高强度铸造A1-Si-Cu-Mg合金固态相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强度Al-Si-Cu-Mg合金的铸造性能优良,通过热处理可以大幅度提高材料的力学性能。本文研究了该类合金的热处理强化特性,通过考察热处理工艺参数、主要合金元素和微量元素对热处理过程的影响,分析了合金的强化机理。
     本文研究了铸造Al-Si-Cu-Mg合金的时效行为,发现在一定温度以上时效处理时,Al-Si-Cu-Mg合金的硬化曲线上出现了“双峰”现象,两个硬度峰值之间存在明显的“谷”。175℃时效,合金分别在6h和12h出现了第一个和第二个硬度峰。
     DSC和TEM观察发现,铸造Al-Si-Cu-Mg合金的主要时效析出相为θ相和Q相。θ′相在合金基体上非均匀形核,在位错、晶界等能量高的位置优先形核和长大。而Q′相在合金基体中均匀分布,不受位错、晶界等缺陷的影响。在时效处理过程中,Q相的分布和形貌变化不大,稳定性很好,而θ序列析出相的结构变化较大,因此合金时效的“双峰”现象主要来源于θ相结构的变化。
     时效硬化的单、双峰现象与合金的时效析出序列密切相关,GPⅡ区/θ″和亚稳相θ′都能有效强化Al-Si-Cu-Mg合金,但高密度的GP区(主要是GPⅡ区)的溶解将这一时效强化过程分为两个阶段。GP区向亚稳相转变的明显间隔是造成Al-Si-Cu-Mg合金时效双峰现象的主要原因。而在Al-Si-Mg合金的析出过程中,GPⅡ区和亚稳相的形成重叠交叉进行,造成了时效曲线上的硬度平台;在Al-Si-Cu合金的时效过程中,由于大量位错抑制了GP区的形成而促进了θ′相的非均匀形核,造成了时效曲线上的单硬度峰。
     在固溶处理过程中,共晶硅相形貌发生了显著的变化,并对合金的性能产生了很大的影响;通过定量金相分析,共晶硅相形貌的演变及其对合金力学性能的影响可划分为三个阶段:固溶初期硅相的熔断和钝化使合金的塑性得到显著的提高;固溶中期以粒化为主,合金的力学性能达到了峰值;固溶后期硅相的粗化符合LSW粗化模型,硅相形貌呈现棱角小面特性,合金性能降低。
     实验发现,淬火后共晶硅在合金基体中引入了大量的位错,从而抑制了GP的形成,促进了亚稳定θ′相的析出,降低了合金的时效硬化能力,且使得合金的时效过程难以控制。另一方面,固溶处理后过饱和的Si原子以纯硅质点方式析出,为强化相的均匀形核提供了良好的环境,从而加快了合金的时效强化过程。
     在时效过程中,Ti与其它元素形成了弥散分布的Al_3Ti相和Al-Si-Cu-Ti四元化合物相,对合金基体起弥散强化作用。在含Mn合金的时效组织中,存在α-Al_(15)(MnFe)_3Si_2
    
    沈阳工业大学博士学位论文
    弥散质点,均匀、弥散分布在合金的基体上,强烈地钉扎位错,阻碍位错的运动,其本
    身对合金也有一定的弥散强化作用。
     在铸造Al一Si一Cu.Mg合金中分别添加微量元素Cd、sn、Ag,以考察它们对固态相
    变过程的影响。实验发现:Cd和Sn抑制GP区的形成且促进亚稳相的析出,从而促进
    了合金的时效过程,提高了合金的峰时效硬度,加快了合金的硬化速度。由于Cd和Sn
    对GPn区的抑制和亚稳相的促进,也使得GPll区向亚稳相的转变间隔变小甚至消失。
    在合金的峰时效组织中,GPn区和亚稳相同时存在,且尺寸细小,分布弥散,从而提
    高了其硬化速度,引起了合金时效峰的显著增高,有效地促进了合金的时效析出过程,
    也使合金的时效“双峰”现象消失。
     元素Ag和Ni也对合金时效过程中的e相析出序列产生显著的影响,Ag和Ni的
    加入促进了合金时效过程中GPll区/e’‘的形成,而且抑制了合金中亚稳相e’的形成与
    分解,并强烈阻碍了稳定相e的形成。因此,Ag和Ni的添加提高了合金的时效硬化速
    度,并阻碍了合金过时效的发生。
Among the commercial cast aluminum alloys, Al-Si-Cu-Mg cast alloy is extensively used mainly because of its good castability and excellent mechanical properties in the heat-treated condition. The heat treatment behavior of the alloy during heat treatment was investigated in this paper through adjusting heat treatment processing parameters, and inspecting the influence of main alloying elements and trace elements on heat treatment process, and corresponding strengthening mechanism was also carefully analyzed.
