锂离子电池正极材料LiFePO_4及Li_2FeSiO_4的合成及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池正极材料LiFePO4和Li2FeSi04均具有原料丰富、无毒、热稳定性强、循环性能好、理论容量高等优点,被认为是极具发展潜力的锂离子电池正极材料。本文以LiFePO4和Li2FeSi04为研究对象,对其合成工艺和材料改性进行了系统研究。
     前驱体FePO4·χH2O对合成LiFePO4结构与电化学性能有较大影响,通过液相沉淀法制备得到了纯相的FePO4·χH2O,详细探讨了反应物浓度对前驱体FePO4·χH2O及LiFePO4性能的影响。在既定条件下,当反应物浓度为1.0mol·L-1时合成的FePO4·2H2O结构与性能较好,以此为前驱体合成的LiFePO4电化学性能较优。
     针对Li2FeSiO4正极材料电子电导率低和离子扩散能力差的缺点,采用柠檬酸配合法合成Li2FeSiO4正极材料,对加入柠檬酸与未加入柠檬酸两种方法合成的Li2FeSiO4样品进行了比较,结果表明柠檬酸配合法合成的样品结晶度更完整,颗粒分布均匀,电化学性能较好,样品在C/16倍率下的首次放电比容量为135.4 mAh·g-1,30次循环后容量衰减率为15.7%;同时研究了不同配合比对Li2FeSiO4样品物理及电化学性能的影响,结果表明,配合比k=1.0时材料的物理及电化学性能最佳。
     研究发现,单一碳源掺杂对Li2FeSiO4/C电化学性能改进效果有限,探索了复合有机碳源对Li2FeSiO4/C的电化学性能的影响。研究表明,掺入35%柠檬酸+5%葡萄糖+25%均苯四甲酸酐的复合有机碳源对Li2FeSiO4/C材料的电化学性能改进效果显著;同时较系统研究了烧结温度和烧结时间对复合碳源改性后的材料的物相结构、微观形貌和电化学性能的影响。研究表明最佳合成条件:烧结温度为700℃,烧结时间为20h。在最佳合成条件下制备的Li2FeSiO4/C(F3)材料的电化学性能较好,样品在C/16倍率下的首次放电比容量为157.5 mAh·g-1,经30次循环后比容量保持率为92.06%。
     采用循环伏安法(CV)和交流阻抗图谱法(EIS)对Li2FeSiO4/C(F3)的电极界面锂脱/嵌动力学行为作进一步研究,测试结果表明掺入复合有机碳源进行表面改性后电极极化减小,可逆性和电化学性能显著提高。
The development of rechargeable lithium-ion batteries and cathode materials are reviewed in detail. With the advantages of abundant recource, non-toxicity, high safety, low cost, LiFePO4 and Li2FeSi04 have been considered as a promising cathode material on lithium-ion batteries. Synthesis of materials, modification process, structure characterization, electrochemical behaviors of LiFePO4 and Li2FeSiO4 has been involved in this study.
     Based on the disadvantages of unstable properties of FePO4·χH2O which is the raw materials of LiFePO4, the pure FePO4·χH2O was prepared by liquid precipitation method. The effect of reactants' concentration on the physical performance and electrochemical behavior of FePO4·χH2O precorsor and LiFePO4 was studied. The results showed that LiFePO4 synthesised by homogeneous FePO4·2H2O precorsor had the best electrochemical properties when the concentration was 1.0 mol·L-1.
     Based on the disadvantages of poor ion diffusion and low electronic conductivity of the pure phase Li2FeSi04, the Li2FeSi04 was prepared by sol-gel technique using citric acid as a complexing agent. Comparison research on performance of two samples which prepared by different ways by using citric acid or not have been studied, the result the sample by using citric acid with better crystallinity, uniform particles and excellent electrochemical properties. The initial discharge capacity of Li2FeSi04 synthesized is 135.4 mAh·g-1 at C/16 rate and the capacity fading is only 15.7% after 30 cycles. The effect of complex ratio on the physical structure and electrochemical properties of Li2FeSi04 was researched. The results indicated that the electrochemical properties of Li2FeSiO4 increased then decreased with the changing of complex ratio and the best sample obtained when the complex ratio is 1.0.
