灭活原生质体融合选育α-ALDC-高产菌株
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-乙酰乳酸脱羧酶可以去除啤酒中的双乙酰,在啤酒工业中有着广泛的应用前景。双亲灭活原生质体融合技术优点较多,是原生质体融合育种中针对无遗传标记同种不同株双亲的一种常用的有效方式。因此,对本实验室保存的两株产α-乙酰乳酸脱羧酶的枯草芽孢杆菌(Bacillus subtilis)进行双亲灭活原生质体融合,筛选高酶活菌株。
     试验首先确定了比较适合的双亲菌株培养条件。选择使用了完全培养液和发酵培养液两种培养基以及完全液体培养基20mL和40mL装液量。绘制了不同条件下的生长曲线,确定了最佳培养条件是:将菌株由斜面接种到完全固体培养基上,活化培养一天,再将其接种到液体完全培养基,37℃,200rpm,摇床培养14h,最后按5%的接种量接种到20mL的液体完全培养基,继续活化3.5—4h。将培养好的菌体收集起来,进行溶菌酶处理,制备原生质体。本试验选择了多个溶菌酶浓度,在32℃条件下处理双亲菌株。通过绘制形成率和再生率曲线,认为在32℃,用50μg/mL的溶菌酶处理双亲菌株20min,形成率较高,而且又有一定的再生能力,适合融合。将制备的V-20原生质体进行紫外灭活,3226—5原生质体进行热灭活,通过分析灭活后原生质体的融合率确定最佳融合条件是用pH9.0的40%的PEG6000,38℃,作用于混合菌液15min。本试验共得到了900株融合子,将这些融合子传代10次并测酶活。最后筛得3株菌,其酶解后的上清液酶活高于亲株。试验最后通过对融合子与双亲菌株的DNA含量的简单比较,进一步验证了筛得的菌株为融合子。
a -Acetolactate decarboxylase( a -ALDC) which can remove diacetyl from the beer is used widely in beer industry. Inactivated protoplasts fusion method has more advantages in breeding techniques and also it has been used effectively in parents without any heritable labels. Bacillus subtilis V-20 and 3226-5 producing a -ALDC are kept in our laboratory. The inactivated protoplast fusion method of Bacillus subtilis V-20 and 3226-5 is carried out to select some strains with higher enzyme activity of a -ALDC.
    At the beginning of this test, the proper culture conditions of the parents are determined and the growth curve of two different culture solution (complete culture fluid and fermented broth ) and two different volume of the complete culture fluid(20mL and 40mL) are selected. At first, the strains should be activated in complete culture plates and then transferred into the complete culture fluid to shake cultivate under the condition of 37?,200rpm for 14 hours. At last, ImL bacterial fluid should be inoculated to 20mL complete culture fluid to shake culture for 3.5-4 hours. The collection of bacteria is treated by lysozyme. In the test, several lysozyme concentrations are selected to treat parents in 32? The curve of protoplast formation rates and regeneration rates show that parents should be treated at lysozyme concentration of 50 P g/mL, for 20min. Under above conditions, the formation rate and regeneration rate are better for fusion of Bacillus subtilis V-20 and 3226-5. Before fusion, the strain V-20 is i
    nactivated by ultraviolet and the strain 3226-5 is inactivated by boiling water bath. The result of fusion rates presents the better fusion condition of parents. The two strains are fused by PEG6000 at concentration of 32%, in water bath of 38癈 for 15min. After the fusants are transferred for ten generation, they are tested the enzyme activity of a -ALDC. Three fusants are got and their enzyme activities
    
