[J]. Journal of the Electrochemical Society,1993,140(12):3365-3368.
    [16]M. Ganesan, S. Sundararajan, M. V. T. Dhananjeyan, et al. Synthesis and characterization of tetravalent titanium (Ti4+) substituted LiCoO2 for lithium-ion batteries[J]. Materials Science and Engineering B,2006,131:203-209.
    [17]M. V. V. M. Satya-Kishore, U. V. Varadaraju. Influence of isovalent ion substitution on the electrochemical performance of LiCoP04[J]. Material Research Bulletin,2005,40:1705-1712.
    [18]S. Okada, M. Ueno, Y. Uebou, et al. Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries[J]. Journal of Power Sources,2005,146: 565-569.
    [19]M. E. Arroyo-Dompablo, U. Amador, F. Garcia-Alvarado. An Experimental and computational study of the electrode material olivine-LiCoAsO4[J]. Journal of the Electrochemistry Society.2006,153(4):A673-A678.
    [20]Z. L. Gong, Y. X. Li, Y. Yang. Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries[J]. Journal of Power Sources,2007,174:524-527.
    [21]F. Wang, J. Yang, Y. N. Li, et al. Highly promoted electrochemical performance of 5V LiCoPO4 cathode material by addition of vanadium[J]. Journal of Power Sources,2010,195:6884-6887.
    [22]H. Arai, M. Tsuda, K. Saito, et al. Nickel dioxide Polymorphs as lithium insertion electrodes [J]. Electrochimca Acta,2002,47(17):2697-2705.
    [23]Z. Zhang, D. Fouchard, J. R. Rea. Differential scanning calorimetry material studies:implications for the safety of lithium-ion cells[J]. Journal of Power Sources,1998,70:16-20.
    [24]P. Biensan, B. Simon, J. P. Peres, et al. On safety of lithium-ion cells[J]. Journal of Power Sources,1999,81-82:906-912.
    [25]A. Rougier, C. Delmas, G. Chouteau. Magnetism of Li1-zNi1+zO2:a powerful tool for structure determination[J]. Journal of Physics and Chemistry of Solids,1996, 57(6-8):1101-1103.
    [26]J. Wolfenstine, J. Allen. Ni3+/Ni2+ redox potential in LiNiPO4[J]. Journal of Power Sources,2005,142:389-390.
    [27]Wolfenstine J, Allen J. LiNiPO4-LiCoPO4 solid solutions as cathodes[J]. Journal of Power Sources,2004,136:150-153.
    [28]C. A. J. Fisher, V. M. H. Prieto, M. S. Islam. Lithium battery materials LiMPO4 (M=Mn, Fe, Co, and Ni):insights into defect association, transport mechanisms, and doping behavior[J]. Chemistry of Materials,2008,20:5907-5915.
    [29]I. Saadoune, C. Delmas. On the LixNi0.8Co0.2O2 system[J]. Journal of Solid State Chemistry,1998,136:8-15.
    [30]M. Broussely, P. Blanchard, P. Biensan, et al. Properties of large Li ion cells using a nickel based mixed oxide[J]. Journal of Power Sources,2003,119-121: 859-864.
    [31]M. H. Kim, H. S. Shin, D. Shin, et al. Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]02 via co-precipitation[J]. Journal of Power Sources,2006,159:1328-1333.
    [32]S. K. Martha, H. Sclar, Z. S. Framowitz, et al. A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.3302,and LiNi0.40Mn0.40Co0.20O2 layered compounds[J]. Journal of Power Sources,2009,189:248-255.
    [33]S. Patoux, M. M. Doeff. Direct synthesis of LiNi1/3Co1/3Mn1/3O2 from nitrate precursors[J]. Electrochemistry Communications,2004,6:767-772.
    [34]S. T. Myung, S. Komaba, K. Kurihara, et al. Synthesis of Li[(Ni0.5Mn0.5)1-xLix]O2 by emulsion drying method and impact of excess Li on structural and electrochemical properties[J]. Chemistry of Materials,2006,18:1658-1666.
    [35]A. R. Armstrong, G P. Bruce. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries[J]. Nature,1996,381:499-500.
    [36]J. L. Xie, X. Huang, Z. B. Zhu, et al. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles[J]. Ceramics International,2011,37:419-421.
    [37]L. Chen, X. Huang, E. Kelder, et al. Diffusion enhancement in LixMn2O4 [J]. Solid State Ionics,1995,76:91-96.
    [38]K. Y. Chung, K. B. Kim. Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes [J]. Electrochimica Acta,2004,49(20):3327-3337.
    [39]G. H. Li, H. Azuma, M. Tohda. LiMnPO4 as the cathode for lithium batteries[J]. Electrochemical and Solid-State Letters,2002,5(6):A135-A137.
    [40]A. Yamada, M. Hosoya, S. C. Chung, et al. Olivine-type cathodes achievements and problems[J]. Journal of Power Sources,2003,119:232-236.
    [41]J. Xiao, W. Xu, D. Choi, et al. Synthesis and characterization of lithium manganese phosphate by a precipitation method[J]. Journal of the Electrochemical Society,2010,157(2):A142-A147.
    [42]J. M. Amarilla, K. Petrov, F. Pico, et al. Sucroseaided combustion synthesis of nanosized LiMn1.99-yLiyM0.01O4 (M=A13+, Ni2+, Cr3+, Co3+, y=0.01 and 0.06) spinels. Characterization and electrochemical behavior at 25 and at 55℃ in rechargeable lithium cells [J]. Journal of Power Sources,2009,191:591-600.
