体表势时空分析与测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脏电兴奋的传播是时间和空间的函数,无创地获得心电活动的时间和空间信息在心脏电生理研究中是极为重要的。体表标测作为一种用来反映心脏电活动时间和空间信息的心电记录技术,是无创诊断心脏疾病的重要依据。由体表电位推测心脏电活动的实质即求解逆问题,其中等效源模型的选择及其定解方法是关键。近年发展起来的表面Laplacian图技术,与体表电位图比较,更能反映心脏电兴奋的细节,因此,表面Laplacian的近似计算和直接测量的研究备受关注。
     本文鉴于目前心电研究领域的上述热点问题,作了以下几个方面的研究:
     基于心电发生的拓扑学模型用于逆问题定解的研究,提出将小波变换的奇异点检出特性用于心室除极临界时刻检出。通过对表征边沿特性的李氏指数的研究,确认了检出的微分心电信号奇异点与临界时刻之间存在对应关系,初步证明了该检测方法的有效性。提出了基于最大相关的临界点定位方法,对仿真体表势及其在各种噪声干扰情况下的临界点定位进行了研究,获得较高的定位准确度。
     通过对体表标测信号的各时间主成分与各导联信号之间的相关性及奇异值谱的累积能量百分数的分析,获得了合理保留主成分数量的依据,同时对空间主成分的研究印证上述结果;借鉴前人对体表标测导联冗余性的研究,提出了基于误差最小准则的多变量回归的优化导联选择方法。采用顺序前进法和顺序后退法相结合的增l减r法进行优化导联的搜索及结果的比对,总结了优化导联的分布规律,对优化导联选择具有指导意义。
     研究了不同观测电极数量及空间位置设置情况下,表面势的样条插值结果与解析计算结果之间的相对误差,并由此计算得到了表面Laplacian;还研究了观测值的不同噪声水平对样条插值结果的影响,得出了具有一定指导意义的结论。
     基于九点差分的表面Laplacian计算方法,设计了三极同心圆电极表面Laplacian传感器。理论分析表明:三极同心圆电极传感器的性能优于双极同心圆电极传感器。通过原理性实验与理论计算结果的比对验证了该方法的可行性。将所设计的有源传感电极用于人体实际测量,获得了实际的表面Laplacian心电信号;尝试用一种非线性自适应滤波器自适应地消除工频干扰,结合小波消噪技术将其他噪声进一步消除,获得了较高质量的表面Laplacian心电信号,为该技术的临床应用奠定了基础。
The cardiac activation spread is a spatial and temporal function. Non invasively obtained temporal and spatial information may be important in cardiac electrophysiology exploration. The body surface potential mapping (BSPM), as one of the advanced recording technique, played a significant role in the heart disease diagnosis. Solving the inverse problem is made that the body surface potentials are used to described the cardiac electrical activity. The inverse problem does not posses a unique solution. This difficulty is mitigated by properly selecting the equivalent sources and regularization. The recently developed body surface Laplacian mapping (BSLM) technique was found to provide better spatial resolution for localizing and imaging cardiac activity than BSPM. So it’s great attention that surface Laplacian be approximately calculated from surface potential or directly measured on the body.
     This paper mainly discussed the problems about non-invasively mapping cardiac electrical activity as follows.
     Based on the topological foundations of electrocardiology, the singularities of the first time derivative of body surface potential was detected by using wavelet transform. The singularity detect results are corresponding to the critical times of ventricular depolarization by estimating local Lipschitz exponents. The method that localized critical points with Maximal Correlation was presented. By simulating the propagating of ventricular depolarization, body surface potentials were calculated. Critical points were localized for simulating potentials and noisy potentials.
     The relativities of the temporal principal component of multichannel surface potentials and the cumulated energy percentage were analyzed by singular value decomposition (SVD). Spatial principal component analysis confirmed that result. By using the former researchers’study of the redundancy of the body surface mapping electrodes for reference, an optimal electrode selection method that based on multiple variable linear regression was presented. The performance of the algorithm was evaluated using spatial Root Mean Square (RMS). By combined serial forward search (SFS) and serial backward search (SBS), called Zl-Zr search, the optimal electrode sites were selected and the site distributing role was summarized.