    It is found that double aging peaks are present in the age-hardening curves of Al-Si-Cu-Mg alloy aged above certain temperature and the first peak is higher than the second one, whereas an aging hardening plateau and single aging peak is present in age-hardening curves of Al-Si-Mg and Al-Si-Cu alloys respectively. The results of DSC analysis and TEM observation reveal that the age hardening behavior is related to the precipitation sequence of alloys.
    It is shown that two precipitation sequences, namely asss@GP zones and asss- Q'- Q, are mainly responsible for the precipitation hardening of Al-Si-Cu-Mg alloy. The Q' phase homogeneously precipitates in a matrix, regardless of dislocations and grain boundaries, and has excellent structural stability during aging treatment. On the contrary, ' phase preferentially precipitates on the dislocations, and structure transforms dramatically during aging treatment, which should be responsible for the double aging peak phenomenon of the Al-Si-Cu-Mg alloy. In ageing microstructure of the Al-Si-Cu-Mg alloy, the first aging peak is corresponding to the high-density GP zones (especially GP II zones), while the second one is due to the formation of metastable phases. Obvious interval during the transition from the GP zones to metastable phase in DSC curve, caused by the dissolution of GP zones and the nucleation of metastable phases on dislocation, probably is the main reason of the appearance of double aging peaks. The
    aging plateau of the Al-Si-Mg alloy is corresponding to the continuous transition from the GP zones to metastable phases, while single aging peak of the Al-Si-Cu alloy is caused by the formation of metastable phases.
    Through the morphological observation on silicon particles of Al-Si-Cu-Mg cast alloy, it is found that during solution heat treatment the evolution of eutectic silicon morphology and their effect on mechanical property can be classified into three stages. In the initial stage, necking, stubbing and fragmentation of silicon particles results in an improvement in plasticity of the alloy. In the intermediate stage, the mechanical properties of the alloy attain peak values due to the spheroidization of silicon particles. In the final stage, the drop of hardness and strength is related to the deterioration of silicon morphology. The facets and lap are occurred in silicon
    
    
    
    particles and the coarsening process of silicon follows LSW model. On the other hand, a lot of dislocations are introduced by eutectic silicon after quench, which stimulates the formation of but suppresses the GP zone. At the same time, the excess Si atoms affect the process of aging precipitation and lead to a fine and highly dense distribution of GP zones/ phase.
    During ageing treatment, the addition of element Ti forms compounds such as Al3Ti, Al-Si-Cu-Ti, which have dispersion hardening effect for the alloy with other elements. The particles of a-Al15(MnFe)3Si2 are uniformly dispersed in the matrix, and can pin-up dislocations effectively.
    The addition of Cd and Sn remarkably increases the peak aging hardness and reduces the time to reach aging peak in the Al-Si-Cu-Mg alloy through suppressing the formation of GP zone and stimulating the formation of ' and phases. Due to the suppression of GP zone formation and the stimulation of formation, trace elements Cd and Sn cause the shortening of the interval between GP II and metastable phase. In the peak microstructure, phases coexist with phase and then cause effectively hardening of the alloy and eliminate the double aging pe
引文
[1] 熊艳才,刘伯操.铸造铝合金现状及其展望.特种铸造及有色合金,1998,(4):1-5
    [2] K.T. Kashyap. Casting and heat treatment variables of A1-7Si-Mg alloy. Mater. Sci. Technol., 1993, 9 (3): 189-203.
