液相反应法制备锂离子电池正极材料磷酸亚铁锂工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池正极材料磷酸亚铁锂以其具有无毒、充放电电压平稳、稳定性好、循环性能好以及成本低等优点受到广泛关注。流变相法和溶胶凝胶法制备过程原料混合均匀,制备材料尺寸小,利于充放电循环。以三价铁做铁源制备磷酸亚铁锂成本低、过程简单,所以本研究考虑以三价铁做铁源,用流变相法和溶胶凝胶法制备了纯相和金属离子掺杂的LiFePO4/C复合材料,并测试其室温下循环性能与倍率性能。通过X射线衍射(XRD)、扫描电镜(SEM)等表征手段分析所制备的LiFePO4/C复合材料的结构与形貌特点,并由循环伏安、电化学交流阻抗等电化学测试手段测试材料的循环可逆性和阻抗性能。
     利用溶胶凝胶法制备LiFePO4/C材料,考察了不同络合剂、预烧温度、锂盐和添加量、烧结温度、烧结时间对材料性能的影响,得出以硝酸铁:硝酸锂:磷酸二氢铵:柠檬酸=1:1.05:1:1,60mass%的蔗糖为原料,在260℃下预烧2h,650℃下烧结6h,所制备的材料0.2C放电下容量能够达到122mAh/g。
     以硝酸铁、磷酸二氢铵、氢氧化锂、蔗糖做为原料、以流变相法制备前驱体,通过高温烧结制备了LiFePO4/C正极材料,并且研究了不同金属离子的掺杂对材料性能的影响。结果表明,350℃预烧4h,650℃烧结18h制备的磷酸亚铁锂材料0.2C放电容量能够达到123mAh/g,0.5C放电下容量能够达到108mAh/g,1C放电下容量能够达到97mAh/g。对材料进行Zr4+、Al3+、Mg2+掺杂结果表明,掺杂Mg2+的材料性能最好,2%的Mg2+时,0.2C放电下能够达到140mAh/g,0.5C下放电容量为120mAh/g,1C放电容量为112mAh/g,且循环50次容量无衰减。
     用硝酸铁、磷酸二氢铵、硝酸锂、蔗糖做为原料,利用流变相法制备前驱体,通过高温烧结制备LiFePO4/C正极材料,考察了温度和时间对材料性能的影响。结果表明,260℃预烧2h,650℃烧结6h制备的磷酸亚铁锂材料,在0.2C充放电倍率下的质量比容量可达140mAh/g,0.5C为133mAh/g,1C为130mAh/g;对材料进行Mg2+掺杂研究表明,乙酸镁按化学计量比2%掺杂,合成样品在0.2C的放电容量保持在143mAh/g;在1C充电,1C、2C、5C、10C的放电倍率下放电容量保持在128mAh/g,109mAh/g,94mAh/g,84mAh/g,表现出良好的倍率性能,同时循环十次容量无衰减。
Olivine LiFePO4 appears as an interesting positive electrode material for Li-ion batteries because of its low toxicity, good thermal stability, long cycle life and low cost. The rheological phase method and sol-gel method have the advantages of mixed well of the materials, small particle size which are good for the charge-discharge cycles. Ferric iron as the source to prepare LiFePO4 has the advantages of low cost and simple process, so in this study we chose ferric iron as Fe sources, with the rheological phase method and sol-gel to prepare pure phase and metal ions doped LiFePO4/C material, and test the cycling capability and rate performance at room temperature. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to character the structural and microscopy characteristics. Cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) were used to character the cyclic reversibility and resistance of the materials.
     LiFePO4/C materials was prepared using sol-gel method and had been studied the influence of different complexing agents, calcining temperature, the lithium salt and content, sintering temperature, sintering time on the material properties had been studied. LiFePO4/C materials was prepared with precursors of ferric nitrate, ammonium dihydrogen phosphate, lithium, sucrose, citric acid, and the discharge capacity could reach to 122mAh/g at 0.2C, but Mg2+ and Al3+ doped materials using sol-gel method were not ideal.