     The analytical expression of the potential generated by arbitrarily located in the two layer concentric sphere was rededuced, and the body surface Laplacian were approximately calculated from potential by spline interpolation. The relative error of spline interpolation to analytical potential is calculated for different electrode numbers and locations. A tripolar concentric ring electrode sensor based on the nine-point difference was designed for surface Laplacian sensing. We found that the sensor has a much-improved accuracy with bipolar sensor in estimating the Laplacian operator. The experimental results are in agreement with the theoretical calculations suggesting the feasibility of measuring the surface Laplacian. We picked up the Laplacian ECG from healthy human body surface by the active tripolar sensor. A non-linear adaptive filter and walvelet denoising technique were used to eliminate power line and other interferences, and got the high quality Laplacian ECG signal. It lays the foundation for using such Laplacian ECG to assist in heart disease diagnosis.
引文
[1] http://bbs.fh21.com.cn/testnew/xl/xlcontent.php?id=3674&prev=kd&table=wenzhang
    [2] http://news.xinhuanet.com/health/2004-04/21/content_1431244.htm
    [3] http://news.xinhuanet.com/health/2003-09/26/content_1101054.htm
    [4] J Malmivuo, R Plonsey, Bioelectromagnetism -- Principles and Applications of Bioelectric and Biomagnetic Fields, New York, Oxford : Oxford University Press, 1995
    [5] Durrer D, Van Dam RT, Freud GE, et al, Total excitation of the isolated human heart, Circulation , 1970, 41 (6): 899-912
    [6] PC Stanley, TC Pilkington, The combination method A numerical technique for electrocardiographic calculations, IEEE Trans Biomed Eng, 1989, 36: 456-461.
    [7] Buist M.L., Pullan A.J., The effect of torso impedance on epicardial and body surface potentials: a modeling study, IEEE Trans Biomed Eng, 2003, 50(7): 816-824
    [8] Rosenfeld M, Tanami R, Abboud S, Numerical solution of the potential due to dipole sources in volume conductors with arbitrary geometry and conductivity. IEEE Trans Biomed Eng, 1996, 43: 679-689
    [9] Pullan A., A high-order coupled finite element/boundary element torso model. IEEE Trans Biomed Eng, 1996, 43: 292-298
    [10] Saleheen H I, Ng K T, New finite difference formulations for general inhomogenerous anistropic bioelectric problems, IEEE Trans Biomed Eng, 1997, 44:800-809
    [11] Ramesh M. Gulrajani, The forward problem of electrocardiography: from heart models to body surface potentials, Proceedings - 19th International Conference - IEEE/EMBS Oct. 30 - Nov. 2, 1997 Chicago, IL. USA,2604-2609
    [12] http://www.sci.utah.edu/cibc/
    [13] Mark Potse, Bruno Dubt, Ramesh M. Gulrajani, ECG Simulations with Realistic Human Membrane, Heart, and Torso Models, Proceedings of the 25th Annual Intemational Conference of the IEEE EMBS,Cancun, Mexico September 17-21, 2003, 70-73
    [14] http://www.ecgsim.org/
    [15] O. Skipa, D. Farina, C. Kaltwasser, et al, Fast interactive ECG simulation and optimization-based reconstruction of depolarization in the heart,www-ibt.etec.uni-karlsruhe.de/postscript/bmt04os.pdf
    [16] 夏灵, 叶学松, 霍梅梅, 基于动态心脏模型的体表心电图仿真研究, 中国生物医学工程学报,2006,25(3): 257-262
    [17] 彭虎,心电正问题仿真及其方法的研究,博士学位论文,中国科技大学,1997
    [18] D. Gabor, C. V. Nelson, Determination of the Resultant Dipole of the Heart from Measurements on the Body Surface, J. Appl. Phys.,1954, 25(4): 413-416
    [19] J. de Guise, Inverse Recovery of Two Moving Dipoles from Simulated Surface Potential Distributions on a Realistic Human Torso Model, IEEE Trans Biomed Eng, 1985, 32(2)
    [20] R. O. Martinet, Equivalent Cardiac Generator: Two Moving Dipoles and Moving Dipole and Quadripole, Ann Biom Eng, 1974, 2:164-182
