籼稻杂种优势群分析与谷壳硅含量QTL qHUS6.1的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用384个SNP对737份来源广泛的现代优良籼稻品种或广泛用于籼稻育种的优良亲本进行遗传多样性分析,基于模型的遗传结构分析表明此群体分为两个大群或六个亚群;有超过一半的供试材料(51.8%)被划分为“混合型”,表明由于育种过程中发生的种质交流与渗透以及有限资源的重复利用,世界各水稻种植区水稻种质遗传背景日趋复杂;基于遗传距离的聚类分析表明,来自于拉丁美洲的材料聚成一个单独的生态群,尽管与来自亚洲的材料的亲缘关系仍然很近,但它们是杂交籼稻育种潜在的优势生态群。
     根据737份材料的遗传多样性和遗传结构分析结果,挑选17份代表亲本材料采用半双列杂交获得136个杂交种,在热带地区五个环境下(季节和地点)进行农艺性状鉴定,分析热带地区杂交籼稻的杂种表现及其杂种优势水平、组内与组间配组的杂种优势及亲本遗传距离与杂种优势的相关性。结果表明:1)杂交组合产量优势明显,平均比亲本增产20.4%;2)基因型与环境互作效应对杂交种产量影响极显著,表明选育在热带地区具有广适应性的优良杂交组合是极其困难的;3)群间配组的平均产量、产量杂种优势和产量配合力都明显高于群内配组,表明基于分子标记遗传距离的群体分组结果,可以进一步用于杂种优势群的构建;4)基于随机挑选SNP的遗传距离与杂种产量、杂种优势和配合力之间没有相关性,或相关性非常弱,表明基于随机挑选分子标记的遗传距离不能用于杂种产量、杂种优势和配合力的预测。
     全基因组重测序分析了优良三系杂交稻汕优10号双亲(珍汕97和密阳46)的全基因组SNP、短片段InDel和SV变异。与参考序列9311比较,珍汕97中检测到364488个SNP、61181个InDel和6298个SV变异,密阳46中检测到364179个SNP、61984个InDel和6408个SV。珍汕97和密阳46之间比对出181737个SNP和1205个InDel;将其中180个3-8bp的InDel转化成PCR标记,其中160(88.9%)个能够扩增出稳定的PCR产物且在6%PAGE中呈现明显多态性。
     利用从珍汕97/密阳46重组自交系群体筛选出的一个剩余杂合体(RH),通过连续自交发展3套目标区间相互交迭的近等基因系(NIL),利用小样本量群体将一个控制谷壳硅含量的QTLqHUS6.1定位在仅含有一个开放阅读框的区间内,同时构建了一套仅针对目标QTL qHUS6.1的单基因NIL。采用剩余杂合体定位策略,共检测了源自RH6自交7代所衍生的2441个单株,平均每代筛选348株,就筛选到了3个分离区间缩小并相互交迭的sub-RH,通过对3个sub-RH所发展的3套NIL的分析,将qHUS6.1定位到一个单基因区间内。
Seven hundred and thirty seven improved indica varieties/lines developed recently and/or widelyused by present indica breeding programs worldwide, were genotyped with384single nucleotidepolymorphism (SNP) assay. Model-based population structure analysis revealed the presence of twomajor groups with six subgroups. Over half of the accessions (51.8%) appeared to have less than0.6memberships assigned to any one of the six model-based groups, highlighting the wide range of geneflow within improved indica varieties/lines and the genetic integration of valuable alleles shared byancestries among improved high-yielding varieties/lines through germplasm exchanges and theincreasingly complex genetic background among improved high-yielding varieties/lines. Distance-basedclustering analysis showed Latin American cultivated indica lines have tended to form their ownecological cline, which could serve as a potential heterotic ecotype for hybrid rice breeding althoughthey are still closely related to Asian indica lines.
     A sample of17parents was selected from the panel of737improved cultivated elite varieties/lines,the parents represent the original genetic structure with6groups.17parents were crossed following adiallel mating design without reciprocals resulting136hybrids that were evaluated at five environments(Seasons and locations) in tropics, with the objectives of evaluating the magnitude of hybridperformance, yield heterosis, the consistency between marker-based group and heterotic performance ofhybrids, as well as the correlation between genetic distance (GD) with hybrid performance, yieldheterosis and combining ability. The analysis showed that1) the hybrids yielded20.4%higher than theparents;2) significant genotype environment effect for hybrid yield represented a challenge todevelop high yield hybrid rice with widespread for multi-environments in tropics;3) significant yield,yield heterosis and combining ability of inter-groups versus intra-group crosses suggested that groupsidentified by GD based on molecular marker could be a practical starting point for further breedingwork to develop useful heterotic groups;4) the correlations between the GD based on random molecularmarkers with hybrid yield, heterosis, SCA were insignificant or weak, GD cannot be used for hybridyield, heterosis and SCA prediction.