     LiFePO4/C cathode material was prepared using rheological phase with the precursors of iron nitrate, ammonium dihydrogen phosphate, lithium hydroxide, and had been studied of different metal ions doping on the material properties. The results showed that after sintering 4h calcined at 350℃for the first process, and then sintering 18h calcined at 650℃, pure phase of lithium iron phosphate was prepared and its discharge capacity could reach to 123mAh/g at 0.2C. Doping Zr4+, Al3+, Mg2+ of LiFePO4/C material performance comparison showed that the material doped 2% Mg2+ showed the best performance, and the 0.2C,0.5C,1C discharge capacity reached to 140mAh/g,120mAh/g,112mAh/g, and the basic capacity after 50 cycles without degradation.
     LiFePO4/C cathode material was prepared using rheological phase with the precursors of iron nitrate, ammonium dihydrogen phosphate, lithium nitrate, sucrose. 0.2C discharge capacity of the LiFePO4/C cathode material could reach to 140mAh/g, 0.5C to 133mAh/g, 1C is 130mAh/g. Doping different content of Mg2+ of LiFePO4/C material performance comparison showed that the material doped 2% Mg2+ showed the best performance, and the 0.2C discharge capacity reached to 143mAh/g. At the same time high-rate performance of the material has been improved. When 2% doped samples charged at 1C rate, discharged at 1C,2C,5C,10C rate after 10 cycles, the discharge capacity could reached to 128mAh/g,109mAh/g,94mAh/g,84mAh/g.
     Cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) were used to character the cyclic reversibility and resistance of the materials using different methods.
引文
1 周明堂,李琪,乔庆东等.锂离子电池正极材料磷酸亚铁锂的改性进展[J].无机盐工业,2006,38(12):9-12
    2 J. F. Whitacre, K. Zaghib, W. C. West, et al. Dual Active Material Composite Cathode Structures for Li-ion Batteries[J]. Journal of Power Sources,2008,177(2): 528-536
    3 J. K. Kim, G. Cheruvallly, J. W. Choi, et al. Effect of Mechanical Activation Process Parameters on the Properties of LiFePO4 Cathode Material[J]. J. Power Sources,2007,166:211-218
    4 梁风,戴永年,易惠华等.纳米级锂离子电池正极材料LiFePO4[J]化学进展,2008,20(10):1606-1611
    5 李节宾,朱安宁,李鹤等.新型锂离子电池正极材料LiFePO4的研究[J].火工品,2008,3:52-56
    6 F. Croce, A. D. Epifanio, J. Hassoun, et al. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode[J]. J. Electrochemical and Solid Letters,2002,5(3):A47-A50
    7 张雯.Li-Ni-Mn-O复合氧化物正极材料的制备机电化学性能研究.武汉理工大学硕士学位论文.2007:3-4
    8 郭炳焜等编著.锂离子电池,中南大学出版社,2002,P55
    9 张宁,陈勃涛,刘勇.球形钴酸锂制备及性能研究[J].创新技术,2009,4:17-19
    10 M. Y. Song, R. Lee. Synthesis by Sol-gel Method and Electrochemical Properties of LiNiO2 Cathode Material for Lithium Secondary Battery[J]. J. Power Source, 2002,111:97-103
    11 唐志远,李建刚,薛建军等.锂离子电池正极材料LiMn2O4的改性与循环寿命[J].化学通报,2000,(8):10-14
    12 C. L. Tan, H. J. Zhou, W. S. Li, et al. Performance Improvement of LiMn2O4 as Cathode Material for Lithium Ion Battery with Bismuth Modification[J]. Journal of Power Sources,2008,184(2):408-413
    13 R. J. Gummow, A. D. Kock, M. M. Thackeray. Improved Capacity Retention in Rechargeable 4V Lithium/lithium-manganese Oxide (spinel) Cell[J]. Solid State Ionics,1994,69:59-67
