含内热源球床通道换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球床水冷反应堆由于其小型化、长寿命和安全性高等优点被很多研究者所关注。其堆芯是典型的含内热源随机填充球床结构,基于安全的考虑,堆芯内的换热规律,过冷沸腾起始点的变化规律等诸多问题则成为关注的重点。迄今为止,公开发表的相关研究报告十分有限,因此,研究含内热源球床通道内的对流换热特性以及沸腾起始点的变化规律具有重要的意义。
     本文主要对含内热源球床通道内的单相流动与换热规律,过冷沸腾起始点和沸腾滞后现象等内容进行了研究,并建立了三维随机填充球床模型,通过数值计算的方法对球床通道内部的各种参数进行了分析。本文的主要研究工作和结果如下:
     1.对含内热源球床通道内的单相对流换热特性进行了分析。结果表明:质量流速、入口过冷度和球径是主要影响因素。随着质量流速的增加,入口水温的降低和球径的减小,对流换热系数明显增加。综合考虑这些参数对换热的影响,使用多元线性回归方法拟合出了适用于含内热源球床通道的无量纲换热关系式,该关系式计算值与实验值的相对偏差在±20%范围以内。
     2建立了三维随机填充球床模型,通过数值计算得到了球床内部的平均换热系数以及温度、压力和速度等参数的分布规律。换热系数的计算值与实验值符合良好,验证了模型的可靠性,计算结果还表明,如果相邻两球的球心连线与竖直方向夹角在0o-45o之间,则夹缝区域流体的流速很小,此时该区域为高温区;当相邻两球球心连线与竖直方向夹角在45o-90o之间时,流体进入夹缝区域后流速增大,使得换热增强,表现为该区域流体温度较低。
     3.对含内热源球床通道内过冷沸腾起始点的主要影响因素进行了研究。结果表明,工质过冷度、质量流速和球径是过冷沸腾起始点的重要影响因素,过冷沸腾起始点所需的热流密度随着工质过冷度的减小而降低;随着质量流速和球径的增加而增大。综合考虑以上三种参数的影响,拟合出了球床通道内过冷沸腾起始点的判定关系式,该关系式的预测值与实验值相对偏差在±25%范围以内。在对沸腾起始点进行研究的基础上,通过可视化观察,并结合球床通道自身的结构特点,认为通道内产生的汽泡可分为四类:普通表面上的汽泡、两球角缝区的汽泡、多个密实堆积球之间的汽泡和疏松排列区大孔隙内的汽泡。分别对每类汽泡的受力进行分析,得出到了各自的生长及脱离规律。
     4.对含内热源球床通道内的各种滞后现象进行了研究,分别以滞后温差和滞后面积来表征成核滞后和温度偏离滞后的程度,分析了各种滞后现象产生的原因和变化规律。结果表明:靠近球床出口和径向中心位置成核滞后现象较明显;流速和表面粗糙度增加,温度偏离滞后的程度明显增加;由于球床通道中存在很多高温的角缝区域,可以提供稳定的汽化核心,对滞后现象具有很大的抑制作用。
Water-cooled pebble-bed reactor has many advantages such as miniaturization, long lifeand high safety. So more and more researchers have paid attention to it. Water-cooledpebble-bed reactor core is typical random packed pebble-bed structure with an internal heatsource and based on safety consideration, many issues, such us heat transfer characteristic insingle phase flow and onset of nucleate boiling become the focus of attention. So far, therelevant research announced in an open manner is very limited. Therefore, the study ofconvection heat transfer characteristics and law of onset of nucleate boiling are of greatsignificance.
     Based on the pebble-bed channels with internal heat source, this paper mainly researchesthe flow and heat transfer characteristics of single-phase forced convection, the law of onsetof nucleate boiling and boiling hysteresis. A three-dimensional stochastic model of packedbed was constructed, and the internal parameters of pebble-bed channels were analysised bynumerical calculation method. The main work and conclusions are summarized as follows:
     1. The single phase convection heat transfer in pebble-bed channels with internal heatsource was studied. According to the experimental results, mass velocity, inlet watertemperature and pebble diameter are the principal factors. When mass velocity increases, inlettemperature and pebble diameter decrease, the heat transfer coefficient increases obviously.Considering the effects of these parameters on the heat transfer, based on the analysis of alarge amount of experimental data, a dimensionless heat transfer correlation for pebble-bedchannels with internal heat source was fitted by the multiple linear regression method. Therelative deviation between the calculated value and the experimental value is within±20%.