     Genome analysis based on re-sequencing of two indica accessions Zhenshan97(ZS97) andMilyang46(MY46), the parents of an elite three-line indica hybrid Shanyou10, has led to discovercomprehensive SNPs, short InDels and SVs variations. Compared with reference9311, a total of364488SNPs,61181InDels and6298SVs were detected in ZS97;364179SNPs,61984InDels and6408SVs were detected in MY46. Meanwhile,181737different SNPs,1205different short InDels wereobserved between ZS97and MY46. Out of1205different short InDels between ZS97and MY46,180InDels with3to8bp length were converted into PCR-based markers,160(88.9%) validated InDelmarkers can be amplified and showed significant plolymorphism between ZS97and MY46run in6%PAGE.
     A fine mapping strategy were used in the fine mapping of qHUS6.1for the silicon content in rice hull: a residual heterozygous plant (RH) was identified from RILs of ZS97/MY46; develop three sets ofNILs with overlapping target segregating chromosome segment; qHUS6.1was narrowed into an intervalwith only one ORF, as well as one set of single gene NILs (qHUS6.1) was developed using smallpopulation. Base one the fine mapping strategy with RH, totally,2441plants derived from selfedprogenies with seven generations from RH6were genotyped. Three sub-RHs with overlappingheterozygous segments were obtained by genoytyping only averaged348plants in every generation.Based on analyses of the phenotypic distribution and variance among the three sets of NILs derivedfrom the three sub-RHs, qHUS6.1was delimited to a region with only a single gene.
引文
1.查仁明,杨正林,赵芳明,钟秉强,彭涛,谢戎,何光华.不同时期水稻主要恢复系,不育系的遗传差异变化研究[J].作物学报,2007,33:572-577.
    2.何光华,裴炎.我国中籼杂交稻亲本的DNA变异性研究[J].作物学报,2000,26:449-454.
    3.李明顺,张世煌,李新海,潘光堂,白丽,彭泽斌.根据产量特殊配合力分析玉米自交系杂种优势群[J].中国农业科学,2002,35:600-605.
    4.李云海,钱前,曾大力,孙宗修.我国主要杂交水稻亲本的RAPD鉴定及遗传关系研究[J].作物学报,2000,26:171-176.
    5.林建荣,宋昕蔚,吴明国.2012.4份籼粳中间型广亲和恢复系的生物学特性及其杂种优势利用[J].中国水稻科学,26:656-662.
    6.刘殊,程慧,王飞,朱英国.2002.我国杂交水稻主要恢复系的DNA多态性研究[J].中国水稻科学,16:1-5.
    7.彭锁堂,王海岗,魏兴华,吕建珍,张晓丽,袁筱萍,杨武德.我国三系杂交稻主要不育系的微卫星标记多样性和遗传结构分析[J].中国水稻科学,2008,22:365-369.
    8.彭泽斌,刘新芝.玉米自交系杂种优势类群与杂优模式构建的初步研究[J].作物学报,1998,24:711-717.
    9.万建民.2010.中国水稻遗传育种与品种系谱:1986-2005[M].中国农业出版社.
    10.王胜军,陆作楣.中国杂交籼稻遗传多样性演变及其分析[J].江苏农业学报,2006a,22:192.
    11.王胜军,陆作楣,万建民.采用表型和分子标记聚类研究杂交籼稻亲本的遗传多样性[J].中国水稻科学,2006b,20:475-480.
    12.王胜军,万建民,陆作楣.利用SSR分子标记划分杂交籼稻亲本群的研究[J].作物学报,2006c,32:1437-1443.
    13.王胜军,陆作楣.我国常用杂交籼稻亲本杂种优势群的初步研究[J].南京农业大学学报,2007,30:14-18.
    14.徐旭增,陈昆荣,童海军,蔡其华.恢复系密阳46的开发利用[J].杂交水稻,1989,4:009.
    15.袁力行,张世煌.玉米遗传多样性与杂种优势群研究[J].中国农业科学,2000,33:9-14.
    16.袁隆平.杂交水稻培育的实践和理论[J].中国农业科学,1977,1:27-32.
    17.袁隆平.两系法杂交水稻研究的进展[J].中国农业科学,1990,23:1-6.
    18.朱军.作物杂种后代基因型值和杂种优良的预测方法[J].生物数学学报,1993,8:32-44.
    19.朱军,季道藩,许馥华.作物品种间杂种优势遗传分析的新方法[J].遗传学报,1993,20:262-271.
    20.曾三省.中国玉米杂交种的种质基础[J].中国农业科学,1990,23:1-9.
    21. Arai-Kichise, Y., Y. Shiwa, H. Nagasaki, K. Ebana, H. Yoshikawa, M. Yano, and K. Wakasa.Discovery of genome-wide DNA polymorphisms in a landrace cultivar of japonica rice bywhole-genome sequencing [J]. Plant and cell physiology,2011,52:274-282.