    [21] Y. Okamoto, Moving Multiple Dipole Model for Cardiac Activity, Jpn Heart J, 1982, 23(3): 293-304
    [22] Purcell C J, Stroink G,Moving dipole inverse solutions using realistic torso models. IEEE Trans Biomed Eng , 1991, 38: 82-84
    [23] C. V. Nelson, B. C. Hodgkin, Determination of Magnitudes, Directions, and Locations of Two Independent Dipoles in a Circular Conducting Region from Boundary Potential Measurements, IEEE Trans Biomed Eng, 1981, 28(12)
    [24] D. B. Geselowitz, Multiple Representation for an Equivalent Cardiac Generator, Proc. IRE, 1960, 48:75-79
    [25] R.C. Barr, M. S. Spach, Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog, Circ. Res., 1978, 42: 661-675
    [26] Ilias Iakovidis, Ramesh M. Gulrajani, Improving Tikhonov regularization with linearly constrained optimization: Application to the inverse epicardial potential solution, Mathematical Biosciences, 1992, 112(1):55-80
    [27] C Owens, C Navarro, A McClelland, Improved detection of acute myocardial infarction using a diagnostic algorithm based on calculated epicardial potentials, International Journal of Cardiology, 2006,111(2): 292-301
    [28] Cuppen J., Van Oosterom A., Model studies with the inversely calculated isochrones of ventricular depolarization, IEEE Trans Biomed Eng, 1984, 31: 652–659
    [29] John E. Burnes, Bruno Taccardi, Philip R. Ershler, et al, Noninvasive electrocardiogram imaging of substrate and intramural ventricular tachycardia in infarcted hearts, Journal of the American College of Cardiology, 2001, 38(7): 2071-2078
    [30] Raja N. Ghanem, Ping Jia, Charulatha Ramanathan, Noninvasive Electrocardiographic Imaging (ECGI): Comparison to intraoperative mapping inpatients, Heart Rhythm, 2005, 2(4): 339-354
    [31] Waller AD., On the electromotive changes connected with the best of the mammalian heart and of the human heart in particular, Philos. Trans. R. Soc. London, Ser. B,1889, 180:169
    [32] Taccardi B., Distribution of heart potentials on the thoracic surface of normal human subjects, Circ. Res, 1963, 12: 341
    [33] 丁明石,李刚,体表标测心电电位图研究进展,中国医疗器械杂志,2002,26(1):48-53
    [34] F. Boudík, Z. Anger, J. Vojá ek,et al, Non-invasive detection of coronary artery narrowing by means of body surface potential mapping (BSPM),Atherosclerosis, 1997, 134( 1-2): 269
    [35] Lawrence M. Title, Sian E. Iles, Martin J. Gardner, et al, Quantitative assessment of myocardial ischemia by electrocardiographic and scintigraphic imaging, Journal of Electrocardiology, 2003, 36(suppl 1): 17-26
    [36] Carlos Alberto Pastore, Nancy Tobias, Nelson Samesima, et al, Body surface potential mapping investigating the ventricular activation patterns in the cardiac resynchronization of patients with left bundle-branch block and heart failure, Journal of Electrocardiology, 2006, 39(1): 93-102
    [37] Robert S. MacLeod, Robert L. Lux, Marc S. Fuller, et al. Evaluation of novel measurement methods for detecting heterogeneous repolarization. Journal of Electrocardiology, 1996, 29( Supp 1): 145-153
    [38] Dana H. Brooks, Robert S. MacLeod, Ramdas V. Chary, Temporal and spatial analysis of potential maps via multiresolution decompositions, Journal of Electrocardiology, 1996, 29( Suppt 1): 114-124
    [39] M P. Donnelly, C D. Nugent, D D. Finlay, Optimisation of Neural Network Training through Pre-Establishment of Synaptic Weights applied to Body Surface Mapping Classification. Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05) , 23-24 June 2005: 303 - 308
    [40] Raul Llinares, Jorge Igual, Jose Millet, Independent Component Analysis of Body Surface Potential Mapping Recordings with Atrial Fibrillation. 2006 International Joint Conference on Neural Networks, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, July 16-21, 2006: 2287-2294
