载人登月定点返回轨道问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
所谓定点返回,是指返回飞行器能够在预定着陆区着陆。对于载人登月任务来说,研究定点返回问题对回收搜救、测控网布置等都具有重要的意义。本文以解决载人登月定点返回轨道问题为目的,系统研究了定点返回轨道基本特性、月地转移轨道设计和优化、再入段轨道特性分析和制导律设计。全文主要工作包括:
     研究了和定点返回相关的轨道参数特性。(1)引入月球反垂点概念,具体分析了月球反垂点和再入点、近地点的位置关系;(2)基于月球反垂点分析再入航程和倾角的性质;(3)研究了再入点速度、再入点纬度参数设计的相对稳定性规律;(4)根据月相原理和轨道特性,描述返回窗口和光照条件的定性关系。
     研究给出了月球定点返回轨道设计方法(不包含轨道面机动情形)。(1)提出了基于双二体假设的分层搜索和角动量-能量守恒两种轨道初步设计方法;(2)提出了考虑地球扁率修正的多圆锥截线返回轨道设计方法;(3)研究了结合修正多圆锥截线法猜测初值和微分修正的两步规划高精度轨道设计方法,仿真计算表明了此方法的有效性。
     研究给出了定点返回轨道考虑轨道面调整情形时的月地轨道射入(TEI)优化设计方法。(1)研究了TEI调整轨道面的三种变轨方案,对变轨方案进行特性分析;(2)将高斯伪谱法扩展应用到多相最优控制问题进行脉冲推力轨道优化设计,主要分析了求解多相最优控制问题的联结条件处理方法;(3)提出了基于脉冲分布特性和GPM多相算法的适于大轨道面调整的三脉冲TEI优化设计方法。研究了登月返回飞船弹道升力式再入轨道的参数特性。(1)提出基于高斯伪谱法求解登月返回舱再入轨道,此方法可弥补传统方法初值选取、计算效率上的不足;(2)从轨迹优化的角度研究了登月飞船的再入轨道特性;(3)研究了升阻比确定的原则和方法。
     研究提出了基于标称轨道制导思想设计登月飞船返回舱再入制导律。(1)提出了更适合于登月飞船的线性倾侧角取值方案,应用Newton-Raphson算法求得设计变量初始倾侧角;(2)通过误差源的综合影响分析,研究了登月返回舱标称轨道制导律的纵程和横程偏差;(3)讨论了影响倾侧角变化率的因素,研究了调整反馈增益系数和减小倾侧角变化率及制导精度的关系。
     总之,本文在载人登月轨道问题方面取得了一些进展,所做工作可为我国未来的载人登月定点返回技术的突破和掌握提供理论参考和技术支持。
What is called point return is that the ability to land at a desired destination. The point return technique emphasizes on manned lunar landing mission special value on recovery and disposal of telemetry, track, command, etc. For the purpose of solving the orbit characteristics and design problem, this dissertation studies point return orbit elementary characteristics, Moon-to-Earth orbit design and optimization, reentry orbit characteristics analysis and guidance approach design. The main results achieved in this dissertation are summarized as follows.
     The elementary characteristics of point return orbit for a vehicle from a lunar mission are studied. (1) By importing the concept of lunar antipode, the relative location between the entry point, perigee and lunar antipode are analyzed with detail; (2) The connection of flight range and the inclination is given basing on the analysis of lunar antipode; (3) The stabilization performance of the latitude and velocity at entry point is get; (4) The relation between lighting condition and return window is also analyzed qualitatively using the principle of lunar phase.
     The orbit design method for lunar point return orbit is studied and provided(No consideration is given to the use of orbital plane changes to ensure proper point return). (1) Two methods to analyze inbound trajectory are proposed, which are the double two-body hypothesis based methodology; (2) The patched multi-conic method including the Earth’s oblateness effect is proposed to optimize point return orbit; (3) The two-step planning method for high-fidelity orbit design is proposed incorporating modified patched multi-conic method and differential-corrector method, the numerical simulation shows that this method is effective.
     The optimal design method of Trans-Earth Injection(TEI) considering the plane change is studied and provided. (1) Three orbit plane change approach for TEI is presented, the maneuver characteristics is also analyzed; (2) The optimal design for optimal impulsive orbit transfer is proposed by applying the GPM on multiphase optimization, and the emphasis is placed on the connecting condition at knots; (3) Basing on the location characteristics of impulses and multiphase GPM, the three impulse TEI which is suited for large plane change is designed.