    14 A. K. Padihi, K. S. Nanjundaswamy, J. B. Goodenough. Phosphoolivines as Positive eElectrode Materials for Rechargeable Lithium Batteries[J]. J. Electrochem Soc,1997,144(4):1188-1194
    15 A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al. J. Mapping of Transition Metal Redox Energies in Phosphates with Nasicon Structure by Lithium Intercalation[J]. Electrochem. Soc.,1997,144(8):2581-2586
    16 M. A. Roscher, J. Vetter, D. U. Sauer. Characterisation of Charge and Discharge Behaviour of Lithium Ion Batteries with Olivine Based Cathode Active Material[J]. Journal of Power Sources,2009,191:582-590
    17 D. Jugovic, D. Uskokovic. A Review of Recent Developments in the Synthesis Procedures of Lithium Iron Phosphate Powders[J]. Journal of Power Sources, 2009,19(2):538-544
    18 桑俊利,王巧娟,郭西凤.磷酸铁锂正极材料的合成与表征技术[J].无机盐工业,2008,40(2):13-16
    19 M. Takahashi, S. Tobishima, K. Takei, et al. Reaction Behavior of LiFePO4 as the Cathode Materials for Rechargeable Lithium Batteries[J]. Solid State Ionics, 2002,148(3-4):283-289
    20 A.Yamada, Y. Kudo, K. Y. Liu. Crystal Chemistry of the Olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as Possible 4V Cathode Materials for Lithium Batteries [J]. Journal of the Electrochemical Society,2001,148(8): A960-A967
    21 S. Scaccia, M. Carewska, P. Wisniewski, et al. Morphological Investigation of Sub-micron FePO4 and LiFePO4 Particales for Rechargeable Lithium Batteries[J]. Materials Research Bulletin,2003,38(7):1155-1163
    22严红,周建新,沈湘黔.反应沉淀-焙烧法制备球形LiFePO4颗粒及其微结构表征[J].过程工程学报,2008,8(5):983-987
    23 S. F. Yang, Y. Peter, M. Zavalij, et al. Hydrothermal Synthesis of Lithium Iron Phosphate Cathodes[J]. Electrochemistry Communications,2001,3 (9):505-508
    24 S. F. Yang, Y. N. Song, K. Ngala, et al. Performance of LiFePO4 as Lithium Battey Cathode and Comparison with Manganese and Vanadium Oxides [J]. Journal of Power Sources,2003,119-121 (1):239-246
    25 S. F. Yang, Y. N. Song, Y. Peter, et al. Reactivity, Stability and Electrochemical Behavior of Lithium Iron Phosphates[J]. Electrochemistry Communications,2002, 4 (3):239-244
    26 Y. N. Song, M. Zavalij, Y. Peter, et al. Comparison of One, Two-and Three-Dimensional Iron Phosphates Containing Ethylene Diamine[J]. J. Solid State Chemistry,2003,175 (2):63-71
    27 J. J. Chen, M. S. Whittingham. Hydrothermal Synthesis of Lithium Iron Phosphate[J]. Electrochemistry Communications,2006,8 (5):855-858
    28 X. Q. Ou, G. C. Liang, J. S. Liang. LiFePO4 Doped with Magnesium Prepared by Hydrothermal Reaction in Glucose Solution[J]. Chinese Chemical Letters,2008,19(3):345-349
    29 S. Yang, Y. Song, K. Ngala, et al. Synthesis of LiFePO4 Cathode Material by Microwave Processing[J]. Journal of Power Sources,2003,119:258-261
    30 S. F. Yang, Y. N. Song, Y. Peter. et al. Nanocomposite Electrodes for Advanced Lithium Batteries:The LiFePO4 Cathode[J]. Mat. Res. Soc. Symp. Proc,2002, 703:V7.9.1-V7.9.5
    31 M. S. Song, Y. M. Kang, J. H. Kim, et al. Simple and Fast Synthesis of LiFePO4-C Composite for Lithium Rechargeable Batteries by Ball-milling and Microwave heating[J]. Journal of Power Sources,2007,166(1):260-265
    32 王小建,任俊霞,李宇展等.微波法制备掺杂碳LiFePO4正极材料[J].无机化学学报,2005,21(2):249-252