    [41] Yajima K , Kinoshita S ,Tanaka H ,et al, Body surface potential mapping system equipped with a microprocessor for the dynamic observation of potential patterns, Med Biol Eng Comput, 1983, 21: 83
    [42] Lux RL, Smith R, Abildskov J., Limited lead system selection for estimating body surface potentials in electrocardiography. IEEE Trans Biomed Eng, 1978, 25: 270
    [43] http://biomed.tkk.fi/OLD/annual/95/node40.html
    [44] R. C. Barr, M. S. Spach and G. S. Herman-Giddens, Selection of the number and positions of measuring locations for electrocardiography, IEEE Trans Biomed Eng, 1971, 18:125
    [45] D. M. Monro, R. Guardo, P. Bourdillou, A Fourier technique for simultaneous electrocardiographic surface mapping, Cardiovasc. Research, 1974, 8(5): 688
    [46] F. Kornreich, T. J. Montague, P. M. Rautaharju, et al, Multigroup diagnosis of body surface potential maps, J of Electrocardiology, 22(Suppl):169-178
    [47] Kornreich F , Montage T J, Rautaharju P M, et al. Identification of best electrocardiographic leads for diagnosing anterior and inferior infarction by statistical analysis of body surface potential maps, Am J Cardiol, 1986, 86 -II:863
    [48] Kornreich F, Kavadias M, Montage TJ, et al, Selection of optimal electrocardiographic leads from body surface potential maps for the diagnosis of left ventricular hypertrophy. In Abel H(ed), Electrocardiology ' 88. Amsterdam: Exerpta Medica, 1989
    [49] Kornreich F , Montage TJ, Kavadias M , et al, Qualitative and quantitative analysis of characteristic body surface potential map features in anterior and inferior myocardial infarction, Am J Cardiol , 1987, 60 :1230
    [50] D?ssel F. Schneider, M. Müller, et al, Optimization of electrode positions for multichannel electrocardiography with pespect to electrical imaging of the heart, Proceedings of the 20th Annual International Conference of the IEEE Engineering and Biology Society, 1998, 20(1): 71-74
    [51] Dewar D Finlay, Chris D Nugent1, Mark P Donnelly, et al, Selection of optimal recording sites for limited lead body surface potential mapping: A sequential selection based approach , BMC Medical Informatics and Decision Making, 2006, 6:9
    [52] B. Hjorth, An on-line transformation of EEG scalp potential fields generated into orthogonal source derivations, Electroencepth. Clin. Neurophysiol., 1975, 39: 526-530
    [53] S.K. Law, P.L. Nunez, R.S. Wijesinhe, High-resolution EEG using spline generated surface laplacians on spherical and ellipsoidal surfaces, IEEE Trans Biomed Eng, 1993, 40(2):145-153
    [54] A.G. Kléber, J. Tanse, F.J.L. van Capelle, et al, Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determinated by extracellular and intracellular recordings, Circ. Res., 1978, 42: 603-613
    [55] A. Heringa, A.van Oosterom, Processing electrocardiographic body surface potential data, In World Congress on Medical and Biomedical Engineering. G?ttingen, Germany: Kinzell, 1982, 8-11
    [56] He B., Cohen R.J., Body surface laplacian ECG mapping, IEEE Trans Biomed Eng, 1992, 39:1179-1191
    [57] He B., Cohen R.J., Body surface laplacian ECG mapping of cardiac electrical activity, Am. J. Cardiol., 1992, 70:1617-1620
    [58] He B., Principles and applications of Laplacian electrocardiogram, IEEE Eng. Med. Biol. Mag., 1997, 16:133-138
    [59] T. F. Oostendorp, A. van Oosterom., The Surface Laplacian of the Potential: Theory and Application, IEEE Trans Biomed Eng, 1996, 43(4): 394-405
    [60] Wei D., Laplacian electrocardiograms simulated using realistically shaped heart-torso model during normal and abnormal ventricular depolarization, Electromagnetics, 2001, 21:593-605
