RGDS前体二肽的合成与RGD脂质体剂型的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构成细胞外基质的各种粘连蛋白都含有一个共同的、保守的RGD序列在粘附中起关键作用。用外源含RGD的肽竞争性抑制肿瘤等对正常组织粘附能力,已成为药物设计的新靶点。因此,合成含有RGD的短肽在方法学及相关技术上,需要有所创新和突破。然而,RGD在体内发挥作用时有诸如半衰期短等不足,解决对策是用脂质体作为液相制备的游离RGD的药物载体,以提高药效。
     本研究采用化学法和酶法相结合的技术,合成了含RGD且具有抗血栓的靶向性和抗趋药性等突出特性的四肽RGDS的前体二肽Bz-Arg-Gly-NH_2、Z-Asp-Ser-NH_2。应用工业用碱性蛋白酶Alcalase为催化剂,分别以Bz-Arg-OEt·HCl、Z-Asp-OMe为酰基供体,以Gly-NH_2、Ser-NH_2为亲核试剂,在有机溶剂/水双相体系中合成目标产物。并考察了影响肽合成产率的因素,对有机溶剂种类、含水量、pH值、反应温度、反应时间、低物摩尔比等进行了最适化,建立了最佳反应模型。
     另外,还采用传统的液相化学法(NCA法)合成出游离RGD三肽。并进行了RGD脂质体剂型的包封等初步研究。
Many adhesive proteins such as fibronectin, vitronectin, collagens, and osteopontin are present in extracellular matrices (ECM) and in the blood cells, which contain a common characteristic tripeptide sequence Arg-Gly-Asp(RGD) as cell recognition site for adhesion. The RGD motif plays a key role in mediating integrin-matrix interaction and RGD-sequence containing peptides are known to be potent anti-adhesive molecules, as they compete for the integrin-matrix recognition process. Their anti-thrombotic, anti-angiogenic, and anti-metastasis effects and the effect of treating osteoporosis have been largely investigated and showed relevant potential clinical applications.Further extensions of the RGD such as X_1-RGD-X_2 (X_1 = Gly, Asp;X_2 = Ser, Cys, Val, Phe) make these sequences even more efficient adhesion to integrin on cell membrane. Aguzzi and others have recently reported that the RGDS peptide exhibits additional potent anti-chemotactic and pro-apoptotic effects independently from its anti-adhesive action, likely by entering the cells and directly activating caspase 8 and caspase 9, and lately caspase 3, implying unexpected intracellular actions of the RGD-motif.Exogenous RGD-containing peptides and proteins have therapeutic value in pathology, they can bind competitively to target sites, block the adhesive proteins-induced generation of some diseases, and can alleviate some diseases as well. They also have therapeutic value in the recovery from burn after operation. Therefore, the research on synthesis of RGD and its derivatives has become a hot spot.At present, many researchers tried to synthesize RGD and RGD-containing peptides (such as RGDS) by chemical or enzymatic methods as it is not available to isolate RGD or other biologically active peptides from whole tissue directly. As compared to the chemical method, the important
    benefits of enzymatic peptide synthesis are: a) the mild conditions of the reaction;b) the high regiospecifity of enzyme allowing the use of minimally protected substrates;c) the reaction being stereospecificity without racemization. So, there is an increasing commercial interest in enzymatic preparation of small bioactive peptides.We attempted to synthesize Arg-Gly-Asp-Ser (RGDS) by fragment condensation. One of the major problems encountered in the enzymatic peptide synthesis in organic media is the solubility of substrates. RGDS tetraptide contains two charged amino acids (Arg and Asp) and two neutral amino acids(Gly and Ser). Because of the low solubility of hydrophilic amino acids in hydrophobic organic solvents, the synthesis of hydrophilic amino acid-containing peptides generally proceeds in a rather low yield.The solubility of a hydrophilic amino acid substrate in hydrophobic organic solvents, however, is usually limited due to their high polar. Therefore hydrophilic organic solvents are suitable as the reaction media for the synthesis of hydrophilic amino acid-containing peptides. Nevertheless, enzymes are often deactivated by "water strip" in the hydrophilic solvent. The appropriate solvents should be selected by the balance of the solubility of substrates and enzymatic activity. Simultaneously, enzyme selection and enzyme stability in hydrophilic organic solvent are the key points and should be considered. With regard to the solubility of substrates in organic solvents, we found that acetonitrile was a good candidate for alcalase-catalyzed synthesis of hydrophilic dipeptide.Some papers have reported that an industrial alkaline protease, Alcalase(Novo product) prepared from submerged formation of a selective strain of Bacillus licheniformis, is very stable (half life > 5 days) in ethanol or 2-methyl-2-propanol and suitable for catalysis of peptide bond formation via a kinetically controlled approach. Therefore,we selected Alcalase to catalyze kinetically controlled synthesis of a precursor dipeptide of RGDS