    
    
    
    are higher than their parents. At the end of the test, a simple comparison of DNA quantity between fusants and parents shows these strains are fusants.
引文
1. Godtfredsen SE, Ottesen M. Maturation of beer with a-acetolactate decarboxylase. Carslberg Res Commun, 1982, 47: 93-102
    2. Godtfredsen S E. On the occurrence of Acetolactate decarboxylase among microorganism. Carlsberg Res Commun, 1983, 48: 239-247.
    3.吴天祥,杨海龙,章克昌.应用包埋α-乙酰乳酸脱羧酶改进啤酒发酵及控制的模型研究.酿酒,2002,29(1)47-49.
    4.彭智辉,林炜铁,冯杰龙.酶共催化降低啤酒中双乙酰含量的研究设想.酿酒科技,2001,1:66-67.
    5.黄祖新.控制啤酒酿造过程的双乙酰的生物工程技术进展.酿酒,1998,3:12-14
    6. Juni E. Mechanisms of acetoin by bacteria. J. Biol. Chem, 1952, 195: 715-726.
    7. Loken J P, Stormer F C. Acetolactate decarboxylase from Aerobacter aerogenes. Eur J Biochem, 1970, 14: 133-137.
    8. Phalip V, Monnet C, Schmitt P, et al. Purification and properties of the a-acetolactate decarboxylase from Lactococcus lactis subsp, lactis Ncdo2118 FEBS lett, 1994, 351: 95-99.
    9. Monnet, C., V. Phalip, P. Schmitt, and C. Divies. Comparison of a-acetolactate decarboxylase in Lactococcus spp. and Leuconostoc spp Biotechnol lett. 1994, 16(3): 257-262.
    10.李林,黄长福,蒋国英.一株α-乙酰乳酸脱羧酶产生菌株的筛选及初步鉴定.新疆大学学报(自然科学版),1996,13(3):57-59.
    11.阚振荣,张元亮.α-乙酰乳酸脱羧酶产生菌的分离和筛选.河北大学学报(自然科学版),1997,17(1):47-50.
    12.黄建新,马艳玲,惠友权,等.α-乙酰乳酸脱羧酶产生菌的筛选.西北大学学报,2000,30(5):409-410.
    
    
    13.黄建新,马艳玲,惠友权,等.He-Ne激光对产ALDC地衣芽孢杆菌的诱变效应.光子学报,2001,30(6):680-683.
    14.惠友权,黄建新,孔锁贤.离子注入选育α-乙酰乳酸脱羧酶菌株.西北大学学报(自然科学版),2001,31(3):251-254.
    15.何秀萍,怀文辉,郭文洁,等.不同微生物的α-乙酰乳酸脱羧酶生理生化特性的研究.微生物学通报,2001,28(2):18-21.
    16. Svendsen I, Jensen B R, Ottesen M. Complete amino acid sequence of α-acetolactate decarboxylase from Bacillus brevis. Carlsberg Res Commun, 1989, 54: 157-163.
    17. Sone H, Fujii T, Kondo K. Molecular cloning a of the gene encoding α-acetolactate decarboxylase from Enterobacter acrogens. J. Biotechnol 1987, 5: 87-91.
    18. Diderichsen B, Wedsted U, Hedegaard L et al. Clonibg of aldB, which encodes Acetolactate decarboxylase, an exoenzyme from Bacillus brevis. J. Bacteriol, 1990, 127: 4315-4321.
    19. Sone H, Fujii T, Kondo K. Nucleotide sequence and expression of the Enerobacter aerogeses Acetolactate decarboxylase gene in brew's yeast. Appl Enviro Microbiol 1988, 54: 38-47.
    20. Suihko M 1, Blomqvist 'K, Penttila M, et al. Recombinant beer's yeast strains suitable for accelerated brewing[J].J. Biotechnol. 1990, 14: 285-300.
    21. Blomquist K, Suihko MI Knowles J et al. Study of the citrate metabolism of Lactococcus lactis subsp, lactis biovar diacetylactis by means of 13C nuclear magnetic resonanceAppl. Eviron. Microbiol, 1991, 57(10): 2796-2803.
    22. Fujii T, Kondo K, Shimizu F. et al. Application of a ribosomal DNA integration vector in the construction of a brewer's yeast having alpha-acetolactate decarboxylase activity. Appl. Enviro. Maicrobiol. 1990, 56(4): 997-1003.
    