    [43]M. Helan, L. John Berchmans. Synthesis of LiSm0.01Mn1.99O4 by molten salt technique[J]. Journal of Rare Earths,2010,28(2):255-259.
    [44]J. Tu, X. B. Zhao, D. G. Zhuang, et al. Studies of cycleability of LiMn2O4 and LiLa0.01Mn1.99O4 as cathode materials for Li-ion battery[J]. Physica B,2006,382: 129-134.
    [45]R. Singhal, S. R. Dasb, M. S. Tomara, et al. Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries[J]. Journal of Power Sources,2007,164:857-862.
    [46]T. Shiratsuchi, S. Okada, T. Doi, et al. Cathodic performance of LiMn1-xMxPO4(M=Ti, Mg and Zr) annealed in an inert atmosphere[J]. Electrochimica Acta,2009,54:3145-3151.
    [47]R. Dominko, M. Bele, M. Gaberscek, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochemistry Communications,2006,8(2):217-222
    [48]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-livines as positive electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [49]D. Morgan, A. Van der Ven, G. Ceder. Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials[J]. Electrochemical and Solid-State Letters,2004,7(2): A30-A32.
    [50]B. Fuchs, S. Kemmler-Sack. Synthesis of LiMnO2 and LiFeO2 in molten Li halides[J]. Solid State Ionics,1994,68:279-285.
    [51]S. H. Wu, H. Y. Liu. Preparation of α-LiFeO2-based cathode materials by an ionic exchange method[J]. Journal of Power Sources,2007,174:789-794.
    [52]P. Larsson, R. Ahuja, A. Nyten, et al. An ab initio study of the Li-ion battery cathode material Li2FeSiO4 [J]. Electrochemistry Communications,2006, 8(5):797-800
    [53]A. Yamada, N. Iwane, Y. Harada, et al. Lithium iron borates as high-capacity battery electrodes[J]. Advanced Materials,2010,22(32):3583-3587.
    [54]S. Y. Chung, J. T. Bloking, Y. M. Chiang. Electronically conductive phospho-olivines as lithium storage eletrodes [J]. Nature Materials,2002,1(2): 123-128.
    [55]G. X. Wang, S. Bewlay, J. Yao, et al. Characterization of LiMxFe1-PO4 (M= Mg, Zr,Ti) cathode materials prepared by the sol-gel method[J]. Electrochemical and Solid-State Letters,2004,7(12):A503-A506.
    [56]H. T. Kuo, N. C. Bagkar, R. S. Liu, et al. Structural transformation of LiVOPO4 to Li3V2(PO4)3 with enhanced capacity[J]. Journal of Physical Chemistry B,2008, 112:11250-11257.
    [57]J. Gaubicher, C. Wurm, G. Goward, et al. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries[J]. Chemistry of Materials,2000,12(11):3240-3242.
    [58]R. Santhanam, B. Rambabu. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material[J]. Journal of Power Sources,2010,195:5442-5451.
    [59]M. M. Thackeray, S. H. Kang, C. S. Johnson, et al. Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries[J]. Electrochemistry Communications,2006,8:1531-1538.
    [60]G. H. Li, H. Azuma, M. Tohda. Optimized LiMnyFe1-yPO4 as the cathode for lithium batteries[J]. Journal of the Electrochemical Society,2002,149(6): A743-A747.
    [61]A. Kokalj, R. Dominko, G Mali, et al. Beyond one-electronreaction in Li cathode materials:designing Li2MnxFe1-xSiO4[J]. Chemistry of Materials,2007,19(15): 3633-3640.
    [62]V. Bianchi, S. Bach, C. Belhomme, et al. Electrochemical investigation of the Li insertion-extraction reaction as a function of lithium deficiency in Li1-xNi1+xO2[J]. Electrochimica Acta,2001,46:999-1011.
    [63]A. Rougier, P. Gravereau, C. Delmas. Optimization of the composition of the Li1-zNi1+zO2 electrode materials:structural, magnetic, and electrochemical studies[J]. Journal of the Electrochemical Society,1996,143(4):1168-1175.
    [64]叶乃清,刘长久,沈上越.锂离子电池正极材料LiNiO2存在的问题与解决办法[J].无机材料学报,2004,19(6):1217-1224.
    [65]C. Delmas, J. P. Peres, A. Rougier, et al. On the behavior of the LixNiO2 system: an electrochemical and structural overview[J]. Journal of Power Sources,1997, 68:120-125.
    [66]C. Delmas, M. Menetrier, L. Croguennec, et al. Lithium batteries:a new tool in solid state chemistry[J]. International Journal of Inorganic materials,1999,1: 11-19.
    [67]T. Ohzuku, A. Ueda, M. Nagayama. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells[J]. Journal of the Electrochemical Society,1993,140(7):1862-1870.
    [68]H. R. Park, S. D. Yoon. A study on the synthesis from Li2CO3, NiO and Co3O4 and the electrochemical properties of cathode materials LiNi1-yCoyO2 for lithium secondary battery[J]. Solid-State Electronics,2006,50:1291-1298.
    [69]H. Cao, B. J. Xia, N. X. Xu, et al. Structural and electrochemical characteristics of Co and Al co-doped lithium nickelate cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds,2004,376:282-286.
    [70]D. Caurant, N. Baffler, B. Garcia, et al. Synthesis by a soft chemistry route and characterization of LiNixCo1-xO2(0≤x≤1) cathode materials[J]. Solid State Ionics, 1996,91:45-54.