    22. Ashikari, M., H. Sakakibara, S. Lin, T. Yamamoto, T. Takashi, A. Nishimura, E.R. Angeles, Q.Qian, H. Kitano, and M. Matsuoka. Cytokinin oxidase regulates rice grain production [J]. Science,2005,309:741-745.
    23. Bai, X., L. Luo, W. Yan, M.R. Kovi, W. Zhan, and Y. Xing. Genetic dissection of rice grain shapeusing a recombinant inbred line population derived from two contrasting parents and fine mappinga pleiotropic quantitative trait locus qGL7[J]. BMC genetics,2010,11:16.
    24. Barata, C., and M.J. Carena. Classification of North Dakota maize inbred lines into heteroticgroups based on molecular and testcross data [J]. Euphytica,2006,151:339-349.
    25. Bélanger, R.R., N. Benhamou, and J.G. Menzies. Cytological evidence of an active role of siliconin wheat resistance to powdery mildew (Blumeria graminis f.sp.tritici)[J]. Phytopathology,2003,93:402-412.
    26. Bhatnagar, S., F.J. Betran, and L.W. Rooney. Combining abilities of quality protein maize inbreds[J]. Crop science,2004,44:1997-2005.
    27. Bradbury, P.J., Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, and E.S. Buckler. TASSEL:software for association mapping of complex traits in diverse samples [J]. Bioinformatics,2007,23:2633-2635.
    28. Butruille, D.V., H.D. Silva, S.M. Kaeppler, and J.G. Coors. Response to selection and genetic driftin three populations derived from the golden glow maize population [J]. Crop science,2004,44:1527-1534.
    29. Caicedo, A.L., S.H. Williamson, R.D. Hernandez, A. Boyko, A. Fledel-Alon, T.L. York, N.R.Polato, K.M. Olsen, R. Nielsen, and S.R. McCouch. Genome-wide patterns of nucleotidepolymorphism in domesticated rice [J]. PLoS genetics,2007,3: e163.
    30. Casey, W.H., S.D. Kinrade, C. Knight, D.W. Rains, and E. Epstein. Aqueous silicate complexes inwheat, Triticum aestivum L [J]. Plant, Cell&Environment,2004,27:51-54.
    31. Chen, X., S. Temnykh, Y. Xu, Y.G. Cho, and S.R. McCouch. Development of a microsatelliteframework map providing genome-wide coverage in rice (Oryza sativa L.)[J]. Theoretical andApplied Genetics,1997,95:553-567.
    32. Chérif, M., A. Asselin, and R.R. Bélanger. Defense responses induced by soluble silicon incucumber roots infected by Pythium spp [J]. Phytopathology,1994,84:236-242.
    33. Chin, J.H., X. Lu, S.M. Haefele, R. Gamuyao, A. Ismail, M. Wissuwa, and S. Heuer. Developmentand application of gene-based markers for the major rice QTL Phosphorus uptake [J]. Theoreticaland Applied Genetics,2010,120:1073-1086.
    34. CRABB, A.R. The hybrid corn makers [J]. Soil Science,1948,66:79.
    35. Crow, J.F.90years ago: The beginning of hybrid maize [J]. Genetics,1998,148:923-928.
    36. Cui D, C.Y. Xu, C.F. Tang, C.G. Yang, T.Q. Yu, X.X. A, G.L. Cao, F.R. Xu, J.G. Zhang and L.Z.Han. Genetic structure and association mapping of cold tolerance in improved japonica ricegermplasm at the booting stage [J]. Euphytica,2013193:369-382.
    37. Dai, W., K. Zhang, B. Duan, K. Zheng, J. Zhuang, and R. Cai.2005. Genetic dissection of siliconcontent in different organs of rice [J]. Crop science45:1345-1352.
    38. Dai, W., K. Zhang, J. Wu, L. Wang, B. Duan, K. Zheng, R. Cai, and J. Zhuang. Validating asegment on the short arm of chromosome6responsible for genetic variation in the hull siliconcontent and yield traits of rice [J]. Euphytica,2008,160:317-324.
    39. Datnoff, L.E., and F.A. Rodrigues. The role of silicon in suppressing rice diseases [J]. AmericanPhytopathological Society,2005.
    40. Datnoff, L.E., W.H. Elmer, and D.M. Huber. Mineral nutrition and plant disease [M]. AmericanPhytopathological Society (APS Press),2007.
    41. Deren, C.W., L.E. Datnoff and G.N.Snyder. Variable silicon content of rice cultivars grown onEverglades histosols [J]. J Plant Nutr,1992,15:2363-2368.
    42. Du, J., Y. Fan, J. Wu, and J. Zhuang. Dissection of QTLs for yield traits on the short arm of ricechromosome6[J]. Agricultural Sciences in China,2008,7:513-520.