     2. A three dimensional stochastic model of packed-bed was constructed to obtain thedistribution of pebble-bed internal parameters such as heat transfer coefficient, temperature,pressure and velocity by numerical calculation, and the reliability of the model is verified bythe comparisons with experimental results. Link the two adjacent balls with a line, if theintersection angle of the line and vertical direction is between0to45degree, fluid velocity islower in the gap, so the temperature is higher in this area. If the intersection angle of the lineand vertical direction is between45to90degree, the velocity of fluid increase after flowing into this area, leading to the increase of heat transfer coefficient, so the fluid temperature inthis area is lower.
     3. The main influencing factors of onset of nucleate boiling in pebble-bed channels withinternal heat source were studied. According to the experimental results, the subcooling ofworking fluid, mass velocity and pebble diameter are the principal factors. The heat fluxdecreases with decreasing in subcooling of working fluid; and increasing in mass velocity andpebble diameters. Considering the effects of these three parameters, a criterion formula whichcan give a good prediction of onset of nucleate boiling in pebble-bed channels was fitted andthe relative deviation between the predicted value and the experimental value is within±20%. Based on the study of onset of nucleate boiling, by visual observation, and consideringthe structure characteristics of pebble-bed channels, the bubbles inside the channel can bedivided into four types: the bubble on the normal surface; the bubble in the corner of twoadjacent balls; the bubble between several compact pebbles; and the bubble inside the largevolume of loose arrange area. The law of bubble growth and detachment were proposed byanalysing the force on bubbles.
     4. The various hysteresis phenomenas in pebble-bed channels were studied. Usinghysteresis temperature and hysteresis area to token the degree of nucleation hysteresis andtemperature deviation hysteresis, and analysed the causes and the variation law of the varioushysteresis phenomenas. The results indicate that the nucleation hysteresis are more severeclose to the outlet of the pebble-bed or the radial centre location. When mass velocity andsurface rough degree increase, the temperature deviation hysteresis increases. Because thereare a lot of high temperature corner areas in pebble-bed channels, which can provide stablenucleation sites, have a great deal of restraint to hysteresis phenomena.
引文
[1]王补宣.工程传热传质学(下册).北京:科学出版社,1998
    [2]胡玉坤,丁静.多孔介质内部传热传质规律的研究进展.广东化工,2006,11(33):40-47
    [3]王补宣.多孔介质中的对流传热传质.西安交通大学学报,1994,5(28):51-58
    [4]周胜,王革华.国际核能发展态势.科技导报,2006,24(6):15-17
    [5] Sahin S, Sefidvash F. The fixed bed nuclear reactor concept. Energy Conversionand Management,2008,49:1902-1909
    [6] Tsiklauri G V, Garner F A, et al. Long life small nuclear reactor without open-vesselRe-fueling, PNNL-15134,200
    [7] Benchrif A, Chetaine A, Amsil H. Benchmark results for the “BWR-PB” fuelassembly based on pebble-bed coated particles with uranium dioxide and gadoliniapoison. Nuclear Engineering and Design,2009,239(6):1148-1154
    [8] Grishanin E. Concept of a lifetime-core particle-bedded300MW boiling waterreactor (BWR-PB),2005
    [9] Sefidvash F, Bodmann B, Matela T. Preliminary neutronics calculations of thefixed bed nuclear reactor–FBNR, IAEA Report, Contract No.12960,2006
    [10] Sümer S, Sahin H M, Ac r A, Al-Kusayer T A. Criticality investigations for thefixed bed nuclear reactor using thorium fuel mixed with plutonium or minoractinides. Annals of Nuclear Energy,2009,36:1032-1038