    in organic solvents.In this study, a novel chemical method combining with enzyme method was used to prepare the two precursor dipeptides of RGDS (Bz-Arg-Gly-NH2 & Z-Asp-Ser-Nfk). Firstly, using traditional chemical method to systhesize the nucleophile (Gly- NH2 & Ser-NHa) at large scale with low cost. Secondly, The linkage of the acyl donor (Bz-Arg-OEtHCl & Z-Asp-OMe) and nucleophile was completed by using Alcalase under kinetic control condition in organic solvents. The synthesis reaction conditions were optimized by examining the effects of several factors on the Bz-Arg-Gly-Asp-NF^ yields, including Organic Solvents water content, pH, temperature, and reaction time and concentration of the enzyme and the nucleophile, etc.The results are: ? The optimum conditions of the synthesis of Bz-Arg-Gly-Ntb were established to be pH 10.0, 45 °C, in acetonitrile / Na2CO3-NaHCO3 buffer system (90: 10, V/V), lh with the dipeptide yield of 82.9 %.? The optimum conditions of the synthesis of Z-Asp-Ser-NH2are pH 10.0, 35 °C, in acetonitrile / Na2CO3-NaHCO3 buffer system (85: 15, V/V), 6h with the dipeptide yield of 75.5 %.They both Separation and Purification by Sephadex G-10 column (16x1000 mm). Quantitative analysis of the target dipeptide product was carried out by HPLC and the products of target dipeptide were confirmed by LC- MS.Furthermore, free RGD tripeptide has been synthesized by solution phase synthesis method, aspartic acid, chloroacetyl chloride and CBZ-arginine are as materials to synthesize. This kind of synthetic method does not need amino acid to be protected. The purity of HPLC is 70 %. However, a lot of products will be lost in the course of purification.It's time to improve the purity and optimize the purification method further.RGD tripeptide is relatively short in half-life, and very easy to be cleaned away in the body. The RGD-encapsulated liposomes form was prepared. The study is have in hand.
引文
[1] Sow MA, Molla A. Synthesis of RGD amphiphilic cyctic peptide as fibrinogen orfibrinogen or fibronectin antagonist. Lett Pept Sci, 1997, 4: 455-461
    [2] Gibsin C, Goodman S. Novel solid phase synthesis of azapeptides and azapeptidoids via fmoc strategy and its application in the synthesis of RGD mimetic. J Org Chem, 1999, 64(20): 7388-7394
    [3] Aguzzi, M.S., Facchiano, F., Ribatti, D., Gaeta, R., Casadio, R., Rossi, I., Capogrossi, M.C., Facchiano, A. Biochemical and Biophysical Research Communications, 2004, 321, 809-814
    [4] Aguzzi, M.S., Giampietri, C., De Marchis, F., Padula, F., Gaeta, R., Ragone, G., Capogrossi, M.C., Facchiano, A. Blood. 2004, 103, 4180-4187
    [5] Yamamoto, Y., Tsutsumi, Y., Mayumi, T. Curr. Drug Targets, 2002, 3, 123-130
    [6] Adderley, S.R., Fitzgerard, D.J.J. Biol. Chem. 2000, 275, 5760-5766
    [7] Castel, S., Pagan, R., Mitjans, F., Piulats, J., Goodman, S., Jonczyk, A., Huber, F., Vilaro, S., Reina, M. Lab. Invest. 2001, 81, 1615-1626
    [8] Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984, 309: 30
    [9] Siahaan T J, Brusss DP, Noel A.The aqueous conformation of cyclo (1, 6)Ac-Cys-Arg-Gly-Asp-Phe-Pen-NH_2. [J]. Int J Pept Protein Res, 1994, 44(5): 427-434.
    [10] Djima I, QING Dong.Structure activity relationships doublestrand RGD peptide as GP Ⅱb/Ⅲa receptor antagonists. [J].Bioorg Med Chem Letter, 1994, 4(14): 1749-1754.