     According to preliminary studies by our group, adding only a kind of organic carbon would improve the electrochemical properties of Li2FeSi04 limited, therefore, the influence of surface modification by combined organic carbon coating on the properties of Li2FeSiO4/C was investigated. It was found that the Li2FeSi04/C by adding 35% citric acid+5%glucose+5%pyromellitic anhydride as carbon source has the outstanding electrochemical properties.
     Meanwhile, the effect of synthesis conditions including sintering the temperature and time on the physical performance and electrochemical behavior of Li2FeSiO4/C was studied and the synthesis conditions were optimized. The results show that the sintering temperature and time play an important role in the crystal structure and morphology of the material. The optimized sintering temperature and time were 700℃and 20h. The initial discharge capacity of Li2FeSiO4/C(F3) synthesized on the optimized condition is 157.5 mAh·g-1 at C/16 rate and the capacity retention is 92.06% after 30 cycles.
     The lithium deintercalation-intercalation kinetics of Li2FeSiO4/C(F3) was investigated by cyclic voltammetry and electrochemical impedance spectroscopy methods. The results further proved that the modified Li2FeSi04/C with the decreasing of electrode polarization and the improvement of reversibility and electrochemical properties.
引文
[1]T Ohzuku, R Brodd. An overview of positive-electrode materials for advanced lithium-ion batteries[J]. Journal of Power Sources,2007,174(2):449-456.
    [2]殷焕顺,艾仕云,汪建民,等.锂镍钻氧化物正极材料的研究进展[J].电池,2007,37(4):306-308.
    [3]赵建庆,何建平,赵伟,等.动力型锂离子电池正极材料LiFePO4的改性研究[J].化学通报,2011,3:10-16.
    [4]杨勇.新型锂离子电池正极材料的研究现状及其发展前景[J].新材料产业,2010,10:155-159.
    [5]徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液的相容性研究进展Ⅱ电解液组成与碳负极/电解液的相容性[J].电源技术,2000,14(5):295-297.
    [6]M Wakihara. Recent developments in lithium ion batteries[J]. Materials Science, 2001,33(4):109-134.
    [7]M C Smart, B V Ratnakumar, S Surampili, et al. Irreversible capacities of graphite in low temperature electrolytes for lithium-ion battery[J]. Journal of the Electrochemical Society,1999,146(11):3963-3969.
    [8]黄佳原,仇卫华,刘伟,等.LiBOB的有机溶剂的研究进展[J].电池技术,2008,8:23-26.
    [9]J L Sudwoth. The solid/nickel chloride battery[J]. Journal of Power Sources,2001, 100(1-2):149-163.
    [10]任学佑.锂离子电池及其发展全景[J].电池,2000,30(1):36-38.
    [11]M Yonernura, Y Takei, N Sonoyama, et al. Comparative kinetic study of olivine LixMPO4(M=Fe, Mn)[J]. Interface Electrochemical Society Interface,2004,151: 1352-1355.
    [12]Delacourt, L Laffont, R Bouchet, et al. Toward understanding of electrical limitations (electronic ionic) in LiMPCO4(M=Fe, Mn) electrode material[J]. Interface Electrochemical Society Interface,2005,151:913-921.
    [13]N N Bramnik, K Nikolowski, C Baehtz, K G Bramnik, et al. Phase Transitions Occurring upon Lithium Insertion-Extraction of LiCoPO[J]. Chemistry of Materials,2007,19:908-915.
    [14]H M Cheng, J M Ma, Z G Zhao, et al. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles[J]. Chemistry of Materials,1995,7: 663-671.
    [15]P Tarte, Spectrochim. Infrared Spectroscopic Study of Ortho-silicates and Orthogermantes[J]. Spectrochimica Acta,1962,18:467-469.
    [16]N Imanishi, H Kashiwagi, T Ichikawa, Y Takeda, et al. Charge-Discharge Characteristics of Mesophase-Pitch-Based Carbon-Fibers for Lithium Cells[J]. Journal of the Electrochemical Society,1993,140(2):315-320.