    [3] 黄良余.Al-Si合金的发展和新观点.特种铸造及有色合金,1995(4):30-32
    [4] Mitsuguki Lisogai, Satoshi Murakami. J. Mater. Processing Technol., 1993, 38:635-340
    [5] 邱庆荣,孙宝德,周尧和.铝合金铸件在汽车上的应用.铸造,1998,(1):46-49
    [6] Z. Li, A. M. Samuel, F.H. Samuel, C. Ravindran, H.W. Doty, S. Valtierra. Parameters controlling the performance of AA319-type alloys Part Ⅱ. impact properties and fractography. Mater. Sci. Eng. A, 2004,367:111-122
    [7] P.S. Mohanty, J. E. Gruzleski. Mechanism of grain refinement in aluminum. Acta Mertall. Mater., 1995, 43 (5): 5483-5490
    [8] H.G. Kang, et al. Influence of cooling rate and additions of Sr and Ti-B on solidification structures of AC4B type alloy. Proceeding of 3rd Asian Foundry Congress, Kyongju, Korea, 1995
    [9] 廖恒成.近共晶Al-Si合金组织细化与力学性能的研究.东南大学博士学位论文,2000
    [10] J. A. Garcia-Hinojosa, C. R. Gonzalez, G. M. Gonzalez, Y. Houbaert. Structure and properties of Al-7Si-Ni and A1-7Si-Cu cast alloys nonmodified and modified with Sr. J. Mater. Processing Technol., 2003, 25.. 1084-1092
    [11] R. Sadeler, Y. Totik, M. Gavgal, I. Kaymaz. Improvements of fatigue behavior in 2014 Al alloy by solution heat treating and age-hardening. Mater. and Design, 2004, (in press)
    [12] 张蓉.熔体过热处理对Al-Si过共晶合金凝固组织及耐磨性的影响.西北工业大学博士学位论文,2000.11
    [13] A.K. Gupta, D. J. Lloyd, S. A. Court. Precipitation hardening in Al-Mg-Si Alloys with and without excess Si. Mater. Sci. Eng. A, 2001, 316:11-17
    [14] Rafiq A. Siddiqui, Hussein A. Abdullah, Khamis R. Al-Belushi. Influence of aging parameters on the mechanical properties of 6063 aluminum alloy. J. Mater. Processing Technol., 2000, 102:234-240
    
    
    [15] P. Ratchev, B. Verlinden, A. M. Zahra. Effect of the solutionizing treatment on the precipitation sequence during ageing of an Al-4.22 wt.%Mg-0.58 wt.%Cu alloy. Mater. Sci. Forum, 2000, 331-337:1095-1100
    [16] V. Massardier and T. Epicier. Study of the influence of a low copper addition and of an excess of silicon on the precipitation kinetics on the precipitation sequence of Al-MgaSi alloys. Mater. Sci. Forum, 2002, 396-402:851-856
    [17] 何立子.Al-Mg-Si系合金组织性能。东北大学博士学位论文,2001
    [18] G. Riontino, S. Abis and P.Mengucci. DSC investigation of natural ageing in high-copper AICuMg alloys. Mater. Sci. Forum, 2000, 331-337:1025-1030
    [19] 张君尧.铝合金材料的新进展.轻金属加工技术,1998,26(5):1-10
    [20] 李元元,郭国文,罗宗强,龙雁.高强韧铸造铝合金材料研究进展.特种铸造及有色合金,2000,(6):45-47
    [21] H.M. Tensi, J. Hogerl. Influence of heat treatment on the microstructure and mechanical behavior of high strength AlSi cast alloys. Proceedings of The 16th ASM Heat Treating Society Conference & Exposition. 19-21 March 1996, Cincinnati, Ohio: 243-247
    [22] 吕杰,刘伯操,杨凯,戴圣龙.高强韧铸造铝合金.铸造,2000,(49):66-69
    [23] 彭晋民,钱翰城.铸态铸造铝硅合金的现状和发展.铸造技术,2000,(6):32-34
    [24] 李荣德.铸造铝合金热处理技术现状及展望.第十届全国铸造学术年会论文集.沈阳:东北大学出版社,1998
    [25] 有色金属及其热处理编写组.有色金属及其热处理.北京:国防工业出版社,1981
    [26] 崔忠析.金属学及热处理.北京:机械工业出版社,1986
    [27] 刘相法,边秀房,刘先玉.铝合金中Fe相形态的遗传性及球化机制的研究.金属学报,1997,33(10):1062-1068
    [28] 潘冶,孙国雄.铝合金中铁相形态控制及对性能的影响.特种铸造及有色合金,1993,(5):1-3
    [29] 孙业赞,于敞.铁在铝硅合金中存在的形态及其作用分析.铸造,1998,(7):42-46
    [30] 祝汉良,贾均.A357合金中铁的有害影响.铸造,1996,(5):9-12
    [31] 王金国,周宏,大成桂作,姜孝京.镍和锰对Al-Si-Cu-Mg四元合金凝固组织和时效硬化的影响.中国有色金属学报,2000,(10):168-172
    [32] 潘青林,李绍禄.微量Mn对Al-Si-Mg合金微观组织与拉伸性能的影响.中国有色金属学报,2002,12(5):972-976
    
    