    
    23. Yamano S, Tomizuka K, Tanaka J et al. High level expression of α-acetolactate decarboxylase gene from Acetobacter aceti subsp. Xylinum infermentation J. Biotechol, [J], 1994, 37: 45-48.
    24. Onnela M L, Suihko M L, Penttila M et al. Use of a modified alcohol dehydrogenase, ADH1, promoter in construction of diacetyln on producing brewer's yeast. J biotechno1[J], 1996, 49: 101-109.
    25. Shigeyuki Yamano, Kazuma Tomizuka, Hidetaka Sone, Masatoshi Imura, toshihiko Takeuchi, Junichi Tanaka and Takashi Inoue Brewing performance of a brewer's yeast having α-acetolactate decarboxylase from Acetobacter aceti subsp, xylinum, Journal of Biotechnology, Volume 39, Issue 1, 21 February 1995, Pages 21-26 .
    26.尹东,卢大宁,黄百渠,等.重组α-乙酰乳酸脱羧酶的表达及部分酶学特性.生物化学与生物物理学报,1998,30(4):325-329.
    27.尹东,曾庆华,卢大宁,等.两种重组α-乙酰乳酸脱羧酶在啤酒生产中降低双乙酰的作用.微生物学通报,1999,26(6):405-408.
    28.秦玉静,高东,王祖农.α-乙酰乳酸脱羧酶的基因克隆及大肠杆菌和酵母菌中的表达.遗传学报,2000,27(2):165-169.
    29.郭文洁,何秀萍,铁翠娟,等.枯草芽孢杆菌α-乙酰乳酸脱羧酶基因在啤酒酵母工业菌株中的表达.微生物学报,2001,4(1):106-108.
    30.杨晓东,孙文斌,闵志伟,等.国产α-乙酰乳酸脱羧酶的应用研究.酿酒,2001,28(1):50-51.
    31. Claire Dulieu, Manfred Moll, Joseph Boudrant et al. Improved Performances and Control of Beer Fermentation Using Encapsulated α-Acetolactate decarboxylase and Modeling. Biotechnol[J]. 2000, (16): 958-965.
    32.阚振荣,张元亮,李彦芹,等.α-乙酰乳酸脱羧酶的研究与应用.植物细胞与基因工程研究.中国科学技术出版社,北京,2003,67-62.
    33. Ferenczy, L., Kevei, F., and Zsolt, J. Ferenczy, L., Kevei, F., and Zsolt, J. Fusion of fungal protoplasts. Nature[J]. 1974 248, 793-794.
    34. Fodor, K.and Alfoldi, L. Fusion of Bacillus megaterium. Proc. Natl.
    
    Acad. Sci. USA. [J]1976, 73 (6): 2147-2150.
    35. Tsong, T.Y. Electroporation of cell membranes. Biophys[J]. 1991 60, 297-306.
    36.汪和睦,王洲.细胞电穿孔与电融合的机理及应用.生物化学与生物物理进展,1994,21(4):322-326.
    37.王金盛,宫明,李春波.利用电场原生质体融合技术选育高产耐高温酵母融合株.中国调味品[J],1998,(9):11-13.
    38.余荔华,刘进元,赵南明.克氏固氮菌与枯草芽孢杆菌的原生质体融合.清华大学学报(自然科学版)[J],1999,39(6):46-48.
    39.许屏.荧光和免疫荧光染色技术及应用[M].人民卫生出版社,1983,35-36.
    40.龚建平,韩立本.一种异硫氰酸荧光素标记脂多糖的新方法.中华实验外科杂志[J],2000,17(3):263-265.
    41. Mark O. Clements, Sean P. Watson, Robert K. et al. CtaA of Staphylococcus aureus Is Required for Starvation Survival, Recovery, and Cytochrome Biosynthesis. Journal of Bacteriology, January 1999, 181 (2), 501-507.
    42.黄彬,尹一兵,康格非.肺炎链球菌表面蛋白在细菌体外粘附中的介导作用.中华微生物学和免疫学杂志[J],1998,18(5):342-344.
    43.成亚利,朱宝成,李亮亮,等.荧光标记金针菇原生质体融合.微生物学通报[J],1997,24(6):331-333.
    44.李蕤,虞磊,吴克,等.荧光标记香菇原生质体融合菌株的鉴定.生物学杂志[J],2002,18(2):21-23.
    45.吴根福,沈煜,应伟军.用中性红标记酵母原生质体初探.生物技术[J].1995,5(6):23-25.
    46.陈五岭,张芳琳,景建洲,等.灭活原生质体融合技术选育苏云金杆菌新菌种-原生质体融合条件的研究.西北大学学报[J],1998,28(2):147-149.
    47.吕群燕,王书锦,周东坡,等.用原生质体融合技术选育2-酮基-L-古龙酸高产菌株的研究.微生物学杂志[J],1995,15(1):1-4.
    48.施庆珊,邱玉棠,李良秋,等.原生质体融合选育肌苷产生菌产氨短杆菌GMA-2802.微生物学杂志[J],2000,20(4):27-29.
    