     The reentry parameters characteristics of ballistic lift lunar return module is studied. (1) The method for solving reentry trajectory using Gauss pseudospectral method is proposed, this method can remedy the deficiency of traditional method on initial guess and computational efficiency; (2) The reentry trajectory characteristics of lunar return module are studied basing on trajectory optimization. (3) The choice principia and method of lift-to-drag ratio is studied.
     The reentry guidance approach is studied and provided based on predetermined path following concept. (1) The nominal linear bank angle approach which is more suited than determined as constant is proposed, and the initial bank angle is solved by Newton Raphson algorithm; (2) By error analysis integrated all the guidance error, the downrange and cross range error for lunar return module is studied; (3) The factors impact on bank rate are discussed, The relation between the feedback gain factor regulation and the guidance precision is studied.
     In conclusion, important developments have been achieved for the returning orbit from the Moon to a specified landing site for manned lunar-landing mission. The method and conclusions in this thesis would be available for in theory and practice for the lunar return mission.
引文
[1] NASA. NASA’s Exploration Systems Achitecture Study [R]. NASA-TM-2005-214062, 2005
    [2]李平,张纪生.俄罗斯深空测控通信技术的发展及现状[J].电讯技术, 2003, (4): 1-8
    [3]董李亮.揭秘俄罗斯的探月计划[J].中国航天, 2007, (7): 34-37
    [4]哈维,邓宁丰译.苏联/俄罗斯探月历程[M].北京:中国宇航出版社, 2008
    [5]韩鸿硕,蒋宇平.各国登月计划及载人登月的目的与可行性简析(上) [J].中国航天, 2008, (9): 30-33
    [6]士元. Smart-1“轻吻”月女神[J].太空探索, 2006: 24-27
    [7] Racca, G.D. Smart-1 Mission Description and Development Status [J]. Planetary and Space Science, 2002, 50(14): 1323-1337
    [8] ESA. Architecture Study for Sustainable Lunar Exploration [R]. CDF-33(A), 2004
    [9]欧阳自远.我国月球探测的总体科学目标与发展战略[J].地球科学进展, 2004, 19(3): 351-358
    [10] Louis Friedman, W. T. H. The Internatinal Lunar Decade-a Vision for Human SpaceFlight [J]. Journal of Astronautics, 2007, 4(28): 198-201
    [11] Shufang, R. Lunar Satellite Chang'e-1 and Its Development [J]. Aerospace China/Autumn, 2007: 7-10
    [12] Shufang, R. China's Lunar Orbit Exploration Program [J]. Aerospace China/Winter, 2004: 14-17
    [13]欧阳自远.月球探测的进展与我国月球探测的科学目标[J].贵州工业大学学报(自然科学版), 2003, 32(6): 1-7
    [14] Hao, Xi-Fan,Z, J-S. The Present Schedule and Future Development of the Chinese Chang'e Project [J]. Journal of Astronautics, 2007, 28(sup): 19-20
    [15]杨维廉,周文艳.嫦娥一号月球探测卫星轨道设计[J].航天器工程, 2007, 16(6):
    [16]王希季.航天器进入与返回技术(上) [M].北京:中国宇航出版社, 1991
    [17] Brunner, C.W.,Lu, P. Skip Entry Trjectory Planning and Guidance [J]. Journal of Guidance,Control,and Dynamics, 2008, 31(5): 1210-1220
    [18] Bairstow, S.H. Reentry Guidance with Extended Range Capability for Low L/D Spacecraft [D]. MIT, 2006
    [19] Space, Policy, and Society Research Group of Massachusetts Institute of Technology The Future of Human Spaceflight [R]. 2008
    [20] Sommer, S.C.,Short, B.J. Point Return From a Lunar Mission for a Vehicle thatManeuvers within the Earth's Atmosphere [R]. NASA TN D-1142, 1961
    [21] Murray, C.,Cox, C.B. Apollo the Race to the Moon [M]. New York: Simon&Schuster Building Rockefeller Center, 1989