    [11] Sümer S, Sefidvash F. The fixed bed nuclear reactor concept, Energy Conversionand Management,2008,49:1902-1909
    [12]科林斯R E.流体通过多孔材料的流动.北京:石油工业出版社,1984
    [13] Sorensen J P, Stewart W E. Computation of forced convection in slow flow throughducts and packed beds(Ⅱ): Velocity profiles in a simple cubic array of spheres.Chemical Engineering Science,1974.29(3):819-825
    [14] Sorensen J P, Stewart W E. Computation of forced convection in slow flow throughducts and packed beds(III): Heat and mass transfer in a simple cubic array ofspheres. Chemical Engineering Science,1974,29(3):827-832
    [15] Dalman M T, Merkin J H, McGreavy C. Fluid flow and heat transfer past twospheres in a cylindrical tube. Cmp. Fluids.1986,14(3):267-281
    [16] Lloyd B, Boehm R. Flow and heat transfer around a linear array of spheres.Numerical Heat Transfer A,1994,26:237-252
    [17] Nakayama A, Kuwahara F, Kawamura Y, et al. Three-dimensional numericalsimulation of flow through a microscopic porous structure. ASME/JSME ThermalEngineering Conference,1995,3:313-318
    [18] Ergun S. Fluid flow through packed columns. Chemical Engineering Progress,1952,48(2):89-94
    [19] Calis H P A, Nijenhuis J, Paikert B C, et al. CFD modelling and experimentalvalidation of pressure drop and flow profile in a novel structured catalytic reactorpacking. Chemical Engineering Science,2001,56(4):1713-1720
    [20] Romkes S J P, Dautzenberg F M, van den Bleek C M, et al. CFD modelling andexperimental validation of particle-to-fluid mass and heat transfer in a packed bedat very low channel to particle diameter ratio. Chemical Engineering Journal,2003,96(1):3-13
    [21] Wakao N, Kaguei S. Heat and mass transfer in packed beds. New York:McGraw-Hill,1982
    [22] Gunjal P R, Ranade V V, Chaudhari R V. Computational study of a single-phaseflow in packed beds of spheres. AIChE Journal,2005,51(2):365-378
    [23] Derkx R. Dixon A G. Determination of the fixed bed wall heat transfer coefficientusing computational fluid dynamics. Numerical Heat Transfer A,1996,29(8):777-794
    [24] Logtenberg S A, Dixon A G. Computational fluid dynamics studies of fixed bedheat transfer. Chem. Eng. Process.,1998,37(1):7-21
    [25] Logtenberg S A, Dixon A G. Computational fluid dynamics studies of the effects oftemperature dependent physical properties on fixed bed heat transfer. Ind. Eng.Chern. Res.,1998,37(3):739-747
    [26] Logtenberg S A, Nijemeisland M, Dixon A G. Computational fluid dynamicssimulations of fluid flow and heat transfer at the wall-particle contact points in afixed bed reactor. Chemical Engineering Science,1999,54(13):2433-2439
    [27] Nijemeisland M, Dixon A G. Comparison of CFD simulations to experiment forconvective heat transferin a gas-solid fixed bed. Chemical Engineering Journal,2001,82(1):231-246
    [28] Nijemeisland M, DixonA G. CFD study of fluid flow and wall heat transfer in afixed bed of spheres. AIChE Journal,2004,50(5):906-921
    [29] Rupesh K, Reddy, Jyeshtharaj B, Joshi. CFD modeling of pressure drop and dragcoefficient in fixed and expanded beds. chemical engineering research and design,2008,86:444-453
    [30] Torquato S. Truskett T M. Debenedetti P G. Is random close packing of sphereswell defined? Physical Review Letters,2000,84(10):2064-2067
    [31] Cooper D W. Random sequential packing simulations in three dimensions forspheres. Physical Review A,1988,38(1):522-524
    [32] Mueller G E. Numerical simulation of packed beds with monosized spheres incylindrical containers. Powder Technology,1997,92(5):179-183
    [33] Mueller G E. Numerically packing spheres in cylinders. Powder Technology,2005,159(2):105-110
    [34] Guardo A, Coussirat M, Iarrayoz M A, et al. CFD flow and heat transfer innonregular packings for fixed bed equipment design. Int. Eng. Chem. Res.2004,43(22):7049-7056
