石墨电极配料自动控制系统的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对石墨电极生产的需要,对石墨电极自动配料控制系统设计和开发中的关键技术进行了研究。基于MCGS工业监控组态软件,开发了一套以高性能工控机为主控制器的石墨电极配料自动控制系统。
     石墨电极配料自动控制系统由干粉计量、沥青计量和搅拌三个子系统组成。针对生产过程要求高可靠性的特点,本文采用工业控制计算机和PLC控制器构成典型的主从式控制系统。工业控制计算机作为主控制器,完成系统参数设置、数据管理、统计、分析、显示,配置D/A转换卡实现温度控制,配置A/D转换卡实现称重量、温度等模拟量采集。PLC通过RS-232串口与工控机通信,在工控机的调度下,完成干粉计量、沥青计量和搅拌三个子系统的动作控制。同时,在工控机中配置CAN卡,将系统组入到了公司的生产过程参数监控网。
     为了达到配料快速和精确的目标,重量信号采用压磁式传感器检测,本文为传感器输出信号设计了有源放大器。该放大器集信号放大和供电电源于一体,配备稳压电源,使系统精度大大提高。输出电压经V/I转换成4~20mA电流,有较强抗干扰性,适合于远距离传输。
     下料过程中,物料从下料口到称量小车之间存在一定的路程和下料冲击,它们都会使称重形成误差,可采用称重提前量进行补偿。但这些误差具有不确定性,为了实现较高的精确配比,论文研究与提出了一种提前量自校正算法,可有效克服随机干扰。
     加入搅拌锅的沥青温度是影响混捏过程的关键因素。若沥青温度低,搅拌阻力大,混捏出的糊料塑性差,不利于成型;若沥青温度过高,沥青中的轻质馏分会逐渐分解和挥发,同样降低沥青的粘结性能。本文采用模糊PID方法对计量桶中沥青进行恒温控制,提高了控制精度,取得预期效果。
     采用工业组态软件MCGS(Monitor and Control Generated System)作为开发平台,设计与开发了石墨电极配料自动控制系统的应用程序,论文给出了主要程序的实现技术。
     本系统于2006年9月在湖南银光炭素有限公司投入运行,运行结果表明本文设计的石墨电极配料自动控制系统单个料仓粉料计量误差≤3kg,沥青计量误差≤1kg,沥青温度控制误差≤2℃,系统运行可靠,达到了预定的设计要求。
With the need of graphite electrode production, the thesis has carried out research on the design and development of automatic proportioning control system, and has realized it based on high reliability industry control computer and MCGS configuration software.
     The system is composed of powder material measurement subsystem, asphalt measurement and mixture subsystem. For the reliability requirement in the production process, the paper has supplied a set of effective master-slave resolution combining computer control with programming logic controller. Computer which works as master station carries out system parameter setting, data management, statistics analysis and display, inserted A/D cards to input anolog signals, D/A card for temperature control. The communication between computer and PLC is through by RS-232. PLC carries out action control of materiel proportioning, asphalt measuring and mixing subsystems. And the computer is installed PCI-5110 to connecte with company process parameter monitoring network exsited.
     The system has adopted pressure magnetism sensor to satisfy the precison measurement and rapidity, and has designed active amplifier for the sensor output signal. Because the amplifier is integrated amplifying circuit and sensors with the same power supply equipped with precise power supply, system accuracy has been improved greatly. Outputs are inverted to 4~20mA current signals which are benefit to long-distance transportation.
     During the process of feeding powder materials, the distance between feeder and ingredient-weighing car and striking force creat errors in weighing, which can be compensed by advancing the quantity. But the errors are robust. To realize higher accuracy, The paper proposes a self- recognizing proportioning control algorithm which is efficient to stochastic disturbance.
     Asphalt temperature flowed into mixer is the key factor to affect anode paste process. If asphalt temperature is low, mixing resistance becomes big and anode paste plasticity is bad; if asphalt temperature is high, asphalt has been decomposed and volatilized which also is bad to asphalt cementation. To realize temperature control, author adopts fuzzy-PID method to control asphalt temperature in measuring devices, which is benefit to improve the control precision and brings about good control results.