    [17]吴宇平,李阳兴,万春荣,等.锂离子二次电池正极材料氧化锰锂的研究进展[J].功能材料,2000,31(1):18-22.
    [18]H W Lee, P Muralidharan, R Ruffo, et al. Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries[J]. Nano Letters,2010, 10(10):3852-3856.
    [19]唐致远,周征,冯季军,等.尖晶石LIMn2O4的多元掺杂改性研究[J].化学学报,2003,61(8):1316-1318.
    [20]姚素薇,张绍丽,徐宁,等.锂离子蓄电池层状锰系正极材料的研究进展[J].电源技术,2003,27(6):554-557.
    21] A R Armstrong, P G Bruce. Synthesis of layered LiMnO2 as electrode for rechargeable lithium batteries[J], Nature,1996,381:499-500.
    [22]G Ceder, S K Mishra. Stability of orthorhombic and monoclinic-layered LiMnO2[J]. Electrochemical and Solid-State Letters,1999,2(11):550-552.
    [23]梁莉,李琪,乔庆东,等.锂离子电池正极材料镍酸锂研究进展[J].无机盐工业,2007,39(9):9-11.
    [24]B HeeKim, J HwanKim, I HyunKwon, et al. Electrochemical properties of LiNiO2 cathode material synthesized by the emulsion method[J]. Ceramics International,2007,33(5):837-841.
    [25]H W Ha, K H Jeong, K Kim. Effect of titanium substitution in layered LiNiO2 cathode material prepared by molten-salt synthesis[J]. Journal of Power Sources, 2006,161(1):606-611.
    [26]J Kim, B H Kim, Y H Baik, et al. Effect of (Al, Mg) substitution in LiNiO2 electrode for lithium batteries[J]. Journal of Power Sources,2006,158(1): 641-645.
    [27]J Fan. Studies of 18650 cylindrical cells made with doped LiNiO2 positive electrodes for military applications[J]. Journal of Power Sources,2004, 138(1-2):288-293.
    [28]C J Kim, I S Ahn, K K Cho, et al. Characteristics of LiNiO2 thin films synthesized by Li diffusion on the surface oxidized epitaxial layer of Ni-alloy[J]. Journal of Alloys and Compounds,2008,449(1-2):335-338.
    [29]N Yabuuchi, T Ohzuku. Novel lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for advanced lithium-ion batteries[J]. Journal of Power Sources,2003,119-121: 171-174.
    [30]S Patoux, M M Doeff. Direct synthesis of LiNi1/3Co1/3Mn1/3O2 from nitrate precursors [J]. Electrochemistry communications,2004,6:767-772.
    [31]A Gies, B Pecquenard, A Benayad, et al. Effect of silver co-sputtering on V2O5 thin films for lithium microbatteries[J]. Thin Solid Films,2008,516(21): 7271-7281.
    [32]Y Chen, H Liu, W L Ye. Preparation and electrochemical properties of submicron spherical V2O5 as cathode material for lithium ion batteries[J]. Scripta Materialia,2008,59(3):372-375.
    [33]O Bergstrom, T Gustafsson, O John, et al. Lithium insertion into V6O13 studied by deformation electron density refinement of single-crystal X-ray data[J]. Solid State Ionics,1998,110(3-4):179-186.
    [34]田成邦,邹正光,吴一.锂离子电池正极材料V6O13的研究进展[J].化工新型材料,2008,36(12):52-56.
    [35]曹笃盟,李志友,周科朝.Li1+χV3O8的化学嵌锂行为及热稳定性[J].功能材料,2004,35:1791-1795.
    [36]J Kawakita, T Miura, T Kishi. Lithium insertion into Li4V3O8[J]. Solid State Ionics,1999,120(1-4):109-116.
    [37]刘国强,徐宁,曾潮流,等.锂离子蓄电池钒系正极材料的研究进展[J].电源技术,2002,26(2):114-118.