    [35] Guardo A, Coussirat M, Iarrayoz M A, et al. Influence of the turbulence model inCFD modeling of wall to fluid heat transfer in packed beds. Chemical EngineeringScience,2005,60(6):1733-1742
    [36] Guardo A, Coussirat M, Recasens F, et al. CFD study on the particle-to-fluid heattransfer in fixed bed reactors: convective heat transfer at low and high pressure.Chemical Engineering Sczeuce,2006,61(13):4341-4353
    [37] Wakao N, Kaguei S, Funazkri T. Effect of fluid is dispersion coefficients onparticle-to-fluid heat transfer coefficients in packed beds: correlation of Nusseltnumbers. Chemical Engineering Science,1979,34(3):325-336
    [38] Yesilyurt G, Hassan Y A. Simulation in pebble bed modular reactor core throughrandomly Distributed fuel Elements.Proceedings of the International Conferenceon Global Environment and Advanced Nuclear Power Plants, Kyoto, Japan,September,2003
    [39] Zeigarnick U A, Ivanov F P, Ikranikov N P, Experimental data on heat transfer andhydraulic resistance in unregulated porous structures (in Russian), Teploenergetika,1991,1(2):33-38
    [40] Haritonov V I, Kiceleva U N, Zeigarnick U A, et al. Generalization of the results onheat transfer intensification in channels with porous insertion (in Russian),Teplofizika Vys. Temp.1994,32(3):433-440
    [41] Jiang P X, Wang Z, Ren Z P, et al. Experimental Research of Fluid Flow andConvection Heat Transfer in Plate Channels Filled with Glass or Metallic Particles.Experimental Thermal and Fluid Science,1999,20:45-54
    [42] Jiang P X, Li M, Lu T J, et al. Experimental Research on Convection heat Transferin Sintered Porous Plate Channels. International Journal of Heat and Mass Transfer,2004,47:2085-2096
    [43] Jiang P X, Si G S, Li M, et al. Experimental and numerical investigation of forcedconvection heat transfer of air in non-sintered porous media. Experimental Thermaland Fluid Science,2004,28:545-555
    [44] Izadpanah M R, Steinhagen H M, Jamialahmadi M. Experimental and theoreticalstudies of convective heat transfer in a cylindrical porous medium. InternationalJournal of Heat and Fluid Flow,1998,19:629-635
    [45] Jamialahmadi M, Steinhagen H M, Izadpanah M R. Pressure Drop, Gas hold-upand heat transfer during single and two-phase flow through porous media.International Journal of Heat and Fluid Flow,2005,26:156-172
    [46] Hwang G J, Chao C H, Heat transfer measurement and analysis for sintered porouschannels, J. Heat Transfer,1994,116:456-464
    [47] Hwang G J, Wu C C, Chao C H, Investigation of non-Darcian forced convection inan asymmetrically heated sintered porous channel, J. Heat Transfer,1995,117:725-732
    [48]程惠尔,张志军,汤宇浩.平行平板间填充球形颗粒的流动特性.水动力学研究与进展,2000,15(4):404-428
    [49]张志军.小颗粒填充多孔体传热特性实验研究.水动力学研究与进展,2002,17(4):454-459
    [50] Koichi I, Takeshi M. Effects of a porous medium on local heat transfer and fluidflow in a forced convection field, Int. J. Heat Mass Transfer,1997,40(7):1567-1576
    [51] Whitaker S. Forced convection heat transfer correlations for flow in pipes, past flatplates, single Ccylinders, single spheres, and for flow in packed beds and tubebundles. AIChE J,1972,18(2):361-371
    [52] Kays W. M, London A. L. Compact heat exchangers. McGraw-Hill, New York.1984
    [53] Nie X, Besant R W, Evitts R W, et al. A new technique to determine convectioncoefficients with flow through particle beds. Trans. ASME J. Heat Transfer,2011,133(4):041601
    [54]方晨,彭晓峰.多孔介质内两相流汽相输运分析.工程热物理学报,2003,3:528-531
    [55]方晨,彭晓峰,杨震.多孔介质内两相流汽液间相互作用分析.工程热物理学报,2004,6:139-142
    [56] Chen Z Q, Cheng P, Zhao T S. An experimental study of two phase flow andboiling heat transfer in bi-dispersed porous channels. Int. Comm. Heat MassTransfer,2000,27(3):293-302.