     The system adopts industry configuration software MCGS as platform, designs and develops application of automatic control system for graphite electrode proportioning. The paper proposes realization technologies of main implementation.
     The proportioning automatic control system had been finished and has been gone into operation in factory in September 2006. Application results show that single powder material error correction is 3kg, asphalt error correction is 1kg and asphalt temperature error correction is 2℃. The operation is stable and reliable, the prospective design specifications are implemented.
引文
[1] 吴家凤.大型预焙阳极工厂制糊工艺及设备的选择.轻金属,2001,22(1): 51-54
    [2] 袁一新,贺虹.阳极糊配料计算机控制系统.轻金属,1997,58(4):46-50
    [3] Berthold Hohl,Lubomir Gocnik.Installation of a naode paste cooling system at slovalco.Light metals,2002,38(2):585-586
    [4] 王思留,杨俊峰,赵永强.德国爱里希公司新型混涅生产线.炭素技术,1995,36(3):38-42
    [5] Shengpei Wang , Yoshihiro . Aluminiu smelter technology . IEEE 1999 International Conference on power Electronis and Drive System PEDS’99,July 1999, Hongkong:990-995
    [6] 张庆彬,毕丽红,王铸.工业自动配料系统的精度分析.自动化技术与应用, 2005,24(5):79-81
    [7] 宋辉,方宗达.自动配料控制系统的称量问题.自动化与仪器仪表,2003,19(2):23-24
    [8] 王金超.沥青计量的优化管理.石油沥青,2001,12(2):5-6
    [9] 北京昆仑通态科技有限公司,MCGS 用户手册,1999
    [10] 北京昆仑通态科技有限公司,MCGS 用户指南,1999
    [11] 陈新兵,刘菊,孟志强.基于 MCGS 的 3500 吨液压机模糊温度控制.仪器仪表用户,2005,12(3):34-37
    [12] Shu.W.Q. Dynamic weighing under nonzero initial conditions.IEEE Transaction on Instrument and Measurement.1993(8):21-24
    [13] 曾光宇,杨湖,李博.现代传感器技术与应用基础.北京:北京理工大学出版社,2006:86-89
    [14] 许德章,何去非.多传感器集成与信息融合原理.安徽工程科技学院学报.2006,21(1):74-79
    [15] 胡振涛,楚艳萍,刘先省.测量方差自适应的多传感器数据融合算法.红外与激光工程,2005,34(6):741-747
    [16] 陈江浩.动态称重与自动配料系统的研究与开发:[硕士学位论文].兰州:兰州大学,2003:13-17
    [17] Riccardo Vanzetti and Richard Alper.The last milestone:Simultaneous soldering and inspecting S.M.D’S connections. Anaheim, California, USA, CahnerExposition Group,1988:721-731.
    [18] 张仲辉.汽车传动系游隙检测系统的研究:[硕士学位论文] .吉林:吉林大学,2003:37-40
    [19] 李孝轩.传感器微弱信号低噪声斩波放大器.传感技术学报.1994,9(3):44-49
    [20] Peter Bradshaw.The ICL7650S:A New Era in Glitch-Free chopper stabilized amplifiers.IntersilTM,2001,AN0532
    [21] 果莉,张怀玉,杨方.新型的高性能小信号放大器.东北农业大学学报,2004,35(4):480-483
    [22] 张国雄,金篆芷.测控电路.北京:机械工业出版社, 2001,183-184
    [23] 康华光,陈大钦.电子技术基础(模拟部分).华中理工大学:高等教育出版社,1998,272-274
    [24] 直流稳压电源电路.电子技术.www.0net.cn/electron,2005-11-28
    [25] 串联型稳压电路.SMT 软件应用.www.gameplayer.com,2006-11-06
    [26] PCL-726 six channel D/A output card user’s manual.Taiwan.advantech.com.tw,2000-7-27
    [27] User’s manual for PCL-813B.Taiwan.advantech.com.tw,2000-7-27
    [28] PCI-51XX 智能 CAN 接口卡用户手册.广州周立功单片机发展有限公司.2003,11-26
    [29] 罗中良,李先祥,施仁.工业配比过程控制及系统设计.兰州大学学报(自然科学版) ,2004,40(3):35-39
    [30] 杨雷,赵元黎,郑国恒.微机控制物料称量提前量的研究.河南科学,2002,20(4):378-380
    [31] Ding Y S,Ying H,Shao S H.Theoretical analysis of a Takagi-Sugeno fuzzy PI controller with application to tissue hyperthermia therapy . 1998 IEEE International Fuzzy Systems Conference.1998,252-257
    [32] 绍裕森.过程控制系统及仪表.东南大学:机械工业出版社,2003,1
    [33] 江孝国,王婉丽,祁双喜.高精度 PID 温度控制器.电子与自动化,2000,5(3):13-16
    [34] Zhang B.Optimization of combustion control based on fuzzy logic.2001 IEEE International Fuzzy Systems Conference.2001,1080-1083
    [35] Wilkinson J.Additional advances in fuzzy logic temperature control.1995 IEEE International Fuzzy Systems Conference.1995,2721-2726.