    [38]L Suqin, L Shicai, H Kelong, et al. Effect of Doping Ti4+ on the structure and performances of Li3V2(PO4)3[J]. Acta Physico-Chimica Sinica,2007,23(4): 537-542.
    [39]S C Lim, J T Vaughey, W T A Harrison, et al. Redox transformations of simple vanadium phosphates:the synthesis of ε-VOPO4[J]. Solid State Ionics,1996, 84(3-4):219-226.
    [40]A K Padhi, K S Naanjundaswamy, C Masquelier, et al. Phospho- olivines as positive-eclectrode materials for rechargeable lithium Batteries[J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [41]A Yamada, S C Chung, K Hinokuma. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society,2001,148:224-229.
    [42]J Barker, M Y Saidi, J L Swoyer. Lithium Iron (II) Phospho-olivines Prepared by a Novel Carbothermal Reduction Method [J]. Electrochemical Solid-State Letters, 2003,6(3):53-55.
    [43]张宝,李新海,朱炳权,等.沉淀-碳热还原联合法制备橄榄石磷酸铁锂[J].中国有色金属学报,2006,16(8):1445-1449
    [44]F Crose, A D Epifanio, J Hassoun, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and solide-states Letters,2002,5(3):47-50.
    [45]M Higuchi, K Katayama, Y Azuma, et al. Synthesis of LiFePO4 cathode material by microwave processing[J]. Journal of Power Sources,2003,119-121:258-261.
    [46]K S Park. Synthesis LiFePO4 by coprecipitation and microwave heating[J]. Electrochemistry Comunications,2003,5(10):839-842.
    [47]S B Lee, S H Cho, S J Cho, et al. Synthesis of LiFePO4 material with improved cycling performance under harsh conditions[J]. Electrochemistry Communications,2008,10:1219-1221.
    [48]S Franger, F L Cras, C Bourbon, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physicochemical properties[J]. Journal of Power Sources,2003,119-121:252-257.
    [49]K Shiraishi, K Dokko, K Kanamura. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis[J]. Journal of Power Sources,2005,146: 555-558.
    [50]S Beninati, L Damen, M Mastragostino. Fast sol-gel synthesis of LiFePO4C for high power lithium-ion batteries for hybrid electric vehicle application [J]. Journal of Power Sources,2009,194(2):1094-1098.
    [51]Y Sundarayya, K C Kumara Swamy, C S Sunandana. Oxalate based non-aqueous sol-gel synthesis of phase pure sub-micron LiFePO4[J]. Materials Research Bulletin,2007,42:1942-1948.
    [52]Y M Rong, T T Hsien, W S Hung. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis[J]. Journal of Power Sources,2006,159:307-311.
    [53]S Franger, F LeCras, C Bourbon, et al. LiFePO4 Synthesis Routes for Enhanced Electrochemical Performance[J]. Electrochemical and Solid-state,2002,5(10) 231-233.
    [54]G Arnold, J Garche, R Hemmer, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J]. Journal of Power Sources,2003,119-121:247-251.
    [55]K S Park, K T Kang, S B Lee, et al. Synthesis of LiFePO4 with fine particle by co-precipitation method[J]. Materials Research Bulletin,2004,39(12): 1803-1810.
    [56]S W Oh, H Bang, S T Myung, et al. The Effect of Morphological Properties on the Electrochemical Behavior of High Tap Density C-LiFePO4 Prepared via Co-precipitation [J]. Journal of the Electrochemical Society,2008,1556: 414-420.
    [57]N Ravet, Y Chouinard, J F Magnan, et al. Electroactivity of natural and synthetic triphylite[J]. Journal of Power Sources,2001,97-98(1-2):503-507.
    [58]R Dominko, M Gaberscek, J Drofenik, et al. The role of carbon black distribution in cathodes for Li ion batteries[J]. Journal of Power Sources,2003,119-121: 770-773.
    [59]H Huang, S C Yin, L F Nazar. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochemical and Solid-State Letters,2001, 4:170-172.
    [60]P P Prosini, D Zane, M Pasquali. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochimica Acta,2001,46: 3517-3523.
