板条式水润滑橡胶合金轴承润滑特性及热结构耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以水为润滑介质的板条式水润滑橡胶合金轴承,与传统以油为润滑介质的金属轴承的润滑机理有所不同。水的黏度只有油1/100,当供水压力高,轴颈转速高时,容易产生紊流,因此在对润滑模型进行有限元分析时,不能将水膜假设为层流模型。橡胶为低弹性模量材料,在流体动压润滑时,橡胶变形量大,不能像金属轴承那样忽略不计。橡胶弹性变形的退让使得轴的偏心率可以大于1。板条式水润滑橡胶合金轴承沟槽的存在,使得水膜压力较油润滑低,一方面由于温度对橡胶材料的力学特性影响较大,需要沟槽中的冷却水将产生的热量带走;另一方面沟槽为橡胶变形提供空间,改善橡胶与铜粘接面的受力。
     论文针对板条式水润滑橡胶合金轴承特殊的润滑机理,利用Workbench CFX有限元软件对轴承润滑模型进行3D数值仿真分析。论文从转速、偏心率、橡胶材料、板条结构等角度对水膜压力分布、水膜流场分布、水膜厚度等方面深入研究了板条式水润滑轴承的流体动压润滑性能。由于橡胶轴承动压润滑过程是一个双向的流固耦合,因此橡胶的弹性变形,应力分布等也是论文研究的重点。
     随后通过实验研究了温度对橡胶材料性能的影响,因为当轴承系统供水系统出现故障或是轴承系统出现过载时,轴与轴承之间处于干摩擦状态。当轴承系统处于干摩擦状态时不仅摩擦系数会增大而加速轴与轴承的磨损,还会使轴承温度升高,改变橡胶的力学性能,加速橡胶老化,甚至出现烧焦现象。
     根据实验得到的数据,论文进一步利用ABAQUS有限元软件对板条式水润滑橡胶合金轴承,在干摩擦状态下的热结构耦合模型进行了分析。通过分析论文研究了板条式水润滑橡胶合金轴承在干摩擦工况时轴承系统接触面的温度分布、接触应力分布以及能量随时间的变化。
     论文内容得到国家自然科学基金面上项目“大尺寸高比压水润滑轴承的创新设计理论与方法”(项目编号:50775230)的支持,拟通过上述研究对板条式水润滑橡胶合金轴承的润滑机理和干摩擦热结构耦合的相关研究方法提供新的借鉴。
Water lubricated rubber slab bearings lubricated with water have performances different from which lubricated with traditional oil as the medium of metal bearing lubrication mechanism. The viscosity of water is only 1 / 100 compare with oil, when the water supply pressure is high and the journal at high speed, the stream prone to turbulence, so the lubrication system on the finite element analysis can not be assumed to be laminar flow model of water film. Low modulus of elasticity of rubber materials, when the bearings in hydrodynamic lubrication, large deformation of rubber bearings that can not be like the metal bearings is ignored. Rubber elastic deformation of the concessions made to the shaft eccentricity greater than or equal to1. Water lubricated rubber alloy slab bearings’groove makes the water film pressure is low than the presence of oil lubrication, while the temperature on the mechanical properties of rubber materials greatly influenced, the cooling water in grooves can take the heat away which was produced by friction; another side grooves provide space for the deformation of rubber, so the rubber and copper bonding surface to improve the stress.
     Thesis contrapose water lubricated rubber alloy bearing strip special lubrication mechanism, the use of Workbench CFX finite element software for 3D on the bearing lubrication system on numerical simulation. Papers from the rotational speed, eccentricity, rubber materials, lath structure and so on to study the lath-type water lubricated hydrodynamic bearing performance which about the pressure distribution on the water film, water film flow field and water film thickness The rubber bearing lubrication process is a two-way coupling, so the rubber elastic deformation, stress distribution is also the thesis research.
     Subsequent paper passed the experimental study of the temperature on the properties of rubber material. When the bearings of water supply system failure or bearings overload, the shaft and the bearing were in dry friction. When the bearing system in dry friction is not only the friction coefficient would increase which would speed up the shaft and bearing wear, but also to change the bearing temperature mechanical properties of rubber and even accelerated aging of burning rubber.
     Using experimental data obtained, the paper further use of finite element software ABAQUS. The water lubricated rubber alloy slab bearings under dry friction in the thermal structure of the coupling is analyzed. By analyzing the thesis study when the water lubricated rubber slab bearings under dry friction condition, the bearing contact surface temperature distribution, the contact stress distribution and the energy changes with time.
     This research is supported by the State Natural Sciences Foundation General Projects:“Innovative design theory and method of water lubricated bearing system with large size and high specific pressure”(Number: 50775230). The paper will provide reference methods for the study of lubrication mechanism and thermal structure under dry friction condition.
引文
[1]王家序,李太福.用水为润滑介质的摩擦副研究现状与发展趋势[C].《99全国流体动力与机电一体化技术学术年会》论文专辑.1999,(3-4):9-10.
    [2]王优强,杨成仁.水润滑橡胶轴承研究进展[J].润滑与密封,001,(2):65-67.
    [3]王优强.水润滑橡胶轴承润滑机理的研究[D].东北大学,1995.
    [4]陈战,王家序,秦大同.以水作润滑介质的摩擦副的研究[J].农业机械学报,2001,(3):124-125.
    [5] B C Majumdar,R.Pai,D J Hargreaves.Analysis of Water-lubricated Journal Bearings with Multiple Axial Grooves[J].Journal of Engineering Tribology,2004,(218):135-146.
    [6]卢磊.水润滑橡胶合金轴承接触及润滑特性分析[D].重庆大学硕士学位论文,2010.