    43. Epstein, E., and A.J. Bloom. Inorganic components of plants. Mineral nutrition of plants: principlesand perspectives,2nd edn [M]. Sinauer Associates, Inc., Massachusetts,2005,44-45.
    44. Evanno, G., S. Regnaut, and J. Goudet. Detecting the number of clusters of individuals using thesoftware STRUCTURE: a simulation study [J]. Molecular ecology,2005,14:2611-2620.
    45. Fan, C., Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li, and Q. Zhang. GS3, a major QTL for grainlength and weight and minor QTL for grain width and thickness in rice, encodes a putativetransmembrane protein [J]. Theoretical and Applied Genetics,2006,112:1164-1171.
    46. Fan, X.M., J. Tan, J.Y. Yang, and H.M. Chen. Combining ability and heterotic grouping of tentemperate, subtropical and tropical quality protein maize inbreds [J]. Maydica,2004,49:267-272.
    47. Fauteux, F., W. Rémus Borel, J.G. Menzies, and R.R. Bélanger. Silicon and plant diseaseresistance against pathogenic fungi [J]. FEMS Microbiology Letters,2005,249:1-6.
    48. Fawe, A., M. Abou-Zaid, J.G. Menzies, and R.R. Bélanger. Silicon-mediated accumulation offlavonoid phytoalexins in cucumber [J]. Phytopathology,1998,88:396-401.
    49. Fischer, S., H.P. Maurer, T. Würschum, J. M hring, H. Piepho, C.C. Sch n, E. Thiemt, B.S.Dhillon, E.A. Weissmann, and A.E. Melchinger. Development of heterotic groups in triticale [J].Crop science,2010,50:584-590.
    50. Fujimaki, H. Recurrent selection by using genetic male sterility for rice improvement [J]. JARQ,Tsukuba,1979,13:153-156.
    51. Garris, A.J., T.H. Tai, J. Coburn, S. Kresovich, and S. McCouch. Genetic structure and diversity inOryza sativa L [J]. Genetics,2005,169:1631-1638.
    52. Gethi, J.G., J.A. Labate, K.R. Lamkey, M.E. Smith, and S. Kresovich. SSR variation in importantUS maize inbred lines [J]. Crop science,2002,42:951-957.
    53. Glaszmann, J.C. Isozymes and classification of Asian rice varieties [J]. Theoretical and AppliedGenetics,1987,74:21-30.
    54. Gong, J., J. Wu, K. Wang, Y. Fan, and J. Zhuang. Fine mapping of qHUS6.1, a quantitative traitlocus for silicon content in rice (Oryza sativa L.)[J]. Chinese Science Bulletin,2010,55:3283-3287.
    55. Hallauer, A.R., J.M. Filho, and M.J. Carena. Testers and Combining Ability [M]. Quantitativegenetics in maize breeding,2010,383-424.
    56. Hattori, T., S. Inanaga, E. Tanimoto, A. Lux, M. Luxová, and Y. Sugimoto. Silicon-inducedchanges in viscoelastic properties of sorghum root cell walls [J]. Plant and cell physiology,2003,44:743-749.
    57. Hayashi, K., H. Yoshida, and I. Ashikawa. Development of PCR-based allele-specific and InDelmarker sets for nine rice blast resistance genes [J]. Theoretical and Applied Genetics,2006,113:251-260.
    58. He, Z., F. Xie, L. Chen, and M.A.D. Paz. Genetic Diversity of Tropical Hybrid Rice GermplasmMeasured by Molecular Markers [J]. Rice Science,2012,19(3):193-201.
    59. Hossain, M.T., R. Mori, K. Soga, K. Wakabayashi, S. Kamisaka, S. Fujii, R. Yamamoto, and T.Hoson. Growth promotion and an increase in cell wall extensibility by silicon in rice and someother Poaceae seedlings [J]. Journal of Plant Research,2002,115:0023-0027.
    60. Innovative approaches to rice breeding: Selected papers form the1979International Rice ResearchConference [M]. International Rice Research Institute, Los Banos, Philippines,1980.
    61. Jiao, Y., Y. Wang, D. Xue, J. Wang, M. Yan, G. Liu, G. Dong, D. Zeng, Z. Lu, and X. Zhu.Regulation of OsSPL14by OsmiR156defines ideal plant architecture in rice [J]. Nature genetics,2010,42:541-544.
    62. Jones, J.W. Hybrid vigor in rice. Agronomy Journal,1926,18:423-428.
    63. Jones, N., H. Ougham, H. Thomas, and I. Pa akinskien.2009. Markers and mapping revisited:finding your gene [J]. New Phytologist183:935-966.
    64. Jun, Z. Mixed model approaches for estimating genetic variances and covariances [J]. Journal ofBiomathematics,1992,7:1-11.
    65. Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki, and M. Yano. Hd3a, arice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1under short-day conditions [J]. Plant and Cell Physiology,2002,43:1096-1105.