    [71]Y. Chen, G X. Wang, J. P. Tian, et al. Preparation and properties of spherical LiNi0.75Co0.25O2 as a cathode for lithium-ion batteries[J]. Electrochimica Acta, 2004,50:435-441.
    [72]J. R. Ying, C. R. Wan, C. Y. Jiang, et al. Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium ion batteries[J]. Journal of Power Sources,2001,99(1-2):78-84.
    [73]Z. X. Yang, B. Wang, W. S. Yang, et al. A novel method for the preparation of submicron-sized LiNi0.8Co0.2O2 cathode material [J]. Electrochimica Acta,2007, 52:8069-8074.
    [74]H. M. Wu, J. P. Tu, X. T. Chen, et al. Synthesis and characterization of LiNi0.8Co0.2O2 as cathode material for lithium-ion batteries by a spray-drying method[J]. Journal of Power Sources,2006,159:291-294.
    [75]邓新荣.锂离子电池镍系正极材料的制备及室温固相表面包覆技术研究[D]. 长沙:中南大学,2008:20-52.
    [76]S. H. Ju, H. C. Jang, Y. C. Kang. Al-doped Ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape[J]. Electrochimica Acta,2007,52:7286-7292.
    [77]S. Castro-Garcia, C. Julien, M.A. Senaris-Rodriguez. Structural and electrochemical properties of Li-Ni-Co oxides synthesized by wet chemistry via a succinic-acid-assisted technique[J]. International Journal of Inorganic Materials, 2001,3:323-329.
    [78]C. J. Han, J. H. Yoon, W. I. Cho, et al. Electrochemical properties of LiNio.8Coo.2-xAlx02 prepared by a sol-gel method[J]. Journal of Power Sources, 2004,136:132-138.
    [79]C. W. Wang, X. L. Ma, J. G. Cheng, et al. Synthesis of LiNi0.9Co0.1O2 cathode material for lithium secondary battery by a novel route[J]. Materials Letters, 2007,61:556-560.
    [80]D. C. Li, Z. H. Peng, W. Y. Guo, et al. Synthesis and characterization of LiNi0.9Co0.1O2 for lithium batteries by a novel method[J]. Journal of Alloys and Compounds,2008,457:L1-L5.
    [81]M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Synthesis by molten salt and cathodic properties of Li(Ni1/3Co1/3Mn1/3)O2[J]. Journal of Power Sources,2006, 159:263-267.
    [82]Z. R. Chang, Z. J. Chen, F. Wu, et al. The synthesis of Li(Ni1/3Co1/3Mn1/3)O2 using eutectic mixed lithium salt LiNO3-LiOH[J]. Electrochimica Acta,2009,54: 6529-6535.
    [83]K. Du, Z. D. Peng, G. R. Hu, et al. Synthesis of LiMn1/3Ni1/3Co1/3O2 in molten KCL for rechargeable lithium-ion batteries[J]. Journal of Alloys and Compounds, 2009,476:329-334.
    [84]P. Elumalai, H. N. Vasan, N. Munichandraiah. Synthesis of LiCo1-xNixO2 by microwave dielectric heating and its physical and electrochemical characterization[J]. Materials Research Bulletin,2004,39:1895-1907.
    [85]王亮,何雨石,张晓鸣,等.微波共沉淀法制备锂离子电池正极材料LiNi0.8Co0.2O2[J].化工学报,2007,58(4):1048-1052.
    [86]J. L. Xie, X. Huang, J. H. Dai, et al. Hydrothermal synthesis of LiNi0.9Co0.1O2 cathode materials[J]. Ceramics International,2010,36:2489-2492.
    [87]J. L. Xie, X. Huang, Z. B. Zhu, et al. Hydrothermal synthesis of LiNixCo1-xO2 cathode materials[J]. Ceramics International,2011,37:665-668.
    [88]J. Maruta, H. Yasuda, M. Yamachi. Low-temperature synthesis of lithium nickelate positive active material from nickel hydroxide for lithium cells[J]. Journal of Power Sources,2000,90:89-94.
    [89]S. B. Yi, H. T. Chung, H. G. Kim. A novel preparation method of active materials for the lithium secondary battery[J]. Electrochemistry Communications, 2007,9:591-595.
    [90]H. K. Kim, T. Y. Seong, W. Cho, et al. Rapid thermal annealing effect on surface of LiNi1-xCoxO2 cathode film for thin-film microbattery[J]. Journal of Power Sources,2002,109:178-183.
    [91]G. X. Wang, M. J. Lindsay, M. Ionescu, et al. Physical and electrochemical characterization of LiNi0.8Co0.2O2 thin-film electrodes deposited by laser ablation[J]. Journal of Power Sources,2001,97:298-302.
    [92]P. H. Duvigneaud, T. Segato. Synthesis and characterisation of LiNi1-x-yCoxAlyO2 cathodes for lithium-ion batteries by the PVA precursor method[J]. Journal of the European Ceramic Society,2004,24:1375-1380.
    [93]M. Ye, J. P. Wei, X. Y. Cao, et al. Synthesis of LiCoxNi1-xO2 cathode materials from electrolysis Co-Ni alloys[J]. Trans. Nonferrous Met. Soc. China,2005, 15(4):784-788.
    [94]Y. K. Lin, C. H. Lu, H. C. Wu, et al. New layer-structured LiNi1/3Co1/3Al1/3O2 prepared via water-in-oil microemulsion method[J]. Journal of Power Sources, 2005,146:594-597.