    [11] Hynes R O. A family of cell surface receptors. Cell, 1987, 48:549
    [12] Boontheekul T, Mooney DJ. Protein based signaling systems in tissue Engineering. Curr Opin Biotech, 2003, 14: 559-565
    [13] Hayman EG, Pierschbacher MD, Ruolslahti E. Detachment of cells from culture substrate by soluble fibronectin peptide. J Cell Biol, 1985, 100(6): 194
    [14] 宋今丹,章静波,陈誉华,主编.医学细胞分子生物学.北京:人民卫生出版社,2003,62-86
    [15] 史嘉玮,董念国.RGD肽在组织工程领域的应用.中国实验外科杂志,2005,22(9):1150-1152
    [16] Ruoslahti, E.;Pierschbacher, M.D.Cell, 1986, 44, 517 [10]Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science, 1995, 268: 233-239
    [17] 李占山,周瑞华,王莉莉,等.RGD基元多肽结合型长循环脂质体抗肿瘤转移效果的研究[J].中国药学杂志,2002,36(6):422-424
    [18] 黄辉,马轩祥,等.粘附肽精氨酸-甘氨酸-天门冬氨酸促进小鼠成骨细胞在材料表面的附着和铺展[J].实用口腔医学杂志,2001,17(4):294-296
    [19] 王小霞,牛勃,张悦红等.AoGDW肽体外抗血小板作用的研究[J].中国药物与临床,2002,2(6):351-353
    [20] 云波,刘玉福.精氨酸.甘氨酸-天门冬氨酸肽及其在眼科的应用[J].国外医学眼科学分册,1999,23(4):199-203
    [21] Lin H, Sun W, Mosher DF, et al, Synthesis Surgace, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-Peptides. J. Biomed Mater Res, 1994, 28: 329
    [22] Goligorsky MS, Noiri E, Kessler H, Romanov V. Therapeutic potential of RGD peptides in acute renal injury. Kidney Int. 1997, 51: 1487-1492
    [23] Yang. Y, Carderell, Pina M, et al Eur. J. Immuno. 1998, 28(3): 995-1004
    [24] Illana B, Zaballos A, Blanco L, Salas M, The RGD sequence in phage phi29 terminal protein is required for interaction with phi29 DNA polymerase. Virology, 1998, 248(1): 12-19
    [25] Davis GE, et al. Human amnion membrane serves as a substratum for growing axons in vitro and in vivo. Science, 1987, 236:1106
    [26] Kerr JF et ai. Apoptosis. Its significance in cancer and cancer therapy. Cancer, 1994, 73(8): 2013-2016
    [27] Kerr JFR et al. Br J Cancer, 1972, 26: 239-257
    [28] Cohen JJ et al. Adv Immunol, 1991, 50:55-85
    [29] Buja LM et al. Basic types and mechanisms of cell death. Arch Pathol Lab Med, 1993, 117: 1208-1214
    [30] Schwartzman RA, Cidlowski JA. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev, 1993, 14(2): 133-151 [24] Ellis RE, et al. Annu Rev Cell Biol, 1991: 7: 663
    [31] Ellis RE, et al. Annu Rev Cell Biol, 1991:7:663
    [32] 石运伯,王若翔.细胞凋亡的分子机理.生命科学,1996,8(3):8-12
    [33] 曹炜,牛建昭.细胞凋亡(Apoptosis)研究概况.解剖学报,1995,26(4):443-445
    [34] Itoh N, Nagata S. J Biol Chem, 1993, 268(15), 10932
    [35] Ling Y-H, Priebe W, Perez-Soler R. Cancer Res, 1993, 53:1845
    [36] Potten CS, Merritt A, Hickman J. Int J Radiat Biol, 1994, 65(1): 71
    [37] 沈云芳,庄蕙,沈健伟,陈士葆.细胞凋亡与肿瘤.世界华人消化,1999,7(3):267-268
    [38] 童善庆,细胞凋亡及其意义.国外医学内科学分册,1995,22(7):293-296
    [39] 刘伟,李庆军.Caspase与细胞凋亡.新乡医学院学报,2005,22(1):67-70
    [40] 熊世勤,朱锡华.Caspase激活与调控的分子机制.生物化学与生物物理进展,2000,27(1):33-36
    [41] Hengartner M. Apoptosis. Death by crowd control. Science, 1998, 281(5381): 1298-1299
    [42] Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science, 1995, 267:1456-62
    [43] AshkenaziA, D ixit V M. Death receptors: signaling and modulation. Science, 1998, 281(5381): 1305-1308
    [44] Mart in D A, Siegel R M, Zheng L X, et al. Membrane o ligomerization and deavage activates the caspase8 (FL ICE/MACH1) death signal. J Bio Chem, 1998, 273(8): 4345-4349
    [45] Giancotti FG. Complexity and specificity of integrin signaling. Nat Cell Biol, 1999, 2:13
    [46] Buckley CD, Pilling D, Henriquez NV, et al. RGD peptides induce apoptosis bydirect caspase-3 activation. Nature, 1999, 397(6719): 534-539
    [47] P.C.Tumer, A.G.Mclerman, A.D.Bates&M.R.H.White, 分子生物学,科学出版社,2001
    [48] Anuradha CD, Kanno S, Hirano S. RGD peptide2induced apoptosis in human leukemia HL-60 cells requires caspase-3 activation. Cell Biol Toxicol, 2000, 16(5): 275-283