    66. Kumar, R.V., and S.S. Virmani.1992. Wide compatibility in rice (Oryza sativa L.)[J]. Euphytica,1992,64:71-80.
    67. Li, J., Y. Xin, and L. Yuan. Hybrid rice technology development: Ensuring China's food security[M]. International Food Policy Research Institute (IFPRI),2009.
    68. Li, S., S. Wang, Q. Deng, A. Zheng, J. Zhu, H. Liu, L. Wang, F. Gao, T. Zou, and B. Huang.Identification of Genome-Wide Variations among Three Elite Restorer Lines for Hybrid-Rice [J].PloS one,2012,7: e30952.
    69. Liakat Ali, M., A.M. McClung, M.H. Jia, J.A. Kimball, S.R. McCouch, and C.E. Georgia. A ricediversity panel evaluated for genetic and agro-morphological diversity between subpopulations andits geographic distribution [J]. Crop Science,2011,51:2021-2035.
    70. Liu, K., and S.V. Muse. PowerMarker: an integrated analysis environment for genetic markeranalysis [J]. Bioinformatics,2005,21:2128-2129.
    71. Liu, K., M. Goodman, S. Muse, J.S. Smith, E. Buckler, and J. Doebley. Genetic structure anddiversity among maize inbred lines as inferred from DNA microsatellites [J]. Genetics,2003,165:2117-2128.
    72. Lu, Y., J. Yan, C.T. Guimaraes, S. Taba, Z. Hao, S. Gao, S. Chen, J. Li, S. Zhang, and B.S. Vivek.Molecular characterization of global maize breeding germplasm based on genome-wide singlenucleotide polymorphisms [J]. Theoretical and Applied Genetics,2009,120:93-115.
    73. Lu, Z., and B. Xu. On significance of heterotic group theory in hybrid rice breeding [J]. RiceScience,2010,17:94-98.
    74. Lux, A., M. Luxová, J. Abe, E. Tanimoto, T. Hattori, and S. Inanaga. The dynamics of silicondeposition in the sorghum root endodermis [J]. New phytologist,2003,158:437-441.
    75. Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses [J]. SoilScience and Plant Nutrition,2004,50:11-18.
    76. Ma, J.F., and E. Takahashi. Soil, fertilizer, and plant silicon research in Japan [M]. Elsevier,2002.
    77. Ma, J.F., and N. Yamaji. Functions and transport of silicon in plants [J]. Cellular and MolecularLife Sciences,2008,65:3049-3057.
    78. Ma, J.F., and N. Yamaji. Silicon uptake and accumulation in higher plants [J]. Trends in plantscience,2006,11:392-397.
    79. Ma, J.F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, andM. Yano. A silicon transporter in rice [J]. Nature,2006,440:688-691.
    80. Ma, J.F., N. Yamaji, N. Mitani, K. Tamai, S. Konishi, T. Fujiwara, M. Katsuhara, and M. Yano.An efflux transporter of silicon in rice. Nature,2007,448:209-212.
    81. McNally, K.L., K.L. Childs, R. Bohnert, R.M. Davidson, K. Zhao, V.J. Ulat, G. Zeller, R.M. Clark,D.R. Hoen, and T.E. Bureau. Genomewide SNP variation reveals relationships among landracesand modern varieties of rice [J]. Proceedings of the National Academy of Sciences,2009,106:12273-12278.
    82. Melchinger, A.E. Genetic diversity and heterosis [M]. The genetics and exploitation of heterosis incrops,1999,99-118.
    83. Melchinger, A.E., and R.K. Gumber. Overview of heterosis and heterotic groups in agronomiccrops [M]. Concepts and breeding of heterosis in crop plants,1998,29-44.
    84. Menkir, A., A. Melake-Berhan, C. The, I. Ingelbrecht, and A. Adepoju. Grouping of tropicalmid-altitude maize inbred lines on the basis of yield data and molecular markers [J]. Theoreticaland Applied Genetics,2004,108:1582-1590.
    85. Menz, M.A., R.R. Klein, N.C. Unruh, W.L. Rooney, P.E. Klein, and J.E. Mullet. Genetic diversityof public inbreds of sorghum determined by mapped AFLP and SSR markers [J]. Crop science,2004,44:1236-1244.
    86. Mikel, M.A., and J.W. Dudley. Evolution of North American dent corn from public to proprietarygermplasm [J]. Crop science,2006,46:1193-1205.
    87. Mitani, N., J.F. Ma, and T. Iwashita. Identification of the silicon form in xylem sap of rice (Oryzasativa L.)[J]. Plant and cell physiology,2005,46:279-283.
    88. Mitani, N., N. Yamaji, and J.F. Ma. Characterization of substrate specificity of a rice silicontransporter, Lsi1[J]. Pflügers Archiv-European Journal of Physiology,2008,456:679-686.
    89. Murray, M.G., and W.F. Thompson. Rapid isolation of high molecular weight plant DNA [J].Nucleic Acids Research,1980,8:4321-4326.