    [61] Besio W. G., Lu, C. C., Tarjan P. P., A feasibility study for body surface cardiac propagation maps of humans from Laplacian moments of activation. Electromagnetics, 2001, 21:621-632
    [62] He B., Wu D., A bioelectric inverse imaging technique based on surface Laplacians, IEEE Trans Biomed Eng , 1997, 44:529-538
    [63] Johnston P. R., The laplacian inverse problem of electrocardiography: an eccentric spheres study, IEEE Trans Biomed Eng, 1997, 44: 539-548
    [64] Throne R.D., Olson L.G., Fusion of body surface Laplacian signals for electrocardiographic imaging, IEEE Trans Biomed Eng, 2000, 47:452-462
    [65] Dongsheng Wu, Ho Chie Tsai, Bin He, On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation, Annals of Biomedical Engineering, 1999, 27: 731–745
    [66] David E. Leeman, Samuel J. Shubrooks, Kevin S. Librett, et al, Surface Laplacian ECG maps provide a sensitive and localizing measure of cardiac ischemia, Journal of the American College of Cardiology, 1995, 25( 2, Suppl 1), February, 215A
    [67] A. J. Pullan, L. K. Cheng, M. P. Nash, et al, Noninvasive Electrical Imaging of the Heart: Theory and Model Development, Annals of Biomedical Engineering, 2001, 29: 817–836
    [68] Andrew Pullan, David Paterson, Fred Greensite, Non-invasive imaging of cardiac electrophysiology, Phi. Trans. R. Soc. Lond. A. 2001, 359:1277-1286
    [69] D B Geselowitz, W T Miller, A bidomain model for anisotropic cardiac muscle, Ann. Biomed. Eng., 1983, 11:191-206
    [70] R Plonsey, R C Barr, Current flow patterns in two-dimensional anositropic bisyncytia with normal and extreme conductivities, Biophys. J., 1984, 45: 557 -571
    [71] R. D. Throne, L. G. Olson, Fusion of Body Surface Potential and Body Surface Laplacian Signals For Electrocardiographic Imaging, IEEE Trans Biomed Eng, 2000, 47(4): 452-462
    [72] Rok Hren, Localization of intramural necrotic regions using electrocardiographic imaging, Journal of Electrocardiology, 1999, 32(Suppl.1): 140-149
    [73] Oostendorp T, Nenonen J, Korhonen P, Noninvasive determination of the activation sequence of the heart: application to patients with previous myocardial infarctions, J Electrocardiol, 2002, 35(Suppl):75-80
    [74] Tilg B, Hanser F, Modre-Osprian R, Clinical ECG mapping and imaging of cardiac electrical excitation, J Electrocardiol, 2002, 35(Suppl):81-87
    [75] Navarro C, Owens C, Riddell J, The use of calculated epicardial potentials improves significantly the sensitivity of a diagnostic algorithm in the detection of acute myocardial infarction, J Electrocardiol, 2003, 36(Suppl):127-132
    [76] Anselma Intini, Robert N. Goldstein, Ping Jia, Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete, Heart Rhythm, 2005, 2(11):1250-1252
    [77] Per Christian Hansen, Regularization tools – A matlab package for Ananlysis and solution of discrete Ill-posed Problems, http://www.imm.dtu.dk/~pch
    [78] Hansen P. C., Analysis of discrete ill-posed problems by means of the l-curve, SIAM Review , 1992, 34(4), 560–580
    [79] Messinger-Rapport B. J., Rudy, Y., Regularization of the inverse problem of electrocardiology: A model study, Math. Biosci., 1988, 89: 79–118
    [80] Brooks D. H., Ahmad G. F., MacLeod R. S., et al, Inverse electrocardiography by simultaneous imposition of multiple constraints, IEEE Trans Biomed Eng,1999, 46(1):3–18
    [81] F. Greensite, G. Huiskamp, An improved method for estimating epicardial potentials from the body surface, IEEE Trans Biomed Eng, 1998, 45: 98–104
    [82] Huiskamp G., Greensite F. , A new method for myocardial activation imaging, IEEE Trans Biomed Eng ,1997, 44: 433–446