    [49] Chen Y, Xu X, Hong S, et al. RGD-Tachyplesin inhibits tumor growth. Cancer Res, 2001, 61(6): 2434-2438
    [50] 朱国萍,程阳,徐冲.细胞凋亡中的Caspase家族.生物化学与生物物理进展,2000,27(2):147-150
    [51] EnariM, Sakahira H, Yokoyama H, et al. A caspase-activated DN ase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 1998, 391(6662): 43-50
    [52] Moreno Manzano V, Lucio Cazana J, Konta T, et al. Enhancement of TNF-alpha-induced apoptosis by immobilized arginine-glycine-aspartate: involvement of a tyrosine kinase-dependent, MAP kinase-independent mechanism. Biochem Biophys ResCommun, 2000, 277(2): 293-298
    [53] Noti JD, Adherence to osteopontin via alphavbeta3 suppresses phorbol estermediated apoptosis in MCF-7 breast cancer cells that overexpress protein kinase C-alpha. Int JOncol, 2000, 17(6): 1237-1243
    [54] Liotta LA, Cancer cell invasion and metastasis. Scientific American, 1992, February, 54-63
    [55] Humphries MJ, Olden K, Yamada KM. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science, 1986, 233: 467-470
    [56] Kitayama J, Hidemura A, Saito H, et al. Shear stress affects migration behavior of polymorphonuclear cells arrested on endothelium. Cell Immunol, 2000, 203(1): 39-46
    [57] Ritchie CK, Giordano A, Khalili K. Integrin involvement in glioblastoma multiforme: possible regulation by NF2kappaB. J Cell Physiol, 2000, 184(2): 214-221
    [58] Urtreger A, Porro F, Puricelli L. Expression of RGD minus fibronectin that does not form extracellular matrix fibrils is sufficient to decrease tumor metastasis. Int.J.Cancer. 1998, 78(2): 233-241
    [59] 赵明,彭师奇,迪丽努尔等.含RGD四肽的合成与功能.药学学报.1997,32(4):271-277
    [60] Koyama Y, The Proceeding of the 6th Symposium on Protein Hybide. P.Sed by Inada 1991
    [61] Kawasaki K, Namikawa M, Yamashiro Y. Preparation of [Arg-Gly-Asp]-[amino- poly(ethylene glycol)] hybrids and their inhibitory effect on experimental metastasis. Chem.Pharm.Bul, 1991, 39(12): 3373-3375
    [62] Pept.Chem, 1995: 389-392
    [63] Komazawa H, Saiki I, Yoneda J, etc. Inhibition of tumor metastasis by Arg-Gly-Asp-Ser(RGDS)peptide conjugated with sulfated chitin derivateve, SCM chitin-RGDS. Clin Exp Metastasis, 1993, 11(6): 482-491
    [64] Yasuharu O, .Hideki F, Kijii M. Cancer Lett, 1998, 134(2): 157-163
    [65] Hideki F, Marabu I, Tisguguri H. Clin.Exper.Metastasis., 1998, 16(2): 141-148
    [66] Kumagai H, Tajima M, Veno Y, et al. Biochem.Biophy. Res. Commu, 1991, 117: 74-82
    [67] 张娜,硕士论文,2002
    [68] 彭智辉,林炜铁,冯杰龙等.非水相酶促肽合成的研究进展.分子催化,2000,14:461-465
    [69] 左斌海,付清泉,李天全,万昌秀.含精氨酰-甘氨酰-天冬氨酰序列短肽的合成及应用研究进展.航天医学与医学工程,2002,15:152-156
    [70] 黄惟德,陈长庆,《多肽合成》.科学出版社,1985,102-140
    [71] John CS., George PH, A New Method of Forming Peptide Bonds. J.Am.Chem. Soc, 1955, 1067-1068
    [72] Albertson NP, Synthesis of Peptides with mixed Anhydride in 'Organic Reagents'Vol 12, 157, 1962
    [73] Bodanszky M., Synthesis of peptides by aminolysis of nitrophenyl esters. Nature, 1955, 175:685
    [74] Curtius I, Chem. Ber, 1902, 3: 3226
    [75] Denkewalter RG, et al, The Controlled Synthesis of Peptides in Aqueous Medium. Ⅰ. The Use of α-Amino Acid N-Carboxyanhydrides. J.Am. Chem. Soc, 1966, 88: 3163-3164
    [76] Hirschmann R, et al, The controlled synthesis of peptides in aqueous medium. 3. Use of Leuchs' anhydrides in the synthesis ofdipeptides. Mechanism and controlofside reactions. J.Org.Chem, 1967, 32: 3415-3425
    [77] Veber D, Hirschmann R, Denkewalter RG, J.Org.Chem, 1969, 34:753
    [78] Iwakura Y, et al. Stepwise synthesis of oligopeptides with N-carboxy alphaamino acid anhydrides. Biopolymers, 1970, 9: 1419-1427