    [33] D.E. Laughlin and W. F. Miao. The effect of Cu and Mn content and processing on precipitation hardening behavior in Al-Mg-Si-Cu. 1998, Appeared at http://neon.mems.cmu.edu/laughlin/paper9
    [34] 桂满昌,贾均,李培杰,陈玉勇.合金元素对铸造Al-Si-Cu-Mg合金机械性能的影响.材料科学与工艺,1993,1(4):73-79
    [35] 李德成,李玉胜.ZL107A高强度铸造铝合金成分的优化.铸造,1997,(11):48-50
    [36] R. Sankaran, C. Laird. Effect of trace additions Cd, In and Sn on the interfacial structure and kinetics of growth of θ'plates in Al-Cu alloy. Mater. Sci. Eng., 1974, (14): 271-279
    [37] J.M. Silcock. The structural aging characteristics of ternary aluminum-copper alloys with cadmium, indium or tin. J. Inst. Metals, 1955, (84): 23-31
    [38] Bondan T. Sofyan. Precipitation processes in Al-4Cu-(Mg, Cd) (wt.%) alloys. Mater. Sci. Forum, 2002, 396-402:613-618
    [39] Bondan T. Sofyan, K. Raviprasad, Simon P. Ringer. Effects of microalloying with Cd and Ag on the precipitation process of Al-4Cu-0.3Mg(Wt%) alloy at 200℃. Micron, 2001, 32:851-856
    [40] J.M. Silcock. Comments on a comparison of early and recent work on the effect of trace additions of Cd, In or Sn on nucleation and growth of θ' in Al-Cu alloys. Scripta Mater., 2002, 46:389-394
    [41] 桂满昌,贾均,李庆春.Cd对AlSi7Cu2Mg合金机械性能和组织的影响.中国有色金属学报,1994,(6):69-72
    [42] 亓效刚,王伟民,黄重柏.Sn与Be对AlSiMg轮毂材料时效过程的影响.轻合金加工技术,2002,30(1):46-49
    [43] 亓效刚,刘峰,王伟民.Sn对Al-Si-Mg系合金的时效动力学分析.轻合金加工技术,2002,30(4):38-40
    [44] 祝汉良,郭景杰,贾均.Ti细化A357合金中的析出相.金属学报,2000,36(1):17-20
    [45] J T Vietz, I J Polmear. The influence of small additions of silver on the aging of aluminum alloys. J. Inst. Metals, 1966, (94): 410-416
    [46] B.Q. Li, F. E. Wawner. Dislocation interaction with semicoherent precipitates (Ω phase) in deformed Al-Cu-Mg-Ag alloy. Acta Mater., 1998, 46(15): 5483-5490
    [47] D.H. Xiao, J. N. Wang, D.Y. Ding, S. P. Chen. Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy. J. Alloys and Compounds, 2002, 343:77-81
    [48] H. Hargarter, M. T. Lyttle, E.A. Starke. Effects of preferentially aligned precipitates on plastic anisotropy in Al-Cu-Mg-Ag and A1-Cu alloys. Mater. Sci. Eng. A, 1998, 257: 87-99
    
    
    [49] K. Raviprasad, C. R. Hutchinson, T. Sakurai, S.P. Ringer. Precipitation processes in an Al-2.5Cu-1.5Mg (wt.%) alloy microalloyed with Ag and Si. Acta Mater., 2003, 51: 5037-5050
    [50] D.H. Xiao, J. N. Wang, D. Y. Ding, H. L. Yang. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy. J. Alloys and Compounds, 2003, 352:84-88
    [51] 梁克中.金相原理与应用.北京:中国铁道出版社,1983
    [52] Hong-Park, Sang-Ho Choi and Myung-Ho Kim. Effect of microstructure of Al morphology on the thermal and mechanic properties of the hyper-eutectic Al-Si alloy. Metall. Trans. A, 1986, 18A(1): 439-442
    [53] 李荣德,于海朋.亚共晶铝硅镁铸造合金共晶硅相在固溶处理过程中形貌变化的定量金相分析.铸造,1996,(6):12-18
    [54] K.T. Kashyap, S. Murall, K. S. Raman. Casting and heat treatment variables of Al-7Si-Mg alloy. Mater. Sci. Technol., 1993, 9:189-203
    [55] C. W. Meyers. Solution heat treatment effects in A357 alloys. AFS Trans., 1985(112): 741-744
    [56] 于修德,於冬娥.亚共晶Al-Si合金中共晶硅的粒化.特种铸造及有色合金,1989,(6):
    [57] 孙瑜,陈晋,孙国雄.铝硅合金硅相演变及其对力学性能的影响.特种铸造及有色合金,2001(6):1-4
    [58] 有色金属及其热处理编写组.有色金属及其热处理.北京:国防工业出版社,1981
    [59] F.H. Samuel. Incipient melting of Al_5Mg_8Si_6Cu_2 and Al_2Cu intermetallics in unmodified and strontium-modified Al-Si-Cu-Mg (319) alloys during solution heat treatment. J. Mater. Sci., 1998, 33:2283-2297