    [57] Jamialahmadi M, Izadpanah M R. Pressure drop, gas hold-up and heat transferduring single and two-phase flow through porous media. International Journal ofHeat and Fluid Flow,2005,26:156-172
    [58] Miscevic M, Rahli O. Experiments on flows, boiling and heat transfer in porousmedia: Emphasis on bottom injection. Nuclear Engineering and Design,2006,236:2084-2103
    [59] Beukema K J, Bruin S, Schenk J. Three-dimensional natural convection in aconfined porous medium with internal heat generation. International Journal ofHeat and Mass Transfer,1983,26(3):451-458
    [60]饶燕飞,王补宣.竖直圆柱空间多孔介质中内热源引起的自然对流.工程热物理学报,1990,11(3):304-309
    [61]卞卫,王补宣.含内热源多孔介质中的混合对流.工程热物理学报.1992,13(4):394-399
    [62] Jimenez-Islas H, Lopez-Isunza F, Ochoa-Tapia J A. Natural convection in acylindrical porous cavity with internal heat source: a numerical study withBrinkman extended Darcy model. International Journal of Heat and Mass Transfer,1999,42(22):4185-4195
    [63]杜建华,王补宣.带内热源多孔介质中的受迫对流换热.工程热物理学报,1999,20(1):39-73
    [64] Du J H, Wang B X. Forced convective heat transfer for fluid flowing through aporous medium with internal heat generation. Heat Transfer-Asian Research,2001,30(3):213-221
    [65] Baytas A C. Thermal non-equilibrium natural convection in a square enclosurefilled with a heat-generating solid phase, non-darcy porous medium. InternationalJournal of Energy Research,2003,27(10):975-988
    [66] Baytas A C. Entropy generation for thermal nonequilibrium natural convection witha non-Darcy flow model in a porous enclosure filled with a heat-generating solidphase. Journal of Porous Media,2007,10(3):261-275
    [67]王刚,曾敏,王秋旺.骨架发热多孔介质方腔内非达西自然对流的数值研究.核动力工程,2007,28(4):44-48
    [68] Wang G, Wang Q W, Zeng M, et al. Non-Darcy natural convection in a cavity filledwith a heat-generating porous medium: thermal non-equilibrium model. Hawaii,USA:2thInternational Conference on Porous Media and its Applications in Scienceand Engineering,2007
    [69] Li H, Qiu S Z, Su G H. Simulation on the thermal hydraulics of the coolant in apebble bed reactor core by CFD. Proceedings of the17thInternational Conferenceon Nuclear Engineering,2009, Brussels, Belgium
    [70]杨剑,曾敏,闫晓,王秋旺.骨架发热多孔介质竖直通道内强制对流换热数值研究.核动力工程,2009,30(2):16-20
    [71] Amiri A, Vafai K. Analysis of dispersion effects and non-thermal equilibrium,non-Darcian, variable porosity incompressible flow through porous media.International Journal of Heat and Mass Transfer,1994,37(6):939-954
    [72]李栋.非均匀内热源对多孔介质中传热传质的影响.四川化工,2006,9(1):1-6
    [73] Khashan S A, Al-Amiri A M, Pop I. Numerical simulation of natural convectionheat transfer in a porous cavity heated from below using a non-Darcian and thermalnon-equilibrium model. International Journal of Heat and Mass Transfer,2006,49(5):1039-1049
    [74] Nouri-Borujerdi A, Noghrehabadi, Rees D A S. Onset of convection in a horizontalporous channel with uniform heat generation using a thermal non-equilibriummodel. Transport in Porous Media,2007,69(3):1573-1634
    [75] Moalem D. Steady state heat transfer within porous medium with temperaturedependent heat generation. International Journal of Heat and Mass Transfer,1976,19(5):529-537
    [76] Moalem D, Cohen S. Theoretical analysis of steady and transient operation ofinternally energised porous element under phase conversion and vapor superheat.International Journal of Heat and Mass Transfer,1976,19(5):1415-1423
    [77]昝元峰.含内热源多孔介质的局部换热特性实验研究.核动力工程,2008,29(1):57-65
    [78]感应加热技术应用及其设备设计经验.西安电路研究所,1970
    [79]黄福万.穿透感应加热在工业中的应用.国防工业出版社,1982
    [80] Naik A S, Dhir V K. Forced flow evaporative cooling of a volumetrically heatedporous layer. Int. J. Heat Mass Transfer,1982,25(4):541-552.