    90. Norton, G.J., C.M. Deacon, L. Xiong, S. Huang, A.A. Meharg and A.H. Price. Genetic mapping ofthe rice ionome in leaves and grain: Identification of QTLs for17elements including arsenic,cadmium, iron and selenium [J]. Plant Soil,2010,329:139-153.
    91. Ookawa, T., T. Hobo, M. Yano, K. Murata, T. Ando, H. Miura, K. Asano, Y. Ochiai, M. Ikeda,and R. Nishitani. New approach for rice improvement using a pleiotropic QTL gene for lodgingresistance and yield [J]. Nature communications,2010,1:132.
    92. Parentoni, S.N., J.V. Magalhaes, C. Pacheco, M.X. Santos, T. Abadie, E. Gama, P. Guimaraes,W.F. Meirelles, M.A. Lopes, and M. Vasconcelos. Heterotic groups based on yield-specificcombining ability data and phylogenetic relationship determined by RAPD markers for28tropicalmaize open pollinated varieties [J]. Euphytica,2001,121:197-208.
    93. Parsons, B.J., H.J. Newbury, and M.T. Jackson. The genetic structure and conservation of aus,aman and boro rices from Bangladesh [J]. Genetic Resources and Crop Evolution,1999,46:587-598.
    94. Perrier, X., and J.P. Jacquemoud-Collet. DARwin software. Centre de Coopération Internationaleen Recherche Agronomique pour le Développement, Montpellier, France,2006.
    95. Pritchard, J.K., M. Stephens, and P. Donnelly. Inference of population structure using multilocusgenotype data. Genetics,2000,155:945-959.
    96. Prohens, J., F. Nuez, and M.J. Carena [M]. Handbook of plant breeding Springer,2009.
    97. Reif, J.C., A.E. Melchinger, X.C. Xia, M.L. Warburton, D.A. Hoisington, S.K. Vasal, D. Beck, M.Bohn, and M. Frisch. Use of SSRs for establishing heterotic groups in subtropical maize [J].Theoretical and Applied Genetics,2003,107:947-957.
    98. Reif, J.C., A.R. Hallauer, and A.E. Melchinger. Heterosis and heterotic patterns in maize.[J]Maydica,2005,50:215-223.
    99. Rémus-Borel, W., J.G. Menzies, and R.R. Bélanger. Silicon induces antifungal compounds inpowdery mildew-infected wheat [J]. Physiological and molecular plant pathology,2005,66:108-115.
    100. Renming, Z., L. Yinghua, Y. Zhenglin, Z. Fangming, Z. Bingqiang, X. Rong, S. Xianchun, and H.Guanghua. Prediction of hybrid grain yield performances in Indica Rice (Oryza sativa L.) witheffect-increasing loci [J]. Molecular Breeding,2008,22:467-476.
    101. Richey, F.D. The experimental basis for the present status of corn breeding [J]. Agronomy Journal,1922,14:1-17.
    102. Rodrigues, F.á., D.J. McNally, L.E. Datnoff, J.B. Jones, C. Labbé, N. Benhamou, J.G. Menzies,and R.R. Bélanger. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: apotential mechanism for blast resistance [J]. Phytopathology,2004,94:177-183.
    103. Rodrigues, F.á., W.M. Jurick II, L.E. Datnoff, J.B. Jones, and J.A. Rollins. Silicon influencescytological and molecular events in compatible and incompatible rice Magnaporthe griseainteractions [J]. Physiological and Molecular Plant Pathology,2005,66:144-159.
    104. Seebold, K.W., T.A. Kucharek, L.E. Datnoff, F.J. Correa-Victoria, and M.A. Marchetti. Theinfluence of silicon on components of resistance to blast in susceptible, partially resistant, andresistant cultivars of rice [J]. Phytopathology,2001,91:63-69.
    105. Shen, B., W. Yu, J. Du, Y. Fan, J. Wu, and J. Zhuang. Validation and dissection of quantitativetrait loci for leaf traits in interval RM4923-RM402on the short arm of rice chromosome6[J].Journal of genetics,2011,90:39-44.
    106. Shen, Y., H. Jiang, J. Jin, Z. Zhang, B. Xi, Y. He, G. Wang, C. Wang, L. Qian, and X. Li.Development of genome-wide DNA polymorphism database for map-based cloning of rice genes[J]. Plant Physiology,2004,135:1198-1205.
    107. Shengjun, W, Z. Lu, J. Wan. Genetic Diversity of Parental Lines in indica Hybrid Rice Based onPhenotypic Characters and SSR Cluster Analysis [J]. Chinese Journal of Rice Science,2006,5.
    108. Shomura, A., T. Izawa, K. Ebana, T. Ebitani, H. Kanegae, S. Konishi, and M. Yano. Deletion in agene associated with grain size increased yields during rice domestication [J]. Nature genetics,2008,40:1023-1028.