    [22]安振华.载人航天着陆场选择与分析[J].中国空间科学技术, 2006, (4): 67-71
    [23]胡丽红,蔡道济译.“阿波罗”经验报告[J].靶场实验与管理, 1994, (1): 15-22
    [24]谷立祥,刘竹生.使用遗传算法和B平面参数进行月球探测器地月转移轨道设计[J].导弹与航天运载技术, 2003, 3:
    [25] Biesbtroek, R.,Janin, G. Ways to the Moon [J]. Eas bulletin 103, 2000: 92-99
    [26] David, L.,Ken, G. Lunar prospector mission design and trajectory support [R]. AAS 98-3323, 1998
    [27]郗晓宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2002
    [28]周文艳,杨维廉.月球探测器转移轨道的特性分析[J].空间科学学报, 2004, 24(5): 354-359
    [29]高玉东.月球探测器地月空间转移轨道研究[D].国防科技大学, 2008
    [30]高玉东,郗晓宁.月球探测器返回轨道快速搜索设计[J].宇航学报, 2008, 29(3): 765-771
    [31]陈健祥.向月飞行轨道的若干特性研究[J].空间科学学报, 1997, 17(1): 90-96
    [32]林胜勇,李珠基,和兴锁.月球探测器转移轨道特性[J].导弹与航天运载技术, 2004, (3): 7-12
    [33]郗晓宁,曾国强,任萱.月球探测器轨道设计[M].北京:国防工业出版社, 2001
    [34] Mccaine, G. Halo Orbit Design and Optimization [D]. Monterey,Califonia: Naval Postgradute School, 2004
    [35] Gomez, G.J.A., Masdemont, J.J.,Simo, C. Study of the Trasfer from the Earth to a Halo Orbit Around the Equlibrium Point L1 [J]. Celestial Mechnics and Dynamical Astronomy, 1993, 56: 541-562
    [36] Martin, W. Lunar Sample Return Via Interplanetary Superhighway [A]. In.AIAA/AAS Astrodynamics Specialist conference [C]. Monterey Califonia, 2002.
    [37]谷立祥,刘竹生.相位环地月转移轨道研究[J].导弹与航天运载技术, 2002, (3): 5-12
    [38] Betts, J.T. Optimal Low Thrust Trajectories to the Moon [J]. Journal of Applied Dynamical Systems, 2003, 2(2): 144-170
    [39] Wilson, S.W. A pseudostate theory for the approximate of three-body trajectory [R]. AIAA 70-1061, 1970
    [40] Bynes, D.V.,Hooper, H.I. Multiconic: A fast and accurate methods of computingspace flight trajectories. [R]. AIAA 70-1062, 1970
    [41]孟占峰.地月转移轨道的Vinti多圆锥截线轨道预报方法[J].科技导报, 2008, 26(4): 47-51
    [42] Betts, J.T. Optimal Lunar Swingby Trajectories [J]. Astronautical Sciences, 2007, 55(3): 349-371
    [43]何巍.基于限制性多体问题的地月转移轨道研究[D].北京:北京航空航天大学, 2007
    [44]彭祺擘.基于空间站支持的载人登月方案研究[D].长沙:国防科学技术大学, 2007
    [45]杨维廉.发射极月卫星的转移轨道研究[J].航天器工程, 1997, 6(3): 19-23
    [46] Fahroo, F.,Ross, I.M. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method [J]. Journal of Guidance,Control,and Dynamics, 2002, 25(1): 161-166
    [47] Miele, A. Therem of Image Trajectories in the Earth-Moon Space [J]. Astronautica Acta, 1960, 6(5): 225-232
    [48] Zhang, Zeming.,Fu, Debin. The Primal Exploration of Space Launch and Manned Lunar-Landing [J]. Engineering Sciences, 2006, 4(4): 28-34
    [49] Chung, Min-Kun J,Weinstein, S.S. Trajectory Design of Lunar South Pole-Aitken Basin Sample return Mission [J]. AIAA, 2004:
    [50] Rea, J.R.,Putnam, Z.R. A Comparison of Two Orion Skip Entry Guidance Algorithm [A]. In.AIAA Guidance,Navigation and Control Conference and Exhibit [C]. Hilton Head,South Carolina, 2007.
    [51] Putnam, Z.R.,Barton, G.H. Entry Range Capability Analysis of the Orion Crew Module [R]. IEEE AC paper, 2007
    [52] Wooster, P.D. Strategies for Affordable Human Moon and Mars Exploration [D]. MIT, 2007
    [53]阮春荣.大气中飞行的最优轨迹[M].北京:宇航出版社, 1987
    [54] Istratie, Vasile. Optimal skip entry with terminal maximum velocity and heat constraint [A]. In.AIAA Atmospheric Flight Mechanics Conference and Exhibit [C]. Albuquerque, NM, 1998.