    [60] 郑章耕主编.工程材料及热加工工艺基础.重庆:重庆大学出版社,1997
    [61] J. H. Sokolowski, X-C. Sun. The removal of copper-phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminum alloys by twostage solution heat treatment. J. Mater. Processing Technol., 1995, 53:385-392
    [62] N. Crowell, S. Shivkumar. Solution Treatment effects in cast Al-Si-Cu alloys. AFS Trans., 1995, 107:721-726
    [63] A.M. Samuel, J. Gaythier, F. H. Samuel. Microstructural aspects of the dissolution and melting of Al_2Cu phase in Al-Si alloys during solution heat treatment. Metall. Mater. Trans. A, 1996, 27A(7): 1785-1798
    
    
    [64] L. Anantha Narayanan, F. H. Samuel. Dissolution of iron intermetallics in Al-Si alloys through nonequilibdum heat treatment. Metall. Mater. Trans. A, 1995, 26A(8): 2161-2174
    [65] S.P. Ringer, G. C. Quan, T. Sakurai. Solute clustering, segregation and microstructure in high strength low alloy Al-Cu-Mg alloys. Mater. Sci. Eng. A, 1998, 250:120-126
    [66] Guiqing Wang, Xiufang Bian, Weimin Wang, Junyan Zhang. Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys. Mater. Lett., 2003, 57: 4083-4087
    [67] 祝汉良,贾均.高强韧A357合金凝固组织及热处理工艺的研究.特种铸造及有色合金,1997,(1):22-24
    [68] 贾均,桂满昌.工艺品因素对ZLAlSi6Cu2Mg合金组织的性能的影响.铸造,1993,(1):28-31
    [69] 李德成,李玉胜.高强度铸造铝合金ZL107A固溶处理.金属热处理,1998,(8):8-10
    [70] 北冈山治,藤仓潮三,神尾彰彦.Al-Si系合金.轻金属,1988,38:426-446
    [71] L. Pedersen. The effect of solution heat treatment and quenching rates on mechanical properties and microstructure in A1SiMg foundry alloys. Metall. Mater. Trans. A, 2001, 32A(3): 524-532.
    [72] N. Crowell, S. Shivkumar. Solution treatment effects in cast Al-Si-Cu alloys. AFS Trans., 1995, 107:721-726
    [73] K. Kido, K. Matsuda, T. Kawabata, T. Sato, S. Ikeno. HRTEM observation of precipitates in Al-Mg-Si alloy containing copper at early stage during aging. Mater. Sci. Forum. 2002, 396-402:953-958
    [74] A.L. Garcia-Celis, R. Colas. Aging in heat treatable cast aluminum alloy. Heat Treatment, 1999, 5:372-375
    [75] Ji-Yong Yao, Geofferya, Edwards and Daniel A. Graham. Precipitation and age hardening in Al-Si-Cu-Mg-Fe casting alloys. Mater. Sci. Forum, 1996, 217-222:777-782
    [76] K.T. Kashyap, S. Murali, K. S. Raman, and K. S. S. Murthy. Casting and heat treatment variables of Al-7Si-Mg alloy. Mater. Sci. Technol., 1993, 9:189-203
    [77] G. Riontino, S. Abis and P. Mengucci. DSC investigation of natural ageing in highcopper AlCuMg alloys. Mater. Sci. Forum, 2000, 331-337:1025-1030
    [78] H.G. Kang. Age-hardening characteristics of Al-Si-Cu-base cast alloy. AFS Trans., 1999, 27:507-514
    [79] S. Zafar, Nazma Ikram, M. A. Shaikh, K. A. Shoaib. Microstructure studies in Al-6%Si-1.9%Cu-x%Mg alloys. J. Mater. Sci., 1990, 25:2595-2597
    
    
    [80] Kuo-Chan Chen, Chuen-Guang Chao. Effect of δ alumina fibera on the aging characterstics of 2024-based matel-matrix composites. Metall. Mater. Trans. A, 1995, 26A: 1035-1043
    [81] T. S Kim, T. H Kim. Suppression of 0" formation in the SiC whisker-reinforced Al-4 wt% Cu composites. J. Mater. Sci., 1992, 27:2599-2605
    [82] 祝汉良,郭景杰,贾均.铸造Al-Si-Mg合金的时效特性及形变机制.中国有色金属学报,1997,7(1):143-146
    [83] 李德成,沈桂荣,李玉胜.高强度铸造铝合金ZL107A的时效过程.铸造技术,1998,(4):39-41
    [84] 姚家鑫,曹阳.快速凝固Al-Cu-Mg合金的时效特性.金属热处理学报,1995,16(3):29-32
    [85] Bian Xiufang, Wang Guiqing, Zhang Junyan, Wang Shenhai. As-cast ageing of aluminum alloys. Mater. Sci. Forum, 2002, 396-402:863-868