    [83] F. Greensite, Topological foundations of electrocardiology, Advances in applied mathematics, 1985, 6: 230-258
    [84] F. Greensite, A New Method for Regularization of the Inverse Problem of Electrocardiography, Math. Biosci., 1992, 111: 1321-1354
    [85] Christopher R. Wyndham et al. Epicardial Activation of the Intact Human Heart Without Conduction Defect, Circulation, 1979, 59(1): 161-168
    [86] F. Greensite, Demonstration of “Discontinuities” in the Time Derivatives of Body Surface Potentials, and Their Prospective Role in Noninvasive Imaging of the Ventricular Surface Activation Map, IEEE Trans Biomed Eng, 1993, 40(12):1210-1218
    [87] G. Huiskamp, F. Greensite, A New Method for Myocardial Activation Imaging, IEEE Trans Biomed Eng, 1997, 44(6): 433-446
    [88] F. Greensite, The Temporal Prior in Bioelectromagnetic Source ImagingProblems, IEEE Trans Biomed Eng, 2003, 50(10): 1152-1159
    [89] 王则柯,凌志英,拓扑理论及其应用,国防工业出版社, 1991
    [90] http://www.ecgsim.org/download.html
    [91] A. van Oosterom, T.F. Oostendorp, ecgsim: an interactive tool for studying the genesis of qrst waveforms, www.cvrti.utah.edu/~macleod/bioen/be6460/papers/ ecgsim–paper.pdf
    [92] S. Mallat, W L Hwang, Singularity detection and processing with wavelets, IEEE Trans IT, 38(2): 617-643
    [93] Yamazaki T., Van Dijk B.W., Spekreijse H., The accuracy of localizing equivalent dipoles and the spatio-temporal correlations of background EEG, IEEE Trans Biomed Eng, 1998, 45(9): 1114 - 1121
    [94] Jun Yao and Julius P.A. Dewald, Evaluation of different cortical source localization methods using simulated and experimental EEG data, Neuroimage, 2005, 25:369– 382
    [95] 马西奎,电磁场理论及应用,西安:西安交通大学出版社,2000
    [96] 符影杰,心电场仿真研究,博士学位论文,浙江大学,1990
    [97] Giorgio Arisiet,Potential fields on the Ventricular Surface of the Exposed Dog Heart during Normal Excitation, Circ. Res. 1983,52(6): 706-715
    [98] http://software.sci.utah.edu/cgi-bin/archive_entry.pl?arch=ncrrdata&soft=biopse
    [99] http://www.sci.utah.edu/cibc/software/map3d.html
    [100] 杨福生,吕扬生,生物医学信号的处理与识别,天津:天津科技翻译出版公司,1997
    [101] 边肇祺,模式识别,北京:清华大学出版社,2000 年 1 月
    [102] 陆璇,葛余博,赵衡秀等译,实用多元统计分析(第四版),北京:清华大学出版社,2001
    [103] B. He, Theory and applications of body surface Laplacian mapping, IEEE engineering in medicine and biology, 1998, 102-109
    [104] He B., Cohen R.J., Body surface Laplacian ECG mapping, IEEE Trans Biomed Eng, 1992, 39: 1179-1191
    [105] He B., Principles and applications of Laplacian electrocardiogram, IEEE Eng. Med. Biol. Mag., 1997, 16:133-138
    [106] H. Tsai, H. Ceccoli, B. Avitall, et al, Clinical application of body surface Laplacian mapping in diagnosis of myocardial infarction, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998, 20(1): 48-50
    [107] Wang Kongming, Begleiter H, Local polynomial estimate of surface Laplacian , Brain topography, 1999, 12(1): 19-29
    [108] Yao Dezhong, High-resolution EEG mapping: a radial-basis function based approach to the scalp Laplacian estimate, Clinical Neurophysiology, 2002,113(6): 956-967
    [109] Ken Umetani, Yosiwo Okamoto, Saburo Mashima, et al, Body surface laplacian maps for patients with left or right ventricular bundle branch block, Proceedings—19th International conference—IEEE/EMBS Oct. 30- Nov. 2. 1997 Chicago, IL. USA, 121-124
    [110] H. Tsai, H. Ceccoli, B. Avitall, K. Ono, et al, Clinical application of body surface laplacian mapping in diagnosis of myocardial infarction, Proceedings of 20th Annual international conference of the IEEE Engineering in Medicine and Biology Society, 1998, 20(1):48-50
    [111] Perrin F., O. Bertrand, J. Pernier, Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed Eng, 1987, 34(4): 283-288