    109. Singh, V.K., P. Upadhyay, P. Sinha, A.K. Mall, R.K. Ellur, A. Singh, S.K. Jaiswal, S. Biradar, S.Ramakrishna, and R.M. Sundaram. Prediction of hybrid performance based on the genetic distanceof parental lines in two-line rice (Oryza sativa L.) hybrids [J]. Journal of Crop Science andBiotechnology,2011,14:1-10.
    110. Song, X., W. Huang, M. Shi, M. Zhu, and H. Lin. A QTL for rice grain width and weight encodesa previously unknown RING-type E3ubiquitin ligase [J]. Nature genetics,2007,39:623-630.
    111. Sprague, G.F., and L.A. Tatum. General vs. specific combining ability in single crosses of corn [J].Agronomy Journal,1942,34:923-932.
    112. Subbaiyan, G.K., D.L. Waters, S.K. Katiyar, A.R. Sadananda, S. Vaddadi, and R.J. Henry.Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genomesequencing [J]. Plant biotechnology journal,2012,10:623-634.
    113. Thomson, M.J., E.M. Septiningsih, F. Suwardjo, T.J. Santoso, T.S. Silitonga, and S.R. McCouch.Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasmusing microsatellite markers [J]. Theoretical and Applied Genetics,2007,114:559-568.
    114. Thomson, M.J., K. Zhao, M. Wright, K.L. McNally, J. Rey, C.W. Tung, A. Reynolds, B. Scheffler,G. Eizenga, and A. McClung. High-throughput single nucleotide polymorphism genotyping forbreeding applications in rice using the BeadXpress platform [J]. Molecular Breeding,2012,1-12.
    115. Wang S.J., Wan J.M. and Lu Z.M. Parental cluster analysis in indica hybrid rice (Oryza sativa L.)by SSR analysis [J]. Acta Agronomica Sinica,2006,32(10):1437-1443.
    116. Wang, X., X. Zhao, J. Zhu, and W. Wu. Genome-wide investigation of intron lengthpolymorphisms and their potential as molecular markers in rice (Oryza sativa L.)[J]. DNAResearch,2006,12:417-427.
    117. Wen, W., J. Franco, V.H. Chavez-Tovar, J. Yan, and S. Taba. Genetic Characterization of a CoreSet of a Tropical Maize Race Tuxpe o for Further Use in Maize Improvement [J]. PloS one,2012,7: e32626.
    118. Winslow, M.D. Silicon, disease resistance, and yield of rice genotypes under upland culturalconditions [J]. Crop Sci1992,32:1208-1213.
    119. Winslow, M.D., K. Okada and V. F.Correa. Silicon deficiency and the adaptation of tropical riceecotypes [J]. Plant Soil,1997,188:239-248.
    120. Wright, M.H., C.W. Tung, K. Zhao, A. Reynolds, S.R. McCouch, and C.D. Bustamante.ALCHEMY: a reliable method for automated SNP genotype calling for small batch sizes andhighly homozygous populations [J]. Bioinformatics,2010,26:2952-2960.
    121. Wu, J., F. Fan, J. Du, Y. Fan, and J. Zhuang. Dissection of QTLs for hull silicon content on theshort arm of rice chromosome6[J]. Rice Science,2010,17:99-104.
    122. Wu, Q.S., X.Y. Wan, N. Su, Z.J. Cheng, J.K. Wang, C.L. Lei, X. Zhang, L. Jiang, J.F. Ma and J.M.Wan. Genetic dissection of silicon uptake ability in rice (Oryza sativa L.)[J]. Plant Sci,2006,171:441-448.
    123. Xangsayasane, P., F. Xie, J.E. Hernandez, and T.H. Boirromeo.2010. Hybrid rice heterosis andgenetic diversity of IRRI and Lao rice [J]. Field crops research117:18-23.
    124. Xiao, J., J. Li, L. Yuan, S.R. McCouch, and S.D. Tanksley. Genetic diversity and its relationship tohybrid performance and heterosis in rice as revealed by PCR-based markers [J]. TAG Theoreticaland Applied Genetics,1996,92:637-643.
    125. Xie, F., L. Guo, G. Ren, P. Hu, F. Wang, J. Xu, X. Li, F. Qiu, and M.A. Dela Paz. Geneticdiversity and structure of indica rice varieties from two heterotic pools of southern China and IRRI[J]. Plant Genetic Resources: Characterization and Utilization,2012,1:8.
    126. Xie, F., Z. He, M.Q. Esguerra, F. Qiu, and V. Ramanathan. Determination of heterotic groups fortropical Indica hybrid rice germplasm [J]. Theoretical and Applied Genetics,2013,1-11.
    127. Xu, K., X. Xu, T. Fukao, P. Canlas, R. Maghirang-Rodriguez, S. Heuer, A.M. Ismail, J.Bailey-Serres, P.C. Ronald, and D.J. Mackill. Sub1A is an ethylene-response-factor-like gene thatconfers submergence tolerance to rice [J]. Nature,2006,442:705-708.