    [81] Miyazaki K, Ohama T. Dryout Heat Flux for Core Debris Bed,(I) Effects ofSystem Pressure and Particle Size. Journal of Nuclear Science and Technology,1986,23(8):702-710
    [82] Miyazaki K, Ohama T. Dryout Heat Flux for Core Debris Bed,(II) Effects ofParticle Size Mixing and Coolant Flow. Journal of Nuclear Science and Technology,1986,23(9):769-778
    [83] Lipinski R J. A particle-bed dryout model with upward and downward boiling,Trans. Am. Nucl. Soc.,1980,35:358-360
    [84] Catton I, Jakobsson J O. The effect of pressure on dryout of a saturated bed ofheat-generating Particles. Journal of Heat Transfer,1987,109:185-195
    [85] Atkhen K, Berthoud G. SILFIDE experiment: coolability in a volumetrically heateddebris bed. Nuclear Engineering and Design,2006,236:2126-2134
    [86] Schafer P. Basic investigation on debris cooling. Nuclear Engineering and Design,2006,236:2104-2116
    [87] Schafer P. Boiling experiments for the validation of dryout models used in reactorsafety. Nuclear Engineering and Design,2006,236:1511-1519
    [88] Zeisbergera A, Horner P, Mayinger F. Boiling in particle beds with internal heatsources.9thInternational Topical Meeting on Nuclear Reactor Thermal Hydraulics(NURETH-9), San Francisco, California, October3-8,1999
    [89] Zeisbergera A, Mayinger F. Void fraction and heat transport in two-dimensionalmixed size particle beds with internal heat sources. Nuclear Engineering andDesign,2005,235:2209-2218
    [90] Zeisbergera A, Mayinger F. Heat transport and void fraction in granulated debris.Nuclear Engineering and Design,2006,236:2117-2123
    [91] Hsu Y Y. On the size range of active nucleation cavities on a heating surface, J.Heat Transfer,1962,84:207-216
    [92] Bowring R W. Physical model based on bubble detachment and calculation ofsteam voidage in the subcooled region of heated channel. Institutt for Atomenergi,OECD Halden Reactor Project,1962
    [93] Bergles A E, Rohsenow W M. The determination of forced convection surfaceboiling heat transfer. Trans. ASME. Ser. C,1964,86:365-372
    [94] Sato T, Matsumura H. On the conditions of incipient subcooled boiling withforced-convection. Bulletin of JSME,1964,36(7):392-398
    [95] Thom J R, Walker W M, Fallon T A. Boiling in subcooled water during flow upheated tubes or annuli. Symposium on Boiling Heat Transfer in Steam GeneratingUnits and Heat Exchangers, Manchester, U.K.15th-16th September,1965
    [96]于志家,孙成新,赵宗昌等.竖直矩形通道内液体流动沸腾汽泡动力学研究.工程热物理学报,2001,22(3):354-358
    [97]潘良明,陈德奇,袁德文等.竖直加热壁面上汽泡脱离及浮升点汽泡直径预测模型.化工学报,2007,58(2):347-352
    [98]袁德文,潘良明,陈德奇等.竖直窄流道内过冷流动沸腾的汽泡生长过程流场特性分析.核动力工程,2010,31:34-38
    [99]陈德奇,潘良明,黄彦平.生长及脱离汽泡附壁接触直径经验关系式.核动力工程,2011,32(2):103-106
    [100]孙立成,阎昌琪,孙中宁.竖直环形流道内欠热沸腾时的汽泡行为研究.核动力工程,2006,27(1):73-76
    [101]沈自求.沸腾传热研究.大连理工大学学报,2001,41(3):253-259
    [102] Kandlikar S G, Mizo V R, Cartwright M D, et al. Bubble nucleation and growthcharacteristics in subcooled flow boiling of water, in: HTD-Vol.342, National HeatTransfer Conferences,1997,4:11-18
    [103]潘良明,辛明道,何川等.矩形窄缝流道流动过冷沸腾起始点的实验研究.2002,25(8):51-54
    [104]王甲强,贾斗南,郭赞等.环形窄通道内过冷沸腾起始点的实验研究.核动力工程,2004,25(4):319-323
    [105]苏顺玉,王晓墨,黄素逸.狭缝中流动沸腾传热过冷沸腾起始点的实验研究.热科学与技术,2004,3(2):104-107
    [106]《可控硅中频技术及其应用》编写组.可控硅中频技术及其应用.北京:电力工业出版社.1981:10
    [107]林渭勋.可控硅中频电源.北京:机械工业出版社,1983:5
    [108]陕西省机械研究所.可控硅中频电源.机械工业出版,1974:9
    [109]潘天明.工频和中频感应炉.北京:冶金工业出版社,1983:8
    [110] Mueller G E. Radialvoid fraction distributionsin randomly packed fixed beds ofuniformly sized spheres in cylindrical containers. Powder Technology,1992,72:269
    [111] Reactor core design of high-Temperature gas-cooled reactors part2: heat transfer inspherical fuel elements. Safety Standards, KTA3102.2,1983, Issue06/83