    [79] 大屋正尚,片贝良一.有机合成化学协会志,1967,29:751
    [80] 陶慰孙,李惟,姜涌明等.蛋白质分子基础(第三版)[M].北京:高等教育出版社.1995.133-147
    [81] LouisA. Carpino, GraceY. Han,J Am. Chem. Soc. 1970, 92: 5748-5749
    [82] G B Fields, R L Noble. Solid phase peptide synthesis utilizing 9-fluorenyl-methoxycarbonyl amino acids. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEINRESEARCH, 1990, 35(3)161-214
    [83] Valembois C, Mendre C, Cavadore JC, Calas B, Continuous flow synthesis of a biologically active small protein and a large peptide. Tetrahedron Lett, 1992, 33: 4005-4008
    [84] Rui-Zhen Hou, Yun-Jia Liu, Na Zhang, Yi-Bing Huang, et al. A new route of RGD synthesis. Preparative Biochemistry & Biotechnology, 2005, 12 recepted
    [85] 周云赟 硕士论文 2002
    [86] Bashkin JK, Mcbeath RJ, et al, Synthesis and characterization of oligonucleotide peptides. J.Org.Chem, 1991, 56: 3168-3176
    [87] De Bont, D.B.A., Moree WJ, et al, Solid-phase synthesis of o-phasphorathioyl-serine-and-threonine-Containing peptides as well as ofo-phosphoserine-and-threonine-containing peptides. J. Org. Chem, 1993, 115: 1309-1317
    [88] Cohen Auifieid ST, Lansbury PT, A practical convergent method for glycopiptide synthesis. J.Am. Chem.Soc, 1993, 115;10531-10537
    [89] 叶蕴华,范崇旭等.四个新型有机磷缩合试剂的合成及其在生物活性肽合成中的应用.高等学校化学学报,1997,18:1086-1092
    [91] Bodzansky M., Peptide Chemistry. Springer verlag, New York, 1993
    [91] 张学忠,在有机介质中酶法合成小肽的研究进展.高技术通讯,1998,7:55-58
    [92] 彭师奇,多肽药物化学,1993
    [93] Van't Hoff, J.H.Uber die zunehmende Dedeutung der anorganischen Chemie. Z Anor.Allg.Chem, 1898, 18:1-13
    [94] Bergmann M, Fruton JS, On proteolytic enzymes. Synthetic substrate for chymotrypsin. J.Biol.Chem, 1937, 118:405-415
    [95] Kullmann W, Synthesis ofLeu-and Met-enkephalin. Biochem.Biophys.Res. Commun, 1979, 91: 693-698
    [96] Moriharra K, Oka T, α-chymotrypsin as the catalyst for peptide synthesis. Biochem. Biochem.J, 1978, 41:179
    [97] Chen YX., Zhang XZ, et al, Kinetically controlled synthesis catalyzed by proteases in reverse micelles and separation of precursor dipeptide of RGD. Enzyme Microb. Technol, 1999, 25: 310-315
    [98] Oyama K, Niishimura S, et al., Synghesis of aspartotance precursor by immobilized thermolysin. J.Org.Chem, 1981, 46:5241-5242
    [99] So JE., Kang HS, Kim BG, Lipase-Catalyzed synthesis of peptides containing D-Amino acid. Enzyme Microb.Technol, 1998, 23:211-215
    [100] Ye YH, Tian GL, Xing GW, et al. Enzymatic synthesis of N-protected Leuenkephalin and some oligo-peptides in organic solvents. Tetrahedron, 1998, 54: 12585-12596
    [101] Moriharra K, Using protease in peptide synthesis. Trend Biotechnol, 1987, 5: 164-170
    [102] Fornanelez MM, Margot AO, Falender CA, et al., Enzymatic synthesis of peptides containing unnatural amino acids. Enzyme Microb.Technol, 1995, 17: 964-971
    [103] Krix G, Eichhorn UH, Jakubke HD, and Kula, M.R., Protease-catalyzed synthesis of new hydrophobic amino acids. Enzyme Microb. Technol, 1997, 21: 252-257
    [104] Ke T, et al., Enhancing Enzymatic enantio-selectivity in organic solvents by forming substrate salts. J Am. Chem.Soc, 1999, 121: 3334-3340
    [105] Kullmann W, Enzyntatic peptides Synthesis. CRC press. Boca Raton, 1987
    [106] Wang BK, Gu QM, Sih CJ. Enzyme-Catalyzed peptide segment condensation using 5(4H)-Oxazolones as donors. J Am.Chem.Soc, 1993, 115: 7912-7913
    [107] Laane C, Boeren S, Vo s K. Trends Biotechnol, 1985, 3:251
    [108] Reslow M, A dlercreutz P, Mat tiassion B. Appl. Microbiol. Biotechnol, 1987, 26:1
    [109] Kuhl P, Eichhorn U, Jakubke H D. Biotechnol. Bioeng, 1995, 45:276