    [61]H T Chung, S K Jang, H W Ryu, et al. Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite[J]. Solid State Communications,2004,131(8):549-554.
    [62]M M Doeff, Y Hu, F Mclarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4[J]. Electrochemical and Solid-State Letters,2003,6(10):207-209.
    [63]K S Park, J T Son, H T Chung, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Communications,2004,129(5):311-314.
    [64]P J Suk, L K Tae, L K Sub. Effect of Fe2P in LiFePO4/Fe2P composite on the electrochemical properties synthesized by MA and control of heat condition[J]. Rare Materials,2006,25(60):179-183.
    [65]J K Kim, J W Choi, G Cheruvally, et al. A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries[J]. Materials Letters,2007,61(18):3822-3825.
    [66]J Barker, M Y Saidi, J L Swoyer. Lithium Iron (Ⅱ) Phospho-olivines Prepared by a Novel Carbothermal Reduction Method[J]. Electrochemical and Solid-State Letters,2003,6(3):53-55.
    [67]Zhaohui Chen, J R Dahn. Reducing carbon in LiFeO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density[J]. Journal of the Electrochemical Society,2002,149(9):A1184-1189.
    [68]Y Sundarayya, K C Kumara Swamy, C S Sunandana. Oxalate based non-aqueous sol-gel synthesis of phase pure sub-micron LiFePO4[J]. Materials Research Bulletin,2007,42:1942-1948.
    [69]F Croce, A D Epifanio, J Hassoun, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and Solid-State Letters,2002,5(3):A47-A50.
    [70]L C Sheng, Z S Yan, C F Yi, et al. Porous LiFePO4/NiP Composite Nanospheres as the Cathode Materials in Rechargeable Lithium Ion Batteries[J]. Nano Research,2008,1:242-248.
    [71]J Wolfenstine. Electrical conductivity of doped LiCoPO4[J]. Journal of Power Sources,2006,158:1431-1435.
    [72]M S Islam, D J Driscoll, A J Crag, et al. Atomin-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-type Battery Material [J]. Chemistry of Materials,2005,17(20):5085-5092.
    [73]S Y Chung, J T Bloking, Y M Chiang. Electronically conductive phospho-olivines as lithium storage eletrodes[J]. Nature Material,2002,1(2):123-128.
    [74]P S Herle, B Ellis, N Coombs. et al. Nano-network electronic conduction in iron and nickel olivine phosphates [J]. Nature Materials,2004,3(3):147-152.
    175] C Y Ouyang, S Q Shi, Z X Wang, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations[J]. Journal of Physics Condensed Matter,2004,16:2265-2272.
    [76]Z Fei, M Cococcioni, K Kang, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni[J]. Electrochemistry Communications,2004,6(11):1144-1148.
    [77]S Anandhakumar, M Sundar, S Selladurai. Synthesis and performance study of cobalt-substituted lithium iron phosphate[J]. Ionics,2007,13:19-23.
    [78]A Yamada, Y Kudo, K Y Liu. Phase diagram of Lix(MnyFe1-y)PO4(0≤x, y≤1)[J]. Journal of the Electrochemical Society,2001,148:1153-1158.
    [79]G Li, Y Ku do, K Y Liu, et al. X-ray absorption study of Liχ(MnyFe1-y)PO4 (0≤x≤1,0≤y≤1)[J]. Journal of the Electrochemical Society,2002,149(11): 1414-1418.
    [80]J Molenda, W Ojczyk, J Marzec. Electrical conductivity and reaction with lithium of LiFe1-yMnyPO4 olivine-type cathode materials[J]. Journal of Power Sources,2007,174(2):689-694.
    [81]D Shanmukaraj, G X Wang, R Murugan, et al. Electrochemical studies on LiFe1-xCoxPO4/carbon composite cathode materials synthesized by citrate gel technique for lithium-ion batteries[J]. Materials Science and Engineering,2008, 149(1):93-98.
    [82]M E Arroyo, J M G Amores, J G Martinez, et al. Is it possible to prepare olivine-type LiFeSiO4? A joint computational and experimental investigation[J]. Solid State Ionics,2008,179:1758-1762.