    [95]K. Kubo, S. Aral, S. Yamada, et al. Synthesis and charge-discharge properties of Li1+xNi1-x-yCoyO2-zFz[J]. Journal of Power Sources,1999,81-82:599-603.
    [96]刘兴泉,林晓静,何泽珍,等.Li1+δNi1-xCoxO2-yFy的合成与电化学性能研究[J].化学学报,2004,62(5):475-479.
    [97]B. J. Hwang, R. Santhanam, C. H. Chen. Effect of synthesis conditions on electrochemical properties of LiNi1-yCoyO2 cathode for lithium rechargeable batteries[J]. Journal of Power Sources,2003,114:244-252.
    [98]J. Cho. LiNi0.74Co0.26-xMgxO2 cathode material for a Li-ion cell [J]. Chemistry of Materials,2000,12(10):3089-3094.
    [99]C. C. Chang, J. Y. Kim, P. N. Kumta. Divalent cation incorporated Li(i+X)MMgxO2(i+X) (M=Ni0.75Co0.25):viable cathode materials for rechargeable lithium-ion batteries [J]. Journal of Power Sources,2000,89:56-63.
    [100]A. D'Epifanio, F. Croce, F. Ronci, et al. Effect of Mg2+ doping on the structural, thermal, and electrochemical properties of LiNio.8Coo.i6Mgo.o402[J]. Chemistry Materials,2004,16(18):3559-3564.
    [101]G T. K. Fey, J. G Chen, V. Subramanian, et al. Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2[J]. Journal of Power Sources,2002,112: 384-394.
    [102]F. G. Ting-Kuo, V. Subramanian, J. G. Chen. Electrochemical performance of Sr2+ doped LiNi0.8Co0.2O2 as a cathode material for lithium batteries synthesized via a wet chemistry route using oxalic acid[J]. Materials Letters,2002,52(3): 197-202.
    [103]P. Kalyani, N. Kalaiselvi, N. G. Renganathan, et al. Studies on LiNi0.7Al0.3-xCoxO2 solid solutions as alternative cathode materials for lithium batteries[J]. Materials Research Bulletin,2004,39:41-54.
    [104]W. S. Kim, K. Chung, Y. K. Choi, et al. Synthesis and charge-discharge properties of LiNi1-x-yCoxMyO2(M=Al, Ga) compounds[J]. Journal of Power Sources,2003,115:101-109.
    [105]R. Stoyanova, E. Zhecheva, R. Alcantara, et al. Layered solid solutions of LiNi1-xCoxO2 with α-LiGaO2 obtained under high oxygen pressure[J]. Journal of Materials Chemistry,2004,14:366-373.
    [106]S. C. Park, Y. S. Han, P. S. Lee, et al. Effects of iron substitution for nickel on electrochemical properties of LiNi0.8Co0.2O2 for lithium rechargeable batteries[J]. Journal of Power Sources,2001,102:130-134.
    [107]S. Sivaprakash, S. B. Majumder. Understanding the role of Zr4+ cation in improving the cycleability of LiNi0.8Co0.15Zr0.05O2 cathodes for Li ion rechargeable batteries[J]. Journal of Alloys and Compounds,2009,479: 561-568.
    [108]H. S. Liu, J. Li, Z. R. Zhang, et al. Structural, electrochemical and thermal properties of LiNi0.8-yTiyCo0.2O2 as cathode materials for lithium ion battery[J]. Electrochimica Acta,2004,49:1151-1159.
    [109]L. Liu, G. Y. Su, Q. Z. Xiao, et al. Structural, electrochemical and thermal properties of LiNi0.8-xCo0.2CexO2 as cathode materials for lithium ion batteries[J]. Materials Chemistry and Physics,2006,100(2-3):236-240.
    [110]S. Sivaprakash, S. B. Majumder, S. Nieto, et al. Crystal chemistry modification of lithium nickel cobalt oxide cathodes for lithium ion rechargeable batteries[J]. Journal of Power Sources,2007,170:433-440.
    [111]X. L. Li, F. Y. Kang, W. C. Shen, et al. Electrochemical performances of layered LiNi0.7Co0.3-xMxO2 (M=Al, Mn, Cr; x=0.05)cathode materials for rechargeable lithium batteries[J]. Journal of Physics and Chemistry of Solids, 2008,69:1246-1248.
    [112]S. Madhavi, G. V. Subba Rao, B. V. R. Chowdari, et al. Cathodic properties of (Al, Mg) co-doped LiNio.7Coo.302[J]. Solid States Ionics,2002,152-153: 199-205.
    [113]B. V. R. Chowdari, G. V. Subba Rao, S. Y. Chow. Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2[J]. Solid State Ionics,2001,140:55-62.
    [114]Y. K. Lin, C. H. Lu. Preparation and electrochemical properties of layer-structured LiNi1/3Co1/3Mn1/3-yAlyO2[J]. Journal of Power Sources,2009,189: 353-358.
    [115]J. F. Xiang, C. X. Chang, L. J. Yuan, et al. A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery[J]. Electrochemistry Communications,2008,10:1360-1363.
    [116]Y. Cho, Y. S. Lee, S. A. Park, et al. LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2precursors[J]. Electrochimica Acta,2010,56:333-339.
    [117]E. Zhecheva, R. Stoyanova, G Tyuliev, et al. Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO[J]. Solid State Sciences,2003,5:711-720.
    [118]Y. Cho, J. Cho. Significant improvement of LiNi0.8Co0.15Al0.05O2 cathodes at 60℃ by SiO2 dry coating for Li-ion batteries[J]. Journal of the Electrochemical Society,2010,157(6):625-629.