    [7] Tan Kong Hong Ryan Tanamal.Modeling of Fluid Flow in Multiple Axial Groove Water Lubricated Bearings Using Computational Fluid Dynamics[D].Queensland University of Technology,Australia,2007.
    [8]杨和庭,唐育民.船舶水润滑尾管橡胶轴承的设计[J].武汉造船,2000,(2):19-22.
    [9] Maryland. Frictional Characteristics of Water Lubricated Compliant Surface Stave Bearings.
    [10]王优强,李鸿琦,佟景伟.水润滑橡胶轴承[J].轴承,2002,(10)41-43.
    [11]衣雪娟,王优强.水润滑轴承研究进展[J].机床与液压,2004,(4)13-14.
    [12] D L Cabrera,N H Woolley,D R Allanson.Film Pressure Distribution in Water-lubricated Rubber Journal Bearings[J].IMechE,2005,(219):125-132.
    [13]郭力.水润滑轴承研究的进展[J].精密制造与自动化,2007,(1):6-9.
    [14]中国专利.ZL200820190889.4.平面板条式水润滑复合材料艉轴承.中华人民共和国知识产权局,2008.
    [15]张霞,王新荣,牛国玲,张联军.水润滑橡胶轴承的研究现状与发展趋势[J].装备制造技术,2008,(1)101-102.
    [16]江邦治.关于核泵水润滑轴承的设计[J].水泵技术,1997,(5):16-19.
    [17]刘琴华.船舶尾轴承水润滑特性数值计算与试验研究[D].武汉理工大学硕士学位论文,2008.
    [18] Roy L.Orndorff Jr,John C.Holzheimer.Thin Film Tribology and Rubber Bearings [J].Tribology,1993,(25):611-620.
    [19]王家序,田凡等.高性能水润滑机械传动系统[P].中国,ZL200610054131.3,2006.
    [20]彭晋民.水润滑轴承的润滑机理及设计研究[D].重庆大学博士学位论文,2003.
    [21]王贤锋,林青,胡茂横.水润滑橡胶尾管轴承的性能研究[J].船舶工程,1993,(4):45-49,55.
    [22]陈伯贤,裘祖干,张惠生.流体润滑理论及其应用[M].北京:机械工业出版社,1991.
    [23]余江波.基于资源节约与环境友好的高性能水润滑轴承润滑关键技术研究[D].重庆大学,2006.
    [24]杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998.
    [25] Bhushan B.Stick-Slip Induced Noise Generation in Water-Lubricated Compliant Rubber Bearings[J].ASME Journal of Lubrication Technology,1980,(102):201-212.
    [26] B C Majumdar,R.Pai,D J Hargreaves.Analysis of Water-lubricated Journal Bearings with Multiple Axial Grooves[J].Journal of Engineering Tribology,2004,(218):135-146.
    [27] ANSYS CFX-Solver Theory Guide. ANSYS Inc, 2010.
    [28]郭宏升.水润滑高速动静压滑动轴承的理论与实验研究[D].北京科技大学博士学位论文,2007.
    [29]王家序,余江波,田凡.水润滑塑料合金轴承数控值分析的多重网格法[J].润滑与密封.2000(5). 62~65
    [30]岳戈.ADINA流体与流固耦合功能的高级应用[M].北京:人民交通出版社,2010.
    [31]陈战.水润滑轴承的摩擦磨损性能及润滑机理的研究[D].重庆大学. 2003.3
    [32]董勋.润滑理论[M].上海:上海交通大学出版社,1984.
    [33]周正贵.计算流体力学基础理论与实际应用[M].南京:东南大学出版社,2008.
    [34]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [35]段芳莉.橡胶轴承水润滑机理的研究[D].重庆大学博士学位论文,2002.
    [36] Zenglin Guo,Toshio Hirano,R.Gordon Kirk.Application of CFD Analysis For Rotating Machinery—Part I : Hydrodynamic , Hydrostatic Bearings and Squeeze Film Damper [J].Journal of Engineering for Gas Turbines and Power,2005,(127):445-451.
    [37]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992.
    [38]刘鸿文.材料力学[M].北京:高等教育出版社,1992.
    [39] A.N.詹特.橡胶工程-如何设计橡胶配件[M].北京:化学工业出版社,2002.
    [40] ASTM D412-06a . Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension.2006.
    [41]中华人民共和国国家标准.GB/T528-2009.硫化橡胶或热塑性橡胶拉伸应力应变性能的测定.北京:国家技术监督局,2009.
    [42] John S. Dick.Rubber Technology Compounding and Testing for Performance [M]. Carl Hanser verlay, 2001.
    [43]游长江,贾德民.橡胶技术配合与性能测试[M].北京:化学工业出版社,2005.
    [44]王伟,邓涛,赵树高.橡胶Mooney-Rivlin模型中材料常数的确定[J].特种橡胶制品,2004,(4):8-10.
    [45]刘佐民.摩擦学理论与设计[M].武汉:武汉理工大学出版社,2009.
    [46]戴振东,王珉,薛群.摩擦体系热力学引论[M].北京:国防工业出版社,2002.
    [47] Richard S C, Ward O W. Frictional Heating Calculation [J]. New York: ASME, 1993.
    [48] Childs T H C. The Mapping of Metallic Sliding Wear [C]. Proceedings of the Institution of Mechanical Engineers, 1988.
    [49]刘佐民.M50高速钢高温摩擦磨损特性研究[J].摩擦学学报,1997.
    [50]朱艳峰,刘锋等.橡胶材料的本构模型[J].橡胶工业,2006,(2):119-125.
    [51] Lee B S,Rivin E I.Finite Element Analysis of Load-Deflection and Characteristics of Compressed Rubber Components for Vibration Control Devices[J].Journal of Mechanical Design,1996,(118):328-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700