    [112] Kline S J. Mcclintoek F A. Describing uncertainties in single sample experiments.Meeh Eng,1953(1):3-8
    [113] Ling J X, Dybbs A. The effect of variable viscosity on forced convection over a Flatplate submersed in a porous medium, ASME J. Heat Transfer,1992,114:1063-1065
    [114] Narasimhan A, Lage J L. Predicting inlet temperature effect on the pressure-drop ofheated porous medium channel flows using the M-HDD Model, ASME J. HeatTransfer,2004,126:301-303
    [115] Atmakidis T, Kenig E Y. CFD-based analysis of the wall effect on the pressure dropin packed beds with moderate tube/particle diameter ratios in the laminar flowregime. Chemical Engineering Journal,2009,155:404-410
    [116] Eppinger T, Seidler K, Kraume M. DEM-CFD simulations of fixed bed reactorswith small tube to particle diameter ratios. Chemical Engineering Journal,2011,166:324-331
    [117] Rohsenow W M. A method of correlating heat transfer data for surface boiling ofliquids, Trans. ASME,1952,74:969
    [118] Zuber N. Nucleate boiling. The region of isolated bubbles and the similarity withnatural convection,International Journal of Heat and Mass Transfer,6:53-78
    [119] Xu J J, Lu Z Q. Boiling heat transfer and gas liquid two phase flow, Nuclear Energy,Beijing,1993,420-422
    [120] Carey V P. Pool boiling in liquid-vapor phase-change phenomena: an introductionto the thermophysics of vaporization and condensation process in heat transferequipment, Hemisphere, Washington, DC,1992(Chapter7)
    [121] Shen Z. Principle of heat transfer augmentation interfacial vaporisation heat sink.Frog Nat Sci,1999,9(10):730-739
    [122] Klausner J F, Mei R, Bernhatd D M, et al. Vapor bubble departure in forcedconvection boiling. Int. J. Heat and Mass Transfer,1993,36(3):651-662
    [123] Zeng L Z, Klausner J F, Mei R. A unified model for the prediction of bubbledetachment diameters in boiling systems..I. Pool Boiling [J]. Int. J. Heat and MassTransfer,1993,36(9):2261-2270
    [124] Prodanovic V. Bubble behavior in subcooled flow boiling at low pressures and lowflow rates. Univ. of Belgrade,2001
    [125] Moles F D, Shaw J F G. Boiling heat transfer to sub-cooled liquids under conditionof forced convection, Trans.Inst. Chem. Eng.1972,50:76-84
    [126] Bergles A E, Chyu M C. Characteristics of nucleate pool boiling from porousmetallic coatings. Journal of Heat Transfer,1982,104:279-285
    [127] Shi M H,Ma J,Wang B X.Analysis on hysteresis in nucleate pool boiling heattransfer.Int J Heat Mass Transfer,1993,36:4461-4466
    [128] Yoon P, Jeonga J, Kang Y. Boiling hysteresis at low temperature on enhanced tubes.International Journal of Refrigeration,2004,27:4-9
    [129] Piasecka M, Poniewski M E. Hysteresis Phenomena at the Onset of SubcooledNucleate Flow Boiling in Microchannels. Heat Transfer Engineering,2004,25(3):44-51
    [130] Piasecka M, Hozejowska S, Poniewski M E. Experimental evaluation of flowboiling incipience of subcooled fluid in a narrow channel. International Journal ofHeat and Fluid Flow,2004,25:159-172
    [131]朱长新,温志敏,周芳德等.水平管束沸腾滞后的实验研究.工程热物理学报,1993,14(4):424-428
    [132]童庆明,张洪济.颗粒多孔层在真空状态下的沸腾滞后.工程热物理学报,1995,16(4):461-465
    [133] Wojcik T M. Experimental investigations of boiling heat transfer hysteresis onsintered, metal-Fibrous, porous structures. Experimental Thermal and Fluid Science,2009,397-404
    [134] Murphy R W, Bergles A E. Subcooled flow boiling of fluorocarbon. InternationalBusiness Machines Corp. Poughkeepsie, New York,1971,1
    [135]赵孝保.喷涂多孔表面沸腾传热实验研究.南京师大学报,2001,1(3):2-16
    [136]马重芳,田淑荣,雷道等.用小直径颗粒床改善池内沸腾的热滞后特性.北京工业大学学报,1989,15(3):39-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700