    [119]F. G. Ting-Kuo, P. Muralidharan, C. Z. Lu, et al. Surface modification of LiNi0.8Co0.2O2 with La2O3 for lithium-ion batteries[J]. Solid State Ionics,2005, 176(37-38):2759-2767.
    [120]H. W. Ha, H. J. Kyung, J. Y. Nan, et al. Effects of surface modification on the cycling stability of LiNi0.8Co0.2O2 electrodes by CeO2 coating[J]. Electrochimica Acta,2005,50(18):3764-3769.
    [121]D. Ahn, J. G Lee, J. S. Lee, et al. Suppression of structural degradation of LiNi0.9Co0.1O2 cathode at 90℃ by AlPO4-nanoparticle coating[J]. Current Applied Physics,2007,7:172-175.
    [122]D. J. Lee, B. Scrosati, Y. K. Sun. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55℃[J]. Journal of Power Sources,2011,196:7742-7746.
    [123]H. Lee, Y. Kim, Y. S. Hong, et al. Structural characterization of the Surface-Modified LixNi0.9Co0.1O2 cathode materials by MPO4 coating (M=Al, Ce, SrH, and Fe) for Li-Ion cells[J]. Journal of the Electrochemical Society, 2006,153(4):A781-A786.
    [124]H. B. Kim, B. C. Park, S. T. Myung, et al. Electrochemical and thermal characterization of AIF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells[J]. Journal of Power Sources,2008,179:347-350.
    [125]Y. Chung, S. H. Ryu, J. H. Ju, et al. A Surfactant-based method for carbon coating of LiNi0.8Co0.15Al0.05O2 cathode in Li ion batteries[J]. Bulletin of Korean Chemical Society,2010,31(8):2304-2308.
    [126]H. Wang, W. D. Zhang, L. Y. Zhu, et al. Effect of LiFePO4 coating on electrochemical performance of LiCoO2 at high temperature[J]. Solid State Ionics,2007,178:131-136.
    [127]J. Cho, G Kim. Enhancement of thermal stability of LiCoO2 by LiMn2O4 coating[J]. Electrochemical and Solid-State Letters,1999,2(6):253-255.
    [128]H. Lee, M. G. Kim, J. Cho. Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries[J]. Electrochemistry Communications, 2007,9:149-154.
    [129]S. S. Hwang, C. G Cho, K. S. Park.. Stabilizing LiCoO2 electrode with an overlayer of LiNi0.5Mn1.5O4 by using a gravure printing method[J]. Electrochemistry Communications,2011,13:279-283.
    [130]G T. K. Fey, C. F. Huang, P. Muralidharan, et al. Improved electrochemical performance of LiCoO2 surface treated with Li4Ti5O12[J]. Journal of Power Sources,2007,174:1147-1151.
    [131]H. Cao, B. J. Xia, Y. Zhang, et al. LiAlO2-coated LiCo02 as cathode material for lithium ion batteries[J]. Solid State Ionics,2005,176:911-914.
    [132]J. T. Son, E. J. Cairns. Characterization of LiCoO2 coated Li1.05Ni0.35Co0.25Mn0.4-O2 cathode material for lithium secondary cells[J]. Journal of Power Sources, 2007,166:343-347.
    [133]S. C. Park, Y. M. Kim, S. C. Han, et al. The elevated temperature performance of LiMn2O4 coated with LiNi1-xCoxO2 (x=0.2 and 1)[J]. Journal of Power Sources,2002,107:42-47.
    [134]S. C. Park, Y. S. Han, Y. S. Kang, et al. Electrochemical properties of LiCoO2-coated LiMn2O4 prepared by solution-based chemical process[J]. Journal of the Electrochemical Society,2001,148(7):A680-A686.
    [135]Y. Li, Y. Makita, Z. Lin, et al. Synthesis and characterization of lithium manganese oxides with core-shell Li4Mn5O12@Li2MnO3 structure as lithium battery electrode materials[J]. Solid State Ionics,2011,196:34-40.
    [136]Y. Seino, T. Ota, K. Takada. High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte[J]. Journal of Power Sources,2011,196: 6488-6492.
    [137]E. Zhecheva, M. Mladenov, R. Stoyanova, et al. Coating technique for improvement of the cycling stability of LiCo/NiO2 electrode materials[J]. Journal of Power Sources,2006,162:823-828.
    [138]Y. M. Chung, K. S. Ryu. Surface coating and electrochemical properties of LiNi0.8Co0.15Al0.05O2/polyaniline composites as an electrode for Li-ion batteries[J]. Bulletin Korean Chemical Society,2009,30(8):1733-1737.
    [139]H. S. Kim, Y. Kim, S. I. Kim, et al. Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles[J]. Journal of Power Sources,2006,161:623-627.
    [140]J. H. Ju, K. S. Ryu. Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)o.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries[J]. Journal of Alloys and Compounds,2011,509: 7985-7992.
    [141]C. S. Johnson, N. Li, C. Lefief, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes:xLi2Mn03·1l-x)LiMn0.333Ni0.333-Co0.333O2(0≤x≤0.7)[J].Chemistry of Materials,2008,20 (19):6095-6106.
    [142]K. S. Lee, S. T. Myung, Y. K. Sun. Synthesis and electrochemical performances of core-shell structured Li[(Ni1/3Co1/3Mn1/3)0.8(Ni1/2Mn1/2)o.2]02 cathode material for lithium ion batteries[J]. Journal of Power Sources,2010,195: 6043-6048.
    [143]Y. K. Sun, S. T. Myung, B. C. Park, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials,2009,8:320-324.