    [36] 王兴松.模糊温度控制器的实现.电子技术应用,1994,20(6):13-15
    [37] 杨晋萍,张兴中.基于模糊控制的电厂过热汽温控制系统仿真.太原理工大学学报,2002,33(4):400-402
    [38] 刘金琨.先进 PID 控制 MATLAB 仿真.北京:电子工业出版社,2004:58-60
    [39] Hao Ying,Michael McEachern,Donald W.Eddleman.Fuzzy Control of Mean Arterial Presssure in Postsurgical Patients with Sodium Nitroprusside Infusion.IEEE transactions on biomedical,engineering,1992,39(10):1060-1071
    [40] Jack Wilkinson.Additional Advances in Fuzzy Logic Temperature Control.CRC Press LLC,1999
    [41] F.Lin,H.Ying,X.Luan.Theory for a Control Architecture of Fuzzy Discrete Event Systems for Decision Making.Proceedings of the 44th IEEE Conference on Decision and Control,and the European Control Conference 2005 Seville,Spain,12:12-15
    [42] 刘科,许洪华.电厂过热汽温混合模糊控制仿真分析.计算机工程与应用,2004,18(5):212-214
    [43] 黄成静,王琳,马平.用 MATLAB 实现模糊汽温控制系统的计算机仿真.电子情报,2002,4(1):32-34
    [44] 史春平,严晓农.基于 MCGS 的数据传输通信软件的设计.信息技术,2001,8(2):33-34
    [45] 孟宪宇,方彦军.基于 MCGS 的 MOTORALA 数传电台无限通讯驱动的实现.微计算机信息,2005,21(3):156-158
    [46] 赵辰,吴昊,曹辉.基于 MCGS 组态软件的水量数据采集监控系统.测试测量,2004,8(3):41-42
    [47] Song Dafeng,Li Jing,Ma Zhimin,Li Youde,Zhao Jian,Liu Wei.Application of CAN in Vehicle Traction Control System.IEEE Intenational Conference on Vehicular Electronics and Safety,2005 (10):188-192
    [48] Zhang Dongliang,Tian Xincheng,Xuqing.Application of CAN bus technique in digital AC servo drive.Power Electronics and Motion Control Conference on the 4th International,2004 (2):746-749
    [49] 于桂贞.基带数字传输信道的抗干扰技术.兵工自动化,1994,21(1):55-59
    [50] 王长春,梁兆兰.陕西石门电站微机测控系统抗干扰措施.西北农业大学,1994,(4):49-54
    [51] D1 斯托尔.工业抗干扰的理论与实践.国防工业出版社,1985,159-161
    [52] 魏宗寿,杨春杰.基于 CAN 总线的一种计算机通信系统设计及 CAN 常见错误分析.测控技术,2006,(2):36-39
    [53] 赵翠琴,周华安,杨兴果.CAN 总线监控网络抗干扰措施研究.计算机测量与控制,2007,(2):200-202
    [54] 杨兴果,孟志强,周华安.基于 CAN-bus 的石墨电极生产过程参数监测系统.仪表技术.2006,(4):13-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700