    [55]吴德隆,王小军.航天器气动力辅助变轨动力学与最优控制[M].北京:中国宇航出版社, 2006
    [56]赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社, 1997
    [57] Harpold, J. C.,Graves, C. A. Shuttle Entry Guidance [J]. Journal of the Astronautical Sciences, 1979, XXVII(3): 239-268
    [58] Roenneke, A.J.,Markl, A. Reentry Control to a Drag-vs-Energy Profile [J]. Journal of Guidance Control and Dynamics, 1997, 17(5): 916-920
    [59]陈刚,万自明,胡莹.基于遗传算法的RLV再入轨迹优化设计[J].系统工程与电子技术, 2006, 28(8): 1240-1243
    [60] Bibeau, R.T. Trajectory Optimization for a Fixed-trim Reentry Vehicle Using Direct Collocation and Nonlinear Programming [R]. AIAA-2000-4262, 2000
    [61]雍恩米.高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D].长沙:国防科技大学, 2008
    [62] Luo, Jianjun, Wang, Mingguang,Yuan, Jianping. Rapid Lunar Soft-Landing Trajectory Optimization by a Legendre Pseudospectral Method [R]. IAC-06-C1.P.4.01, 2006
    [63] Graves, C.A.,Harpold, J.C. Reentry Trajectory Philosophy and Flight Results from Apollo 10 and 11 [A]. In.AIAA 8th Aerospace Sciences Meeting [C]. New York, 1970. 19-21
    [64] Mease, K.D.,Kremer, J.P. Shuttle Entry Guidance Revisited [R]. AIAA 92-4450, 1992
    [65] Bharadwaj, S., Rao, A.V.,Mease, K.D. Entry Trajectory Tracking Law via Feedback Linearization [J]. Journal of Guidance Control and Dynamics, 1998, 21(5): 726-732
    [66] Graves, C.A.,Harpold, J.C. Apollo Experience Report-Mission Planning for Apollo Entry [R]. NASA TN D-6725, 1972
    [67] Dukeman, G.A. Profile-following entry guidance using linear quadratic regulator theory [A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Monterey, CA,, 2002.
    [68] Zimmerman, C., Dukeman, G.A.,Hanson, J.M. Automated Method to Compute Orbital Reentry Trajectories with Heating Constraints [J]. Journal of Guidance, Control and Dynamics, 2003, 26(4): 523-529
    [69]胡正东.天基对地打击武器轨道规划与制导技术研究[D].长沙:国防科技大学, 2009
    [70] Lu, P. Entry Trajectory Optimization with Analytical Freeback Bank Angle Law [A]. In.AIAA Guidance,Navigation and Control Conference and Exhibit [C]. Honolulu,Hawaii, 2008.
    [71] Haroz, C. A Predictive-Corrector Guidance Algorithm Design for a Low L/D Automous Re-entry Vehicle [D]. Masschusetts Institute of Technology, 1998
    [72] Kozynchenko, A.I. Predictive guidance algorithms for maximal downrange maneuverablity with application to low-lift reentry [J]. Acta Astronautica, 2009, (64): 770-777
    [73] Lu, P. Predictor-Corrector Entry Guidance for Low-Lifting Vehicles [J]. Journal of Guidance,Control,and Dynamics, 2008, 31(4): 1067-1075
    [74] Miele, A.,Wang, T. Robust Predictor-Corrector Guidance for Aeroassisted OrbitalTransfer [J]. Journal of Guidance,Control,and Dynamics, 1996, 31(4): 1607-1141
    [75] Tigges, Michael, Crull, et al. Numerical Skip-Entry Guidance [A]. In.29th Annual AAS Guidance and Control Conference [C]. Breckenridge,CO,United States, 2006.
    [76] Powell, R.W. Numerical Roll Resersal Predictor-Corrector Aerocapture and Precision Landing Guidance Algorithms for the Mars Surveyer Programs 2001 Missions [R]. AIAA 98-4574, 2001
    [77] Dicarlo, D.L. Aerocapture Guidance Methods for High Energy Trajectories [D]. MIT, 2003
    [78] Masciarelli, Jim. Aerocapture Guidance Algorithm Development and Testing [J].