    [144]Y. K. Sun, D. H. Kim, H. G. Jung, et al. High-voltage performance of concentration gradient Li [Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries[J]. Electrochimica Acta,2010,55:8621-8627.
    [145]H. Yamada, Y. Watanabe, I. Moriguchi, et al. Rate capability of lithium intercalation into nano-porous graphitized carbons [J]. Solid State Ionics,2008, 179(27-32):1706-1709
    [146]A. D'Epifanio, F. Croce, F. Ronci, et al. Thermal, electrochemical and structural properties of stabilized LiNiyCo1-y-zMzO2 lithium-ion cathode material prepared by a chemical route[J]. Physical Chemistry Chemical Physics,2001,3: 4399-4403.
    [147]S. Madhavi, G. V. Subba Rao, B. V. R. Chowdari, et al. Effect of aluminium doping on cathodic behaviour of LiNio.7Coo.302[J]. Journal of Power Sources, 2001,93:156-162.
    [148]J.Cho, H. Jung, Y. Park, et al. Electrochemical properties and thermal stability of LiaNi1-xCoxO2 cathode materials[J]. Journal of the Electrochemical Society, 2000,147(1):15-20.
    [149]A. A. M. Prince, S. Mylswamy, C. Y. Wang, et al. Electrochemical and in situ XANES studies of a LiNi0.8Co0.17Al0.03O2 cathode material[J]. Solid State Communications,2004,132:273-277.
    [150]C. H. Chen, J. Liu, M. E. Stoll, et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries[J]. Journal of Power Sources,2004,128:278-285.
    [151]I. Bloom, S. A. Jones, V. S. Battaglia, et al. Effect of cathode composition on capacity fade, impedance rise and power fade in high-power, lithium-ion cells[J]. Journal of Power Sources,2003,124:538-550.
    [152]陈敬中.现代晶体化学——理论与方法[M].北京:高等教育出版社,2001,492-514.
    [153]X. Z. Fu, Y. J. Zhu, Q. C. Xu, et al. Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2[J]. Solid State Ionics,2007,178:987-993.
    [154]V. Bianchi, D. Caurant, N. Baffier, et al. Synthesis, structural characterization and magnetic properties of quasistoichiometric LiNiO2[J]. Solid State Ionics, 2001,140:1-17.
    [155]马淳安.有机电化学合成导论[M].北京:科学出版社,2002,87-101.
    [156]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,1-36.
    [157]H. Kondo, Y. Takeuchi, T. Sasaki, et al. Effects of Mg-substitution in Li(Ni,Co,Al)O2 positive electrode materials on the crystal structure and battery performance[J]. Journal of Power Sources,2007,174:1131-1136.
    [158]A. Rougier, I. Saadoune, P. Gravereau, et al. Effect of cobalt substitution on cationic distribution in LiNi1-yCoyO2 electrode materials[J]. Solid State Ionics, 1996,90:83-90.
    [159]I. Saadoune, C. Delmas. LiNi1-yCoyO2 positive electrode materials:relationships between the structure, physical properties and electrochemical behaviour[J]. Journal of Materials Chemistry,1996,6(2):193-199.
    [160]Y. M. Choi, S. I. Pyun, S. I. Moon, et al. A study of the electrochemical lithium intercalation behavior of porous LiNiO2 electrodes prepared by solid-state reaction and sol-gel methods[J]. Journal of Power Sources,1998,72:83-90.
    [161]D. Aurbach, K. Gamolsky, B. Markovsky, et al. The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M=Ni, Mn)[J]. Journal of the Electrochemical Society,2000,147(4): 1322-1331.
    [162]T. Ohzuku, A. Ueda, M. Nagayama, et al. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells[J]. Electrochimica Acta,1993,38 (9):1159-1167.
    [163]T. Ohzuku, A. Ueda, M. Nagayama. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells[J]. Journal of the Electrochemical Society,1993,140(7):1862-1870.
    [164]Y. M. Choi, S. I. Pyun, S. I. Moon. Effects of cation mixing on the electrochemical lithium intercalation reaction into porous Li1-δsNi1-yCoyO2 electrodes[J]. Solid State Ionics,1996,89:43-52.
    [165]L. F. Xiao, Y. Y. Yang, Y. Q. Zhao, et al. Synthesis and electrochemical properties of submicron LiNi0.8Co0.2O2 by a polymer-pyrolysis method[J]. Electrochimica Acta,2008,53:3007-3012.
    [166]J. N. Reimers, E. Rossen, C. D. Jones, et al. Structure and electrochemistry of LixFeyNi1-yO2[J]. Solid State Ionics,1993,61:335-344.
    [167]S. H. Wu, C. W. Yang. Preparation of LiNi0.8Co0.2O2-based cathode materials for lithium batteries by a co-precipitation method[J]. Journal of Power Sources, 2005,146(1-2):270-274.
    [168]Y. D. Zhong, X. B. Zhao, G. S. Cao. Characterization of solid-state synthesized pure and doped lithium nickel cobalt oxides[J]. Materials Science and Engineering B,2005,121(3):248-254.
    [169]W. Li, J. N. Reimers, J. R. Dahn. In Situ x-ray diffraction and electrochemical studies of Li1-xNiO2[J]. Solid State Ionics,1993,67(1-2):123-130.
    [170]陈宏浩,詹晖,朱先军,等.流变相法合成LiNi0.85Co0.15O2的结构与电化学性能[J].化学学报,2005,63(11):1028-1032.