    33 Y. Zhang, H. Feng, X. B. Wu, et al. One-step Microwave Synthesis and Characterization of Carbon-modified Nanocrystalline LiFePO4[J]. Electrochimica Acta,2009,54:3206-3210
    34 S. Komarneni, S. Sakka, P. P. Phule, et al. Sol-Gel Synthesis and Processing,1st ed. Ohio[J]:the American Ceramic Society,1998:3-16
    35 G. X. Wang, S. Needham, J. Yao, et al. A Study on LiFePO4 and Its Doped Derivatives as Cathode Materials for Lithium-ion Batteries[J]. Journal of Power Sources,2006,159:282-286
    36 L. N. Wang, Z. G. Zhang, K. L. Zhang. A Simple, Cheap Soft Synthesis Routine for LiFePO4 Using Iron (III) Raw Material[J]. Journal of Power Sources,2007, 167:200-205
    37 林燕,高明霞,李玉凤等.铁源对溶胶-凝胶法制备LiFePO4/C的结构和电化学性能的影响[J].中国有色金属学报,2008,18(3):546-550
    38 樊军良,潘洪革,高明霞等.无水溶胶-凝胶法制备LiFePO4/C电极材料及其结构和电化学性能[J].无机材料学报,2007,22(6):1032-1036
    39 D. W. Choi, P. N. Kumta. Surfactant Based Sol-gel Approach to Nanostructured LiFePO4 for High Rate Li-ion Batteries[J]. Journal of Power Sources,2007, 163:1064-1069
    40 Z. H. Xu, L. Xu, Q. Y. Lai, et al. A PEG Assisted Sol-gel Synthesis of LiFePO4 as Cathodic Material for Lithium Ion Cells[J]. Materials Research Bulletin,2007, 42:883-891
    41 徐峙晖,徐亮,赖琼钰等.改进Sol-gel法合成LiFePO4正极材料及其电化学性 能[J].四川大学学报,2006,38(5):112-116
    42 张宝,彭春丽,王志兴等.加碳方式对磷酸铁锂动力学及电化学性能的影响[J].中南大学学报(自然科学版),2007,38(5):863-866
    43 S. B. Lee, S. H. Cho, S. J. Cho, et al. Synthesis of LiFePO4 Material with Improved Cycling Performance under Harsh Conditions[J]. Electrochemistry Communications,2008,10:1219-1221
    44 C. Y. Lai, Q. J. Xu, H. H. Ge, et al. Improved Electrochemical Performance of LiFePO4/C for Lithium-ion Batteries with Two Kinds of Carbon Sources[J]. Solid State Ionics,2008,179:1736-1739
    45 Y. Hu, M. M. Doe, R. Kosteck, et al. Performance of Sol-gel Synthesized LiFePO4 in Lithium Batteries[J]. J. Electrochem. Soc,2004,151(8): A1279-A1285
    46 H. Liu, J. Y. Xie, K. Wang. Synthesis and Characterization of Nano-LiFePO4/carbon Composite Cathodes from 2-methoxyethanol-water Cystem[J]. Journal of Alloys and Compounds,2008,459:521-525
    47 湛雪辉,孙伟,刘辉.不同碳量对以Fe3+为铁源合成的LiFePO4/C电池正极材料性能的影响.矿冶工程.2009,29(2):86-89
    48 Y. H. Huang, H. B. Rena, Z. H. Peng. Synthesis of LiFePO4/carbon Composite from Nano-FePO4 by a Novel Stearic Acid Assisted Rheological Phase Method. Electrochemical Acta.2009,55:311-315
    49 K. Kim, J. H. Jeong, I. J. Kim, et al. Carbon Coatings with Olive Oil, Soybean Oil and Butter on Nano-LiFePO4[J]. Journal of Power Sources,2007,167(2): 524-528
    50 R. Dominko, M. Bele, M. Gaberscek, et al. Porous Olivine Composites Synthesized by Sol-gel Technique[J]. Journal of Power Sources,2006, 153:274-280
    51 杨华,司靖宇.溶胶凝胶法制LiFePO4作为锂电池正极材料的研究[J].合肥学院学报,2006,16(1):13-34
    52 赖春艳,李慧,李蔚萍.流变相法制备LiFe1-xMgxPO4/C正极材料.上海电力学院学报.2010,26(1):49-52
    53 吕东生,李伟善,刘煦,等.锂离子嵌脱的交流阻抗模型.电池.2003,33(5):326-327
    54 刘兴泉,陈召勇,何泽珍.氧化还原溶胶-凝胶法制备LiCoO2锂离子二次电池正极材料.锂电池专讯.2001,3(26):6-9
    55 齐力,林云青,景遐斌.草酸沉淀法合成LiCoO2正极材料[J].功能材料.1998,29(6):623-625
    56 P. P. Prosini, M. Lisi, D. Zane, et al. Determination of the Chemical Diffusion Coefficient of Lithium in LiFePO4[J]. J. Solid State Ionics.2002,148(1-2): 45-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700