    [110] Colja Laane, Sjef Boeren, Kees Vos, Cees Veeger. Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 1987, 30(1): 81-87
    [111] Simatos D, Multon J K. Properties of Water in Food, Dordrecht(Netherlands): Martinus Nijhoft, 1985, 111
    [112] Noritomi H. Biotechnol. Lett, 1995, 17(2): 1323
    [113] Zhang X Z, Wang X, Chen S., et al. Protease-catalyzed small peptide synthesis in organic media Enzyme. Microb. Technol, 1996, 19: 538-544
    [114] Zaks A, Klibanov A M. Pro. Natl. Acad. Sci. 1985, 82: 3192
    [115] Yennawar H P, Yennawar N H, Farber G K. J. Am. Chem. Soc. 1995,177(2): 577
    [116] Stahl M, Jepp sson-Wistr and U, ManssonMO et al. J Am. Chem. Soc., 1991, 113: 9366
    [117] Nilsson K, Skuuupuu ladottir I, Mattiasson B. Biotechnol. Appl. Biochem, 1992,16:182
    [118] 邹国林,朱汝璠.现代酶学,1997,215
    [119] Bangham A D, Standish M M, Watkins J C. Diffussion of univalent inos across the lamella of swollen phospholipids[J]. J. Mol. Biol, 1965, 13: 238-252
    [120] 牛荣丽,李志良.阿苯达唑免疫脂质体的制备[J].新疆医科大学学报,2001,24(1):659-661
    [121] 陈忠斌,王升启,王弘,等.pH敏脂质体对反义寡核苷酸康流感病毒活性的影响[J].中国生物化学与分子生物学报,1999,15(4):553-557
    [122] 石丽萍,颜光涛,李英丽,等.酸敏脂质体的制备及其在肠缺血-再灌注小鼠体内重要脏器中的分布[J].中华危重病急救医学,2001,13(11):659-661.
    [123] 邹一愚,顾学裘,崛越勇.肝动脉注射阿霉素温度敏感脂质体的制剂研究[J].药学学报,1991,26(8):622-626
    [124] Lasic DD. Liposomes. From Physics to Application[M]. Elvevier: Amsterdam, 1993
    [125] Gregoriadis G. Liposome Technology [M]. Boca Raton: CRC Press, 1984
    [126] 陈如登,黄伟华.脂质体的作用机理及在兽医上的应用.福建兽牧兽医,2002,24(1):21-22
    [127] 陈涛,王昭,傅经国,商鹏.靶向脂质体的研究.世界最新医学信息文摘,2003,2(6):884-890
    [128] 于洁,王振纲.脂质体在治疗肿瘤及感染性疾病中的前景.中国药理学通报,1998,14(3):193-195
    [129] 赵荣生,严宝霞.空间稳定脂质体与药物的靶向释放.中国药学杂志,1998,33(4):452-455
    [130] 符民桂,刘乃奎,唐朝枢.脂质体靶向性的研究进展.中国药理学通报,1999,15(1):18-21
    [131] 陈建明,张仰眉,高中.受脂质体作为药物载体的研究进展.药学实践杂志,2001,19(4):214-218
    [132] Martin C, Woodle, Danilo D Lasic. Sterically stabilized liposomes[J]. Biochimica et Biophysica Acta, 1992, 1113: 171-199
    [133] 王闻珠,邓英杰.脂质体肺部给药研究进展[J].沈阳药科大学学报,2000,17(3):226-229
    [134] 纪俊敏,谢文磊.脂质体作为药物载体的研究进展.郑州工程学院学报,2002,23(4):68-72
    [135] Chonn A, Cullis PR. Recent advances in liposome drug delivery systemes. Current Opinion in Biotech, 1995, 6: 698-708
    [136] Wang C Y, Yughes K W, Huang L. Improved cytoplasmic delivery to plant protoplasts via pH-sensitive liposome[J]. Plant Physiol, 1986, 82:179-186
    [137] Ropert C, Malvy C, Couvreur P. Inhibition of the friend retrovirus by antisense oligonucleotide encapsulated in liposome: mechamism of action[J]. Pharm Res, 1993, 10(10): 1427-1433
    [138] 郭健新,平其能,黄罗生.柔性环孢素纳米脂质体的制备及其变行性[J].中国药科大学学报,1999,30(3):187-191
    [139] 李国锋,周日红,曾抗,等.维生素E脂质体的制备【J】.中国应用药学,1997,14(4):18-20
    [140] 肖旭.5-氟脲嘧啶温度敏感性脂质体制备方法的优化【J】.药学实践杂志,1998,16(6):344-346
    [141] Tari A M, Tucher S D, Deisseroth A, et al. Liposome delivery of methyphosphonate antisense oligodeoxynucleotide in chromic myelogenous lerkemia[J]. Blood, 1994, 84(2): 601-607
    [142] Ma D D F, Wei A Q. Enhanced delivery of synthetic oligonucleotides to human leukaemia cells by liposomes and im munoliposomes[J]. Leukemia Research, 1996, 20(11-12): 925-930
    [143] Kremer J M H. Vesicles of variade diameter by a modified injection method [J]. Biochemistry, 1977, 16(17): 3932-3935
    [144] 阎家麟,童岩,王九一.紫杉醇脂质体的制备即其抑瘤作用的研究[J].药物生物技术,1996,3(3):1-5
    [145] Szoka F, Olsom F. Preparation of liposome of intermedia size by a combination of reverse phase evaporation and extrusion through polycamonate membranes[J]. Biochem Biophys Acta, 1980, 601: 559-571
    [146] 全东琴,苏德森,顾学裘.药物载体空白脂质体前体的制备及性质的研究[J].沈阳药科大学学报,1999,16(3):160-164.