    128. Xu, W., S.S. Virmani, J.E. Hernandez, L.S. Sebastian, E.D. Redo a, and Z. Li. Genetic diversity inthe parental lines and heterosis of the tropical rice hybrids [J]. Euphytica,2002,127:139-148.
    129. Xu, X., X. Liu, S. Ge, J.D. Jensen, F. Hu, X. Li, Y. Dong, R.N. Gutenkunst, L. Fang, and L. Huang.Resequencing50accessions of cultivated and wild rice yields markers for identifyingagronomically important genes [J]. Nature biotechnology,2012,30(1):105-111.
    130. Xue, W., Y. Xing, X. Weng, Y. Zhao, W. Tang, L. Wang, H. Zhou, S. Yu, C. Xu, and X. Li.Natural variation in Ghd7is an important regulator of heading date and yield potential in rice [J].Nature genetics,2008,40:761-767.
    131. Yamaji, N., N. Mitatni, and J.F. Ma. A transporter regulating silicon distribution in rice shoots [J].The Plant Cell,2008,20:1381-1389.
    132. Yamamoto, T., H. Nagasaki, J. Yonemaru, K. Ebana, M. Nakajima, T. Shibaya, and M. Yano. Finedefinition of the pedigree haplotypes of closely related rice cultivars by means of genome-widediscovery of single-nucleotide polymorphisms [J]. BMC genomics,2010,11:267.
    133. Yamamoto, T., J. Yonemaru, and M. Yano. Towards the understanding of complex traits in rice:substantially or superficially?[J]. DNA research,2009,16:141-154.
    134. Yamanaka, N., S. Watanabe, K. Toda, M. Hayashi, H. Fuchigami, R. Takahashi, and K. Harada.Fine mapping of the FT1locus for soybean flowering time using a residual heterozygous linederived from a recombinant inbred line [J]. Theoretical and Applied Genetics,2005,110:634-639.
    135. Ye, C., M.A. Argayoso, E.D. Redo a, S.N. Sierra, M.A. Laza, C.J. Dilla, Y. Mo, M.J. Thomson, J.Chin, and C.B. Delavi a. Mapping QTL for heat tolerance at flowering stage in rice using SNPmarkers [J]. Plant Breeding,2012,131(1):33-41
    136. Zhang, P., J. Li, X. Li, X. Liu, X. Zhao, and Y. Lu. Population structure and genetic diversity in arice core collection (Oryza sativa L.) investigated with SSR markers [J]. PloS one,2011,6:e27565.
    137. Zhang, Q., M.A.S. Maroof, T.Y. Lu, and B.Z. Shen. Genetic diversity and differentiation of indicaand japonica rice detected by RFLP analysis [J]. Theoretical and Applied Genetics,1992,83:495-499.
    138. Zhang, Q., Y.J. Gao, S.H. Yang, R.A. Ragab, M.S. Maroof, and Z.B. Li. A diallel analysis ofheterosis in elite hybrid rice based on RFLPs and microsatellites [J]. Theoretical and appliedgenetics,1994,89:185-192.
    139. Zhang, Z., K. Wang, L. Guo, Y. Zhu, Y. Fan, S. Cheng, and J. Zhuang. Pleiotropism of thePhotoperiod-Insensitive Allele of Hd1on Heading Date, Plant Height and Yield Traits in Rice [J].PloS one,2012,7: e52538.
    140. Zhao, K., C.W. Tung, G.C. Eizenga, M.H. Wright, M.L. Ali, A.H. Price, G.J. Norton, M.R. Islam,A. Reynolds, and J. Mezey. Genome-wide association mapping reveals a rich genetic architectureof complex traits in Oryza sativa [J]. Nature communications,2011,2:467.
    141. Zhao, K., M. Wright, J. Kimball, G. Eizenga, A. McClung, M. Kovach, W. Tyagi, M.L. Ali, C.Tung, and A. Reynolds. Genomic diversity and introgression in O. sativa reveal the impact ofdomestication and breeding on the rice genome [J]. PLoS One,2010,5:e10780.
    142. Zhao, M.F., X.H. Li, J.B. Yang, C.G. Xu, R.Y. Hu, D.J. Liu, and Q. Zhang. Relationship betweenmolecular marker heterozygosity and hybrid performance in intra-and inter-subspecific crosses ofrice [J]. Plant Breeding,1999,118:139-144.
    143. Zheng, K.L., N. Huang, J. Bennett, and G.S. Khush. PCR-based marker-assisted selection in ricebreeding [J].1995.
    144. Zhuang, J., Y. Fan, Z. Rao, J. Wu, Y. Xia, and K. Zheng. Analysis on additive effects andadditive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred linepopulation of rice [J]. Theoretical and Applied Genetics,2002,105:1137-1145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700