    
    49.黄勤妮,刘佳,宋秀珍,等.大肠杆菌和枯草芽孢杆菌的原生质体融合.微生物学报[J],2002,23(1):55-90.
    50.金玉娟,刘自铬,任建平.芽孢杆菌和欧文氏菌的原生质体融合的研究.微生物学杂志[J].2002,22(3):10-11.
    51.诸葛键,周立平,王萍,等.蛋白酶产生菌种间原生质体融合的研究.微生物学报[J],1984,24(1):74-79.
    52.陈五岭,张芳琳,景建洲,等.灭活原生质体融合技术选育苏云金杆菌新菌种——原生质体融合条件的研究.西北大学学报[J],1998,28(2):147-149.
    53.张清文,张素琴,刘海洲.多糖产生菌T与β-胡萝卜素产生菌C_(1-B)的融合研究.应用与环境生物学报[J],1999 5(2):195-198.
    54.罗文生,沈萍.盐生盐杆菌灭活原生质体融合的研究.武汉大学学报(自然科学版)[J],1995,41(6):751-756.
    55.余建秀,李建华,庞义.芽孢杆菌原生质体融合技术.生物技术[J],2000,10(3):45-47.
    56.郑璞,王蕾,史朝辉.地中海拟无枝酸菌原生质体电融合及其在提高利福霉素SV发酵效价中的应用.中国抗生素杂志.2002,27(5):267-279.
    57.王怡平,荚荣,陈伟元,等.球形红假单胞菌和荚膜红假单胞菌的原生质体融合.青岛海洋大学学报[J].2000,30(2):297-302.
    58.王成涛,牛天贵,岳晓禹,等.应用原生质体融合技术构建高效降解胆固醇的乳酸菌.食品与发酵工业[J].2001,28(3):1-5.
    59.潘学峰,章银梅,汤懋站.利用枯草芽孢杆菌株间原生质体融合进行差异表型遗传重组分析的研究.应用与环境生物学报[J].1997,3(1):63-65.
    60.李祥锴,安志东,朱非.林肯链霉素双亲灭活原生质体融合的研究.氨基酸和生物资源,2001,23(4):24-27.
    61.余荔华,刘进元,赵南明.克氏固氮菌与枯草芽孢杆菌的原生质体电融合.清华大学学报(自然科学版)[J],1999,39(6):46-48.
    62.金玉娟,刘自镕,任建平.芽孢杆菌和欧文氏菌的原生质体融合的研究.微生物学杂志[J].2002,22(3):10-11.
    63.F.奥斯伯,R.E.金斯顿,J.G.塞德曼,等.颜子颖,王海林译.精编分子生物
    
    学实验指南.科学出版社,1998年6月第一版,39页.
    64.乔建军,杜连祥.一种快速有效的枯草芽孢杆菌染色体的提取方法.生物技术[J].2001,11(2):38-40.
    65.张龙翔,张庭芳,李令媛.生化实验方法和技术.北京高等教育出版社,1997年第二版233-234.
    66.孙玉华,郭杰炎.克鲁维酵母种间原生质体融合的研究.生物工程学报,1995,11(1):67-72
    67.葛岚,程树培.跨界原生质体融合产物细胞遗传物质整合过程中DNA含量变化.南京大学学报(自然科学),1997,(33)3:381-385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700