    [171]M. Guilmard, C. Pouillerie, L. Croguennec, et al. Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2[J]. Solid State Ionics,2003,160:39-50.
    [172]S. B. Majumder, S. Nieto, R. S. Katiyar. Synthesis and electrochemical properties of LiNi0.80(Co0.20-xAlx)O2 (x=0.0 and 0.05) cathodes for Li ion rechargeable batteries[J]. Journal of Power Sources,2006,154:262-267.
    [173]杨长春,张爱珍,侯巧芝.锂离子电池正极材料LiNi0.8-xCo0.2AlxO2的制备及性能[J].郑州大学学报,2006,38(2):92-95.
    [174]刘心泉,于霁,夏雨.一种锂离子二次电池正极材料镍钴酸锂LiNi1-xCoxO2的制备方法.中国:1843930A[P],2006-10-11.
    [175]Y. Fujita, K. Amine, J. Maruta, et al. LiNi1-xCoxO2 prepared at low temperature using β-Ni1-xCoxOOH and either LiNO3 or LiOH[J]. Journal of Power Sources, 1997,68:126-130.
    [176]李景虹.先进电池材料[M].北京:化学工业出版社,2004:98-99.
    [177]姬忠涛,张正富.羟基氧化镍的制备、结构及其电化学性能研究现状[J].材料导报,2007,21(8):40-43,47.
    [178]大连理工大学无机化学教研室.无机化学(第三版)[M].北京:高等教育出版社,1990:192,384-400,454.
    [179]X. Z. Fu, Y. J. Zhu, Q. C. Xu, et al. Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2 [J]. Solid State Ionics,2007,178:987-993.
    [180]G. R. Hu, W. M. Liu, Z. D. Peng, et al. Synthesis and electrochemical properties of LiNi0.8Co0.15Al0.05O2 prepared from the precursor Ni0.8Co0.15Al0.05-OOH[J]. Journal of Power Sources,2012,198:258-263.
    [181]G. X. Wang, S. Zhong, D. H. Bradhurst, et al. Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries[J]. Journal of Power Sources,1998,76:141-146.
    [182]W. Li, J. C. Currie. Morphology effects on the electrochemical performance of LiNi1-xCoxO2[J]. Journal of the Electrochemical Society,1997,144(8): 2773-2779.
    [183]H. S. Liu, Y. Yang, J. J. Zhang. Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries[J]. Journal of Power Sources,2006,162:644-650.
    [184]W. S. Yoon, K. Y. Chung, J. McBreen, et al. Electronic structural changes of the electrochemically Li-ion deintercalated LiNi0.8Co0.15Al0.05O2 cathode material investigated by X-ray absorption spectroscopy[J]. Journal of Power Sources,2007,174:1015-1020.
    [185]D. P. Abraham, R. D. Twesten, M. Balasubramanian, et al. Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells[J]. Journal of the Electrochemical Society,2003,150(11): A1450-A1456.
    [186]T. F. Yi, J. Shu, Y. Wang, et al. Effect of treated temperature on structure and performance of LiCoO2 coated by Li4Ti5O12[J]. Surface & Coatings Technology,2011,205:3885-3889.
    [187]赵新兵,涂健,曹高劭,等.表面修饰改性锂离子电池正极材料的制备方法.中国:100346510[P],2007-10-31.
    [188]H. L. Zhao, L. Gao, W. H. Qiu, et al. Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating[J]. Journal of Power Sources, 2004,132:195-200.
    [189]G Li, Z. X. Yang, W. S. Yang. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries[J]. Journal of Power Sources,2008,183:741-748.
    [190]T. Takeuchi, M. Tabuchi, K. Ado, et al. Improvement of rate capability in rechargeable lithium-ion batteries using oxide-based active materials-carbon composite cathodes[J]. Journal of Power Sources,2007,174:1063-1068.
    [191]H. Omanda, T. Brousse, C. Marhic, et al. Improvement of the thermal stability of LiNi0.8Co0.2O2 cathode by a SiOx protective coating[J]. Journal of the Electrochemical Society,2004,151(6):922-929.
    [192]C. H. Han, J. H. Kim, S. H. Paeng, et al. Electrochemical characteristics of LiNiO2 films prepared for charge storable electrode application[J]. Thin Solid Films,2009,517:4215-4217.
    [193]H. W. Ha, K. H. Jeong, K. Kim. Effect of titanium substitution in layered LiNiO2 cathode material prepared by molten-salt synthesis [J]. Journal of Power Sources,2006,161:606-611.
    [194]J. Fu, Y. Bai, C. Y. Liu, et al. Physical characteristic study of LiCoO2 prepared by molten salt synthesis method in 550-800℃[J]. Materials Chemistry and Physics,2009,115:105-109.
    [195]K. S. Tan, M. V. Reddy, G. V. Subba Rao, et al. High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries[J]. Journal of Power Sources,2005,147:241-248.
    [196]H. Y. Liang, X. P. Qiu, S. C. Zhang, et al. High performance lithium cobalt oxides prepared in molten KCL for rechargeable lithium-ion batteries[J]. Electrochemistry Communications,2004,6:505-509.
    [197]C. H. Han, Y. S. Hong, C. M. Park, et al. Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl-Li2CO3[J]. Journal of Power Sources,2001,92: 95-101.
    [198]C. H. Han, Y. S. Hong, K. Kim. Cyclic performances of HT-LiCo0.8M0.2O2 (M =Al, Ni) powders prepared by the molten salt synthesis method[J]. Solid State Ionics,2003,159:241-247.