    [112] Perrin F., J. Pernier, O. Bertrand, et al, Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 1989, 72: 184-187
    [113] Srinivasan R., P. L. Nunez, D. M. Tucker, et al, Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials, Brain Topography, 1996, 8(4): 355-366
    [114] F. Babiloni, C. Babiloni, F. Carducci, et al, Spline Laplacian estimate of EEG potential over a realistic magnetic resonance-constructed scalp surface model . Electroencephalography and clinical Neurophysiology, 1996, 98: 363-373
    [115] Bin He,Jie Lian, Guanglin Li, High-resolution EEG: a new realistic geometry spline Laplacian, Clinical Neurophysiology, 2001, 112: 845-852
    [116] Bin He, Guanglin Li, Jie Lian, A Spline Laplacian ECG Estimator in a Realistic Geometry Volume Conductor, IEEE Trans Biomed Eng, 2002, 49(2): 110-117
    [117] Yehuda Salu, Leonardo G. Cohen, Douglas Rose, et al, An improved method for localizing electric brain dipoles, IEEE Trans Biomed Eng, 1990, 37(7): 699-705
    [118] V. E. Agapov, Numerical solution of the forward problem in Electroencephalography, Phd Dissatation, University of Alberta, 2002
    [119] Thomas Ferree and Ramesh Srinivasan, Theory and Calculation of the Scalp Surface Laplacian, Technical Note, Electrical Geodesics, Inc., 2000
    [120] http://faculty.washington.edu/chudler/1020.html
    [121] http://psychophysiology.cpmc.columbia.edu
    [122] Tarjan P.P., Harris D., Tarjan J., et al, Optimal Electrode position for the bipolar atrial pair on a single-pass atrio-ventricular permanent pacing lead, NASPE Convention, Boston,1987
    [123] Rasquinha L., Kaufer M., Sherry N., et al, Rejection of far-field activity by tripole electrodes, IEEE Proc. of the 12th Southern BME Conference, April 2-4,1993: 4
    [124] Rasquinha L., Kaufer M., Sherry N., et al, Arrhythmia detection with spatially differentiating epicardial sensor: signal processing, IEEE Proc. of the 12th Southern BME Conference, April 2-4,1993: 7-9
    [125] Lu Chih-Cheng, Feng W.Y., Tarjan P. P., Laplacian Electrocardiograms with Active Electrodes for Arrhythmia Detection. Proceedings—19th International Conference- IEEE/EMBS Oct. 30-Nov. 2 ,1997, Chicago,IL USA ,363-366
    [126] Walter G. Besio1, Asha K Kota,Laplacian ECG Moment Of Activation Detection Algorithm During Pacing , Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA ? September 1-5, 2004:948-951
    [127] Kunsoo Shin, Hyun Tae Hwang, Youn Ho Kim, et al, WHAM: A novel, wearable heart activity monitor based on Laplacian potential mapping, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, September 1-4, 2005
    [128] Gin-Shin Chen, Chih-Wei Chen, Ming-Shaung Ju, Portable Active Surface Laplacian EEG Sensor for Real-Time Mu Rhythms Detection, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, September 1-4, 2005
    [129] 史万明,杨骅飞, 吴裕树, 数值分析,北京:北京理工大学出版社,2002
    [130] 曹玉珍,靳世久,李刚等 ,三极同心电极表面 Laplacian 近似理论极其误差分析, 天津大学学报,2006,39(3):360-364
    [131] Peter R. Johnston, David Kilpatrick, An asymptotic estimate for the effective radius of a concentric bipolar electrode, Mathematical Biosciences, 1999, 161:65-82
    [132] 曹玉珍,靳世久,李刚等,体表势表面 Laplacian 的三电极传感方法实现及其实验研究,中国生物医学工程学报,2006,25(1):124-128
    [133] E M Spinelli, R Pallàs-Areny, M A Mayosky, AC-Coupled Front-End for Biopotential Measurements, IEEE Trans Biomed Eng, 2003, 50(3): 391-395
    [134] 李刚,林凌,新型的高性能生物电放大器,电子产品世界,2002,11: 52-53
    [135] A.K. Ziarani, A. Konrad, A method of extraction of nonstationary sinusoids, Signal Processing 84, 2004, 1323–1346
    [136] Donoho D. L. De-Noising by soft-thresholding, IEEE Trans on Information theory, 1995, 41(3): 613 – 627
    [137] 翟义然, 参考电极无关技术研究,博士学位论文,电子科技大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700