    [86] E. Cerri, M. Cabibbo, P. Cavaliere and E. Eangelista. Mechanical behaviour of 319 heat treated thixo cast bars alloy. Mater. Sci. Forum, 2002, 331-337:259-264
    [87] M. Tiryakioglu, J. Campbell, J. T. Staley. Hardness-strength relationships in cast Al-Si-Mg alloys. Mater. Sci. Forum, 2002, 331-337:295-300
    [88] K.T. Kashyap, S. Murali, K. S. Raman, and K. S. S. Murthy. Casting and heat treatmentvariables of Al-7Si-Mg alloy. Mater. Sci. Technol., 1993, 9:189-203
    [89] 李培杰,桂满昌,贾均,李庆春.高合金化Al-Si合金室温和高温短时陸能的研究.航空材料学报,1995,15(3):28-32
    [90] S. MurAli, K. T. Kashyap, K. S. Raman and K. S. S. Myrthy. Inhibition of delay ageing by trace addition in Al-7Si-0.3Mg cast alloy. Fondevie, 1993, 126:1424-1426
    [91] G.P. Ghate, K. S. Creenivasa Murthy and K. S. Ramen. Effect of trace elements on the delayed artificial aging of Al-7%Si-0.3%Mg alloy. J. Mater. Sci., 1989, 24:2595-2597
    [92] 徐品才.铝合金零件分级或多级时效处理.铸锻热—热处理实践,1996,(3):6-9
    [93] G. Riontino, A. Zanada. Coupled formation of hardening particles on pre-precipitates in an Al-Cu-Mg-Si 2014 alloy. Mater. Letters, 1998, 37:241-245
    [94] 王奎民,张玉洁.预时效时间对2324铝合金组织和性能的影响.铝合金加工技术,1996,24(10):8-14
    [95] 王祝堂,卢载浩,王洪华.铝合金回归热处理进展及其新应用领域.轻合金加工技术,1998,26(11):5-10
    [96] 邱宏伟.7050铝合金厚板RRA处理过程中性能和组织的变化.轻合金加工技术,1997,25(9):5-9
    
    
    [97] 谷亦杰,林建国.回归再时效(RRA)处理对7050铝合金的影响.金属热处理,2001,(1):15-20
    [98] T. Allen, Lidcombe, and A. Crosky, KenSington. Preageing Effects in Al-7%Si-0.6%Mg foundry alloys. Aluminum, 1990, 11:1079-1083
    [99] A J Trowdale, et al. Neural networks for providing 'on-line' access to discredited modeling techniques. J. Mater. Processing Technol., 1998, 80-81: 475-480
    [100] 宋仁国,张奇忠,曾梅光.人工神经网络在7175高强铝合金时效动力学研究中的应用.东北大学学报,1995,16(2):219-221
    [101] 郭斌,戴护民.基于人工神经网络的锻造性能预报的研究.哈尔滨工业大学学报,1998,30(5):16-19
    [102] 夏伯才,汪法根.灰铸铁自适应模糊神经网络预测.铸造,2000,49(6):349-352
    [103] 唐波.人工神经网络在熔盐相图中间相预报中的应用,金属学报,1994,30(1):22-26
    [104] 张兆春.模式识别—人工神经网络在改善汽车发动机缸体力学性能方面的应用.金属学报,1998,34(10):1069-1072
    [105] D. L. Zhang. Precipitation of excess silicon during heat treatment of cast Al-7w%Si-0.4wt%Mg alloy. Mater. Sci. Forum, 1996, 217-222:771-776
    [106] M. Kaczorowski. The role of excess silicon in the process of precipitation hardening of AlSiMg Alloy (Ⅰ). Aluminium, 1985,10:756-762
    [107] G. Riontino, S. Abis and P. Mengucci. DSC investigation of natural ageing in highcopper AlCuMg alloys. Mater. Sci. Forum. 2000, 331-337:1025-1030
    [108] D. J. Chakrabarti, Byung-ki Cheong, David E. Laughlin. Precipitation in Al-Mg-Si-Cu alloys and the role of the Q phase and its precursors. 1998, Appeared at http://neon.mems.cmu.edu/laughlin/paper8
    [109] D. J. Chakrabarti, Yingguo Peng, David E. Laughlin. Precipitation in Al-Mg-Si alloys with Cu additions and the role of the Q" and relates phases. Mater. Sci. Forum, 2002, 396-402:857-862
    [110] Kenji Matsuda, Daisuke Teguri, Tatsuo, Susmu Ikeno. EFTEM observation of Q' phase in Al-Mg-Si-Cu alloy. Mater. Sci. Forum, 2002, 396-402:947-952
    [111] D. A. Petrov. On the composition of the quaternary phase in the system Al-Mg-Si-Cu. Acta Physico Chimica U. R. S.S., 1937, 4:505-512
    [112] G. Phragmen. On the phases occupying in alloys of aluminium with copper, magnesium, manganese, iron, and silicon. J. Inst. Metals, 1950, 77: 489-552.