    [147] Senior J H. Fate and behavior of liposomes in vivo: a review of controlling factors[J]. Ther Drug CarrierSyst., 1987, 3: 123-193
    [148] Allen T M, Chonn A. Large unila mellar liposomes with low uptake into the reticuloendothelial system[J]. FEBS Lett., 1987, 223: 42-46
    [149] Szoke F J, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.[J]. Proc Natl Acad Sci USA, 1978, 75(9): 4194-4198
    [150] Mori A, Klibannov A L, Torchilin V P, et al. Influence of steric barrier activity of amphipathic poly(ethyleneglycol)and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo[J]. FEBS Lett., 1991, 284: 263-266
    [151] Budai M, Szogyi M. Liposomes as drug carrier systems. Preparation, classification and therapeictic advantages of liposomes[J]. Acta Pharm Hung, 2001, 71(1): 114-118
    [152] Weinstein JN, Leserman LD. Liposomes as drug carries in cancer chem otherapy[J]. Pharmar ac Ther, 1984, 24: 207
    [153] 吕延长,母敬郁,王友联,等.消炎痛脂质体对兔角膜穿孔伤的疗效观察[J].白求恩医学大学学报,1997,23(2):139-140
    [154] 周青.无环鸟苷脂质体混悬液的分析[J].中国医院药学杂志,1997,17(3):115-116
    [155] 刘朝晖,王栋.脂质体技术及其在生物医学中的应用.承德医学院学报,2004,21(2):168-169
    [156] 任玉芹,脂质体作为药物载体的研究概述.海峡药学,2005,117(2):9-11
    [157] 段芳龄,脂质体及其在医学上的应用.胃肠病学和肝病学杂志,1994,3(1):14-16
    [158] 张灵芝,汤健.脂质体作为基因载体的研究进展[J].国彩医学一分子生物学分册,1993,15(1):10
    [159] 张景文.杨乃峰.有机化学实验,1992,12:67-72
    [160] R. Amon, in G.E. Perllmann and L. Lorand(Ed), Enzymology Vol. ⅩⅨ, Academic Press, 1970, 226-244
    [161] Chen ST, Chen SY, Wang KT. Kinetically controlled peptide bond formation in anhydrous alcohol catalyzed by the industrial protease Alcalase. J. Org. Chem. 1992, 57:6960-6965
    [162] Laane C, Boeren S, Vos K, Veeger C. Rule of optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 1987;30:81-7
    [163] Okazaki S, Goto M, Furusaki S. Surfactant-protease complex as a novel biocatalyst for peptide synthesis in hydrophilic organic solvents. Enzyme Microb. Technol. 2000, 26:159-64
    [164] Klein, J.U.;Prykhodzka, A.;Cerovsky, V. The Applicability of Subtilisin Carl sberg in Peptide Synthesis. J. Peptide Sci. 2000, 6, 541-549.
    [165] Lozano P, Cano J, Iborra JL, Manjon A. Glycylglycylphenylalaninamide synthesis catalysed by papain in a medium containing polyols. Biotechnol. Appl.Biochem. 1993, 18:67-74
    [166] Hailing PJ. High-affinity binding of water by proteins is similar in air and in organic solvents. Biochem.Biophys. Acta. 1990, 1040:225-8
    [167] Klibanov AM. Enzymes that work in organic solvents. Chemtech 1986, 16: 354-359
    [168] Klibanov, A.M. (1986) Chemtech 355-359.
    [169] Lozano P, Cano J, Iborra JL, Manjon A. Glycylglycylphenylalaninamide synthesis catalysed by papain in a medium containing polyols. Biotechnol.Appl. Biochem. 1993, 18:67-74
    [170] Isono, Y., Nakajima, M. (2000)Process Biochem.36, 275-278.
    [171] Erbeldinger, M., Ni, X., Hailing, P.J. (1998) Enzyme Microb.Technol. 23, 141-148.