    [79] Jits, R.Y.,Walberg, G.D. Blended control, predictor-corrector guidance algorithm: an enabling technology for Mars aerocapture [J]. Acta Astronautica, 2004, 54: 385-398
    [80] Mccarthy, D.D.,Petit, G. IERS Conventions [R]. IERS Technical Note No. 32, 2003
    [81] Vallado, D.A. Fundamentals of Astrodynamics and Applications [M]. Microcosm Press, 2001
    [82]中国航天工业总公司.航天产品常用坐标系[R]. QJ 1028A-95, 1995
    [83] Sellers, J.J., Astore, W.J., Giffen, R.B., et al. Understanding Space:An Introduction to Astronautics [M]. NewYork: McGraw-Hill, 2004
    [84]刘林.航天器轨道理论[M].北京:国防工业出版社, 2001
    [85]李济生.人造地球卫星精密轨道确定[M].北京:解放军出版社, 1995
    [86]周文艳,杨维廉.月球星历的计算方法及比较[J].航天器工程, 2002, 11(4): 22-28
    [87]胡小工,黄珹. DE200/LE200和DE245/LE245历表---差别及其对登月轨道的影响[J].中国科学院上海天文台年刊, 1996, 17: 162-168
    [88]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社, 1993
    [89] Vinh, N.X., Busemann, A.,Culp, R. D. Hypersonic and planetary entry flight mechanics [M]. Ann Arbor, MI: Univ. of Michigan Press, 1980
    [90]王海清译.阿波罗11号登月记[M].长春:吉林人民出版社, 1981
    [91]张进.空间交会远程导引变轨任务规划[D].长沙:国防科技大学, 2008
    [92] Park, C., Gong, Q., Ross, I.M., et al. Fuel-Optimal Design of Moon-Earth Trajectories Using Legendre Psedospectral Method [R]. AIAA 2008-7074, 2008
    [93]杨嘉墀.航天器轨道动力学与控制[M].北京:中国宇航出版社, 1995
    [94] Penzo, P.A. Computing Earth Orblateness Effects on Lunar and Interplanetry Trajectory [R]. AIAA 70-0097, 1970
    [95] Hong, P.E., Kent, P.D,Olson, D.W. Interplanetary Program to Optimize Simulated Trajectories(IPOST) Volume II-Analytic manual [R]. NASA Contractor Report 189653, 1992
    [96] Http://www.agi.com
    [97] Lewis, L.R.,Ross, I.M. A Pseudospectral Method for Real-Time Motion Planning and Obstacle Avoidance [R]. RTO-MP-AVT-146, 2007
    [98] Ross, I.M.,Gong, Q. Gauss-Free Trajectory Optimization [A]. In.AIAA/AAS Astrodynamics Specialist Conference and Exhibit [C]. Honolulu,Hawaii, 2008.
    [99] Abedelkhalik, O.,Mortari , D. N-impulse orbit transfer using genetic algorithms [J]. Journal of Spacecraft and Rockets, 2006, 44(2): 456-459
    [100] Kaya, Emre. Crew Exploration Vehicle Skip Entry Trajectory [D]. Air University, 2008
    [101] Huntington, G.T. Advanced and analysis of Gauss pseudospectral transcription [D]. Cambridge: Massachusetts: Massachusetts Institute of Technology, 2007
    [102] Tolin, J.W., Harpold, J.C.,Rogers, J.E. AS-503A/AS-504A Requiements for the RTCC:Reentry Phase [R]. NASA-TM-X-69753, 1967
    [103] Team, U.S. Manned Spacecraft Center Mission Evaluation. Apollo 11 Mission Report [R]. 1971
    [104] Putnam, Z.R., Broun, R.D.,Rohrschneider, R.R. Entry System Options for Human Return from the Moon and Mars [A]. In.AIAA Atmospheric Flight Mechanics Conference and Exhibit [C]. San Franscisco,Califoria, 2005.
    [105] Desai, P.N., Mitcheltree, R.A.,Cheatwood, F.M. Entry Dispersion Analysis for the Strdust Comet Sample Return Capsule [J]. Journal of Spacecraft and Rockets, 1999, 36(3): 463-469
    [106] Desai, P.N.,Cheatwood, F.M. Entry Dispersions Analysis for the Genesis Sample Return Capsule [R]. AAS 99-469, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700