    [113] R. D. Schueller, F. E. Wawner. Nucleation mechanism of the cubic o phase in squeezecast aluminium matrix composites. J. Mater. Sci., 1994, 29:424-435
    
    
    [114] L. Arnberg and B. Aurivillius. The crystal structure of Al_xCu_2Mg_(12-x)Si_7 (h-AlCuMgSi). Acta Chemica Scandinavica, Series A, 1980, 34A: 1-5.
    [115] G. Phragmen. On the phases occupying in alloys of aluminium with copper, magnesium, manganese, iron, and silicon. J. Inst. Metals, 1950, 77, 489-552.
    [116] L. F. Mondolfo. Aluminum alloys: structure and properties. Boston, Butterworths, 1979: 644-651.
    [117] J. Y. Yao, D. A. Graham, M. J. Couper. A DSC and TEM study of precipitation in T1 and T2 treated Al-Mg-Si alloys. Mater. Sci. Forum, 2000, 331-337:1083-1088
    [118] N. Gao, L. Davin, S. Wang, A. Cerezo and M. J. Starink. Precipitationin stretched Al-Cu-Mg Alloy with reduced alloying content studied by DSC, TEM and atom probe. Mater. Sci. Forum, 2002, 396-402: 923-928
    [119] S. Argyropoulos, B. Closset, J. E. CJruzleski, H. Oger. The quantitative control of modification in Al-Si foundry alloys using a thermal analysis technique. AFS Trans., 1983, 27:351-358
    [120] Victor A. Phillips. High resolution electron microscope observations on precipitation in Al-3.0%Cu alloy. Acta Metall., 1975, 23:751-767
    [121] B. P. Huang, Z. Q. Zheng, Independent and combined roles of trace Mg and Ag additions in properties precipitation process and precipitation kinetics of Al-Cu-Li-(Mg)-(Ag)-Zr-Ti alloys. Acta Mater., 1998, 46(12): 4381-4393
    [122] I. Dutta, S. M. Allen, J. L. Harley. Effect of reinforcement on the aging response of cast 6061 Al-Al_2O_3 particulate composites. Metall. Trans. A, 1991, 22A(11): 2553-2563
    [123] D. L. Zhang, L. Zheng. The quench sensitivity of cast Al-7Wt Pct Si-0.4wt Pct Mg alloy. Metall. Mater. Trans. A, 1996, 27A: 3983-3991
    [124] J. A. Taylor, D. H. St John, J. Barresi and M. J. Couper. Influence of Mg content on the microstructure and solid solution chemistry of Al-7%Si-Mg casting alloys during solution treatment. Mater. Sci. Forum, 2000, 331-337:277-282
    [125] P. Ouellet, F. H. Samuel. Effect of Mg on the ageing behavior of Al-Si-Cu 319 type aluminum casting alloys. J. Mater. Sci., 1999, 34:4671-4697
    [126] B. K. Prasad. Microstructural modifications and improvement in properties of a hypoeutectic Al-Si alloy dispersed with graphite particles. J. Mater. Sci. Lett., 1991, 10: 867-869
    [127] J. Bar, H-J. Gudladt, J. lily, J. Lendvai. Influence of fibre reinforcement on the aging behaviour of an AlSil_2CuMgNi alloy. Mater. Sci. Eng. A, 1998, A248:181-186
    [128] T W Clyne, P J Withers. An introduction to metal matrix composities [M]. Cambridge: Cambridge university press, 1993.