    [199]Z. R. Chang, X. Yu, H. W. Tang, et al. Synthesis of LiNi1/3Co1/3Al1/3O2 cathode material with eutectic molten salt LiOH-LiNO3[J]. Powder Technology,2011, 207:396-400.
    [200]Z. R. Chang, Z. J. Chen, F. Wu, et al. Synthesis and properties of high tap-density cathode material for lithium ion battery by the eutectic molten-salt method[J]. Solid State Ionics,2008,179:2274-2277.
    [201]M. Helan, L. J. Berchmans, T. P. Jose, et al. Molten salt synthesis of LiMn2O4 using chloride-carbonate melt[J]. Materials Chemistry and Physics,2010,124: 439-442.
    [202]L. Wen, Q. Lu, G. X. Xu. Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials[J]. Electrochimica Acta,2006,51:4388-4392.
    [203]J. F. Ni, H. H. Zhou, J. T. Chen, et al.Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles[J]. Materials Letters,2007,61: 1260-1264.
    [204]J. Kim,Y. Hong, K. S. Ryu, et al. Washing effect of a LiNi0.83Co0.15Al0.02O2 cathode in water[J]. Electrochemical and Solid-State Letters,2006,9(1): A19-A23.
    [205]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工 业出版社,2007:87
    [206]G. X. Wang, J. Horvat, D. H. Bradhurst, et al. Structural, physical and electrochemical characterisation of LiNixCo1-xO2 solid solutions[J]. Journal of Power Sources,2000,85:279-283.
    [207]杜柯,其鲁,胡国荣,等.KCl熔盐法制备LiMn2O4[J].无机化学学报,2006,22(5):867-871.
    [208]S. C. Park, Y. M. Kim, Y. M. Kang, et al. Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2[J]. Journal of Power Sources,2001, 103:86-92.
    [209]K. Nakamura, H. Ohno, K. Okamura, et al. On the diffusion of Li+ defects in LiCoO2 and LiNiO2[J]. Solid State Ionics,2000,135:143-147.
    [210]F. Nobili, R. Tossici, F. Croce, et al. An electrochemical ac impedance study of LixNi0.75Co0.25O2 intercalation electrode[J]. Journal of Power Sources,2001,94: 238-241.
    [211]D. P. Abraham, E. M. Reynolds, E. Sammann, et al. Aging characteristics of high-power lithium-ion cellls with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes[J]. Electrochimica Acta,2005,51:502-510.
    [212]K. Amine, C. H. Chen, J. Liu, et al. Factors responsible for impedance rise in high power lithium ion batteries[J]. Journal of Power Sources,2001,97-98: 684-687.
    [213]Y. Itou, Y. Ukyo. Performance of LiNiCoO2 materials for advanced lithium-ion batteries[J]. Journal of Power Sources,2005,146:39-44
    [214]D. P. Abraham, R. D. Twesten, M. Balasubramanian, et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells[J]. Electrochemistry Communications,2002,4:620-625.
    [215]T. Nonaka, C. Okuda, Y. Seno, et al. X-ray absorption study on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries[J]. Ceramics International,2008,34:859-862.
    [216]S. W. Song, G. V. Zhuang, P. N. Ross Jr. Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy[J]. Journal of the Electrochemical Society,2004,151(8):A1162-A1167.
    [217]Y. Kim, J. Cho. Lithium-Reactive Co3(PO4)2 Nanoparticle Coating on High-Capacity LiNi0.8Co0.16Al0.04O2 Cathode Material for Lithium Rechargeable Batteries[J]. Journal of The Electrochemical Society,2007, 154(6):A495-A499.
    [218]K. Matsumoto, R. Kuzuo, K. Takeya, et al. Effects of CO2 in air on Li deintercalation from LiNi1-x-yCoxAlyO2[J]. Journal of Power Sources,1999, 81-82:558-561.
    [219]G. V. Zhuang, G. Y. Chen, J. Shim, et al. Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power[J]. Journal of Power Sources, 2004,134:293-297.
    [220]H. S. Liu, Z. R. Zhang, Z. L. Gong, et al. Origin of deterioration for LiNiO2 cathode material during storage in air[J]. Electrochemical and Solid-State Letters,2004,7(7):A190-A193.
    [221]H. S. Liu, Y. Yang, J. J. Zhang. Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2[J]. Journal of Power Sources,2007, 173:556-561.
    [222]J. Eom, M. G. Kim, J. Cho. Storage characteristics of LiNi0.8Co0.1+xMn0.1-xO2(x =0,0.03, and 0.06) cathode materials for lithium batteries[J]. Journal of the Electrochemical Society,2008,155(3):A239-A245.
    [223]N. Mijung, Y. Lee, J. Cho. Water adsorption and storage characteristics of optimized LiCoO2 and LiNi1/3Co1/3Mn1/3O2 composite cathode material for Li-ion cells[J]. Journal of the Electrochemical Society,2006,153(5):A935-A940.
    [224]J. Li, J. M. Zheng, Y. Yang. Studies on storage characteristics of LiNi0.4Co0.2Mn0.4O2 as cathode materials in Lithium-ion batteries[J]. Journal of the Electrochemical Society,2007,154(5):A427-A432.
    [225]J. Eom, K. S. Ryu, J. Cho. Dependence of electrochemical behavior on concentration and annealing temperature of LixCoPO4 Phase-Grown LiNi0.8Co0.16Al0.04O2 cathode materials[J]. Journal of the Electrochemical Society,2008,155(3):A228-A233.
    [226]何涌,雷新荣.结晶化学[M].北京:化学工业出版社,2008:70-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700