    [172] 齐葳,何志敏,何明霞.蛋白质酶促水解反应机理与动力学模型.天津大学学报2005,38(9),768-773
    [173] 罗九甫,酶和酶工程(EnzymeandEnzymeEngineering),上海:上海交通大学出版社,1996,314
    [174] FershtA.酶的结构和作用机制(杜锦珠等译自Enzyme Structure and Mechanism),北京:北京大学出版社,1991,26
    [175] SchechterI, BergerA. Biochem-Biophy.Res.Commun, 1967, 27(2): 157
    [176] Chen ST, Kao CL, Wang KT. Alkaline protease catalysis of a secondary amine to form a peptide bond. Int. J. Pept Protein Res. 1995, 46: 314-319
    [177] 赵明,彭师奇.含RGD四肽的合成功能.药学学报,1997,32(4):271-277.
    [178] Zhang LQ, Zhang YD, Lipase-Catalyzed Synthesis of RGD diamide in Aqueous Water-Miscible Organic Solvents. Enzyme Microb. Technol., 200, 29:129-135
    [179] Zhou YY, Yang T, Chemo-enzymatic synthesis of tripeptide RGD in organicsolvents. Enzyme Microb. Technol, 2003, 33: 55-61
    [180] Huang YB, Xiao YP, Chemo-enzymatic synthesis oftripeptide RGD diamide in organic solvents. J Biotechnol, Mar 2005, 116(1): 51-9.
    [181] Chen YX, Zhang XZ, Protease-catalyzed synthesis of precursor dipeptides of RGD with reverse micelles. Enzyme Microbl & Technol, 1998, 23: 243-248.
    [182] Chen ST, Chen SY, Hsiao SC, Wang KT. Application of industrial protease "Alcalase" in peptide synthesis. Biomed Biochim Acta 1991, 50: 181-186.
    [183] Chen ST, Chen SY, Tu CC, Chiou SH, Wang KT. Physicochemical properties of alkaline serine proteases in alcohol. J.Protein Chem, 1995, 14:205-215.
    [184] Yang CP, Su CS, Effects of solvents and additives on the reacyion of N-Benzy-loxycarbonyl-L-aspartic anhydride with L-phenylalanine methyl ester(synthesis of aspartame). J. Org. Chem. 1986, 51: 5186-91
    [185] Iqbal Gill, Rosina Lopez-Fandino, Evgeny VulFson, Enzymatic oligopeptide synthesis using a minimal protection strategy: sequential assemble of a growing oligopeptide chain. J. Am. Chem. Soc. 1995, 117: 6175-81
    [186] Monter B, Herzog B, Stehele P, Furst P, Kinetically controlled synthesis of dipeptides using ficin as biocatalyst. Biotechnol. Appl. Biochem. 1991: 14, 183-91
    [187] V Volker Schellenberger, Ute Schellenberger, Hans-Dieter Jakubke, Protease-catalyzed peptide synthesis using substrates: the synthesis of Pro-Xaa-bonds by trypsin. Biothch. Bioeng. 1991, 38: 319-21
    [188] V Veronique Pauchon, Christine Besson, Joelle Saulnier, Jean Wallach, Peptide synthesis catalysed by Pseudomonas aeruginosa elastase. Biotechnol. Appl. Biochem. 1993, 17: 217-221
    [189] Lutz Riechmann, Volker Kasche, Peptide synthesis catalyzed by the serine proteinases chymotrypsin and trypsin. Biochem. Biophy. Acta. 1995, 830: 164-172
    [190] Pere Clapes, Pareick Adlercreutz, Bo Mattiasson, Enzymatic peptide synthesis in organic media: nucleophile specificity and medium engineering in α-chymotrypsin-catalyzed reactions. Biotechnol. Appl. Biochem. 1990, 12: 376-86
    [191] Chen ST, Chen SY, Kao CL, Wang KT, Improved yield by cryoeffect in kinetically controlled peptide synthesis catalyzed with Alcalase. Biotech. Lett. 1994, 16(10): 1075-80
    [192] Lee B I, Rives J P. Dispersion of Alumina Powders in Nonaqueous Media. Colloids and Surfaces. 1991, 56:25
    [193] Tadros Th F. Industrial Applications of Dispersions. Advances in Colloid and Interface Science, 1993, 46:1
    [194] Heslot F, Cazabat A M, et al. Experiments on Spreding Droplets and Thin Films. Advances in Colloid and Interface Science, 1992, 39:129
    [195] Rives J P, Lee B 1. The effect of Water on the Dispersion of Alumina in Nonaqueous Media. Colloids and Surfaces, 1991, 56: 45.
    [196] Napper D H. Polymeric Sta blization of Colloidal Dispersion. New York: Academic Press, Inc., 1983: 1
    [197] 张严冬,硕士论文,2001
    [198] 赵荣生,严宝霞,侯新朴.两性霉素B脂质体的研制及其质量评价)[J].中国药学杂志,2000,35(9):593-595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700