    
    
    [129] John M. Papazian. A calorimetric study of precipitation in aluminum alloy 2219. Metall. Trans. A, 1981, 12A: 269-280
    [130] I. Dutta, C. P. Harper and G. Dutta. Role of Al_2O_3 particulate reinforcements on precipitation in 2014 Al-matrix composites. Metall. Mater. Trans. A, 1994, 25A: 1591-1602
    [131] R. D. Schueller, A. K. Sachdev and F. E. Wawner. Sripta Metall, 1992, 27:617-623
    [132] H. A. Rosenbuam and D. Turnbull. Acta Metall., 1958:653-660
    [133] S Zajac, B Hutchinson, A Johansson. Microstructure control and extrudability of Al-Mg-Si alloys microalloyed with manganese. Mater. Sci. Technol., 1994, 10(6): 323-330
    [134] D Z Yang. Strengthening Mechanism of Dislocation of Metal. Harbin: Harbin Institute of Technology Publishing House, 1991: 182
    [135] 杨海龙,王健农,肖代红,丁冬雁.新型耐热铝合金Al-Cu-Mg-Ag棒材固溶处理温度的研究.兵器材料与科学工程,2003,26(1):16-18
    [136] J T Vietz, I J Polmear. The influence of small additions of silver on the ageing of aluminum alloys. J. Inst. Metals, 1966, 94(12): 4104
    [137] T J Langan, J R Pickens. Al-(4.5-6.3) Cu-1.3Li-0.4Ag-0.4Mg-0.14Zr alloy weldalite 049. Pro 5th Int. Conf. on Al-Li Alloys, Edgbaston, 1989:806
    [138] M. Murayama and K. Hono. Role of Ag and Mg on precipitation of T1 phase in an Al-Cu-Li-Mg-Ag alloy. Scfipta Mater., 2001,44:701-706
    [139] 田宝辉,陆政,颜鸣皋,刘伯操,魏柄忱.Mn,Zn和Ag对Al-Mg-Li合金组织和性能的影响.航空材料学报,1997,41(12):25-30
    [140] L. Reich, M. Murayama, K. Hono. Evolution of Ω phase in an Al-Cu-Mg-Ag alloy a three-dimensional atom probe study. Acta Mater., 1998, 46(17): 6053-6062,
    [141] K. Hanada, M. Mayyuaumi. Processing and characterization of cluster diamond dispersed Al-Si-Cu-Mg composite. J. Mater. Processing Technol., 2001, 119:216-221
    [142] 肖代红,王健农,陈世朴,丁冬雁.微量Ag对A15.3Cu0.8Mg合金组织和耐热性能的影响.机械工程材料,2003,27(1):38-40
    [143] A. M. Kliauga, M. Ferrante. The effect of Sn additions on the semi-solid microstructure of an Al-7Si-0.3Mg alloy. Mater. Sci. Eng. A, 2002, 337:67-72
    [144] D. H. Xiao, J. N. Wang, D. Y. Ding, S. P. Chen. Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag Alloy. J. Alloys and Compounds, 2002,343:77-81
    [145] B. M. Gable, G. J. Shi. Et, E. A. Starke Jr. The effect of Si additions on Ω precipitation in Al-Cu-Mg-(Ag) alloys. Scripta Mater., 2004, 5:149-153
    
    
    [146] A. K. Mukhopadhyay, Gunther Eggeler and Birgit Skrotzki. Nucleation of Ω phase in an Al-Cu-Mg-Mn-Ag alloy aged at temperatures below 200℃. Scdpta Mater., 2001, 44: 545-551
    [147] A. K. Mukhopadhyay. On the nature of the second phase particles present in an as-cast Al-Cu-Mg-Ag alloy. Scdpta Mater., 1999, 41 (6): 667-672,
    [148] C. R. Hutchinson, X. Fan, S. J. Pennycook and G. J. Shifiet. On the origin of the high coarsening resistance of plates in Al-Cu-Mg-Ag alloys. Acta Mater., 2001, 49: 2827-2841
    [149] L. B. Ber. Accelerated artificial ageing regimes of commercial aluminum alloys. Ⅰ. Al-Cu-Mg alloys. Mater. Sci. Eng. A, 2000, 280:83-90
    [150] Jin-Chun Kim, Yoshinori Nishida, H. Arim, Teiichi Ando. Microstructure of Al-Si-Mg alloy processed by rotary-die equal channel angular pressing. Mater. Lett., 2003, 57: 1689-1695
    [151] O. R. Myhr, O. Grong and S. J. Andersen. Modelling of the age hardening behaviour of Al-Mg-Si alloys. Acta Mater, 2001, 49:65-75
    [152] J. F. Nie, B. C. Muddle. On the form of the age-hardening response in high strength aluminium alloys. Mater. Sci. Eng. A, 2001:448-451
    [153] A. Somonza, A. Dupasquien. Positron studies of solute aggregation in age-hardenable aluminum alloys. J. Mater. Processing Technol., 2003,135:83-90
    [154] P. Ratchev, B. Verlinden, P. De Smet and P. Van Houtte. Precipitation hardening of an Al-4.2 wt% Mg-0.6 wt% Cu alloy. Acta Mater., 1998, 46(10): 3523±3533,
    [155] M. Murayama and K. Hono. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta Mater., 1999, 47(5): 1537-1548
    [156] Y. Nagai, M. Murayama, Z. Tang, T. Nonaka, K. Hono and M. Hasegawa. Role of vacancy-solute complex in the initial rapid age hardening in an Al-Cu-Mg alloy. Acta Mater., 2001,49:913-920
    [157] Anandh Subramaniam, S. Ranganathan. Vacancy ordered phases in Al-Cu-Ni as average lattices. J. Non-Crystalline Solids, 2004, 334&335:114-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700