    [83]Zaghib K, Ait S A, Ravet N, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate[J]. Journal of Power Sources,2006, 160(2):1381-1386.
    [84]D M E Arroyo-de, M Armand, J M Tarascon, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations:an exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni)[J]. Electrochemistry Communications,2006,8(8):1292-1298.
    [85]A Kokalj, R Dominko, G Mali, et al. Beyond One-Electron Reaction in Li Cathode Materials:Designing Li2MnxFe-xSiO4[J]. Chemistry of Materials,2007, 19(15):3633-3638.
    [86]M E Arroyo, M Armand, J M Tarascon, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations:An exploration of the LiaMSiO4 system (M=Fe, Mn, Co, Ni) [J]. Electrochemistry Communications,2006,8:1292-1298.
    [87]C Deng, S Zhang, S Y Yang. Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Fe1-xMnxSiO4 synthesized via citric acid assisted sol-gel method[J]. Journal of Alloys and Compounds, 2009,487(1-2):18-23.
    [88]A Kokalj, R Dominko, G Mali, et al. Beyond One-Electron Reaction in Li Cathode Materials:Designing Li2MnxFe1-xSiO4[J]. Chemistry of Materials,2007, 19:3633-3640.
    [89]C Sirisopanaporn, C Masquelier, P G Bruce, et al. Dependence of Li2FeSiO4 Electrochemistry on Structure[J]. Journal of the American Chemical Society, 2011,133(5):1263-1265.
    [90]Z Ghua, L Y Ling, Y Peng, et al. Structural, Electronic, and Electrochemical Properties of Cathode Materials Li2MSiO4 (M=Mn, Fe, and Co):Density Functional Calculations[J]. Journal of Physical Chemistry,2010,114(8): 3693-3700.
    [91]向楷雄,郭华军,李新海,等.合成温度对Li2FeSi04/C电化学性能的影响[J].功能材料,2008,39(9):1455-1458.
    [92]左朋建,王振波,尹鸽平,等.锂离子电池聚阴离子型硅酸盐正极材料的研究进展[J].材料导报,2009,23(11):28-31.
    193]施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613.
    [94]S Nishimura, S Hayase, R Kanno, et al. Structure of Li2FeSiO4[J]. Journal of the American Chemical Society,2008,130 (40):13212-13213.
    [95]A K Padhi, K S Nanjundaswamy, C Masquelier, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates [J]. Journal of the Electrochemical Society,1997,144(5):1609-1612.
    [96]P Larsson, R Ahujia, A Nyten, et al. An ab initio study of the Li-battery cathode material Li2FeSi04[J]. Electrochemistry Communications,2006,8(5):797-800.
    [97]A Nyten, A Ali, M Armand, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J].Electrochemistry Communications,2005, 7(2):156-160.
    [98]A Nyten, M Stjerndahl, H Rensmo, et al. Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS[J]. Journal of Materials Chemistry, 2006,16(34):3483-3488.
    [99]A Nyten, S Kamali, L Haggstrom, et al. The lithium extraction/insertion mechanism in Li2FeSiO4[J]. Journal of Materials Chemistry,2006,16(23): 2266-2272.
    [100]A Nyten, T Gustafsson, J Thomas. The Li2FeSiO4 structure under battery cycling[J]. Acta Cryst,2007, A63:190-191.
    [101]E David, S Marten, A Nyten. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI-and LiPF6-based electrolytes[J]. Journal of Materials Chemistry,2009,19 (1):82-88.
    [102]G H Jun, X K Xiong, C Xuan, et al. Preparation and characteristics of Li2FeSiO4/C composite for cathode of lithium ion batteries[J]. Transactions of Nonferrous Metals Society of China,2009,19:166-169.
    [103]任冰,许云华,杨蓉,等.固相法合成锂离子电池正极材料Li2FeSi04[J].热加工工艺,2009,38(14):41-43.
    [104]L L Ming, G H Jun, L X Hai, et al. Effects of roasting temperature and modification on properties of Li2FeSi04/C cathode[J]. Journal of Power Sources, 2009,189:45-50.
    [105]P C Li, Z J Feng, C Xuan, et al. Synthesis of Li2Fe0.9Mn0.1SiO4/C composites using glucose as carbon source[J]. Journal of Central South University of Technology,2010,17(3):514-518.
    [106]R Dominko. Li2MSi04 (M= Fe and/or Mn) cathode materials[J]. Journal of Power Sources,2008,184:462-468.
    [107]S Q Wua, Z Z Zhu, Y. Yang, et al. Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M=Mn, Fe, Co, Ni):A GGA and GGA+ U study[J]. Computational Materials Science,2009,44:1243-1251.
    [108]Z L Gong, Y X Li, Y Yang. Nanostructured Li2FeSi04 electrode material synthesized through hydrothermal-assisted sol-gel process [J]. Electrochemical and Solid-state Letters,2008,11(5):A60-A63.
    [109]R Dominko, D E Conte, D Hanzel, et al. Impact of systhesis conditions on the structure and performance of Li2FeSiO4[J]. Journal of Power Sources,2008, 178(2):842-847.
    [110]胡国荣,曹雁冰,彭忠东,等.微波合成法制备锂离子电池正极材料Li2FeSiO4[J].物理化学学报,2009,25(5):1004-1008.
    [111]彭忠东,曹雁冰,胡国荣,等.锂离子电池正极材料Li2FeSiO4/C的微波合成[J].中国有色金属学报,2009,19(8):1449-1455.
    [112]P Z Dong, C Y Bing, H G Rong, et al. Microwave synthesis of Li2FeSi04 cathode materials for lithium-ion batteries[J]. Chinese Chemical Letters,2009, 20:1000-1004.
    [113]A S Andersson, J O Thomas. The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources,2001,97-98:498-502.
    [114]R Dominko, M Bele, M Gaberscek, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSi04 as potential Li-battery cathode materials [J]. Electrochemistry Communications,2006,8(2):217-222.
    [115]R Dominko, I Arcon, A Kodre, et al. In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials [J]. Journal of Power Sources,2009,189:51-58.
    [116]J Moskon, R Dominko, RC Korosec, et al. Morphology and electrical properties of conductive carbon coatings for cathode materials[J], Journal of Power Sources, 2007,174:683-688.
    [117]Z L Gong, Y X Li, Y Yang. Synthesis and Characterization of Li2MnxFe1-xSiO4 as a Cathode Material for Lithium-ion Batteries[J]. Electrochemical and Solid-state Letters,2006,9(12):542-544.
    [118]K Zaghib, C M Julien. Structure and electrochemistry of FePO4·2H2O hydrate[J]. Journal of Power Sources,2005,142(1-2):279-284.
    [119]Z C Shi, A Attia, W L Ye, et al. Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries[J]. Electrochimica Acta,2008,53(6):2665-2673.
    [120]张宝,彭春丽,王志兴.加碳方式对磷酸铁锂动力学及电化学性能的影响[J].中南大学学报,2007,38(5):863-866.
    [121]H Okawa, J Yabuki, Y Kawamura. Synthesis of FePO4 cathode material for lithium ion batteries by a sonochemical method[J]. Materials Research Bulletin, 2008,43(5-6):1203-1208.
    [122]郑俊超,李新海,王志兴,等.制备过程pH值对FePO4·χH2O及LiFePO4性能的影响[J].中国有色金属学报,2008,5:867-872.
    [123]Y W Li, Z Y Ping, R Q Li. Rapid and Continuous Production of LiFePO4/C Nanoparticles in Super Heated Water [J]. Chinese Journal of Chemical Engineering,2009,17(1):171-174.
    [124]M M Doeff, H Yaoqin, F McLarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePCO4[J]. Electrochemical and Solid-State Letters,2003,6(10):207-209.
    [125]翟金玲,魏进平,杨晓亮,等.锂离子蓄电池正极材料表面包覆研究进展[J].电源技术,2005,29(11):765-770.
    [126]田昭武. 电化学研究方法[M].北京:科学出版社,1984:123-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700