基于广义预测控制的辗环机控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预测控制是20世纪70年代中后期在欧美工业领域出现的,它是在新型计算机控制算法基础上发展起来的,是一种基于模型的先进控制技术。Clarke等人于1984年提出了基于模型的广义预测控制(GPC)。它是以受控自回归积分滑动平均模型(CARIMA)为基础,在优化中引入了多步预测的思想,抗负载扰动、随机噪声、时延变化等能力显著提高,并结合辨识和自校正机制,表现出良好的鲁棒性。因此近年来受到学术和工程界的广泛注意和重视,并已有工业应用成果。本文参考大量国内外文献,针对辗环机系统模型做了仿真研究,实现辗环机加工的不可逆过程控制无超调。
     首先,对辗环机的工作原理进行阐述,目前国内外采用的控制算法还停留在经验算法的水平上,引出生产工艺的不可逆过程问题。介绍应天津天海精锻厂要求设计的D51-250型辗环机控制系统的设计。
     其次,对辗环机控制系统进行系统建模,本文改进得到一个较精确,便于实现的系统模型,以便进行仿真研究,和工业实现。
     然后,就解决上述问题,借鉴国内外先进科研成果,总结一种能够有效抑制超调的算法,并比传统的经验算法速度快,而且继承了广义预测控制优点:
     1.抗负载扰动、随机噪声、时延变化等能力显著。
     2.结合辨识和自校正机制,表现出良好的鲁棒性。
     本文在介绍辗环机的特殊性基础上,将辗环机系统模型与广义预测控制的抑制超调算法综合到一起,对不可逆过程的控制进行了系统的研究。通过引入广义预测控制的抑制超调算法,实现了不可逆过程的精确控制。在理论上给予了充分的证明,而且通过仿真实验进一步。仿真结果表明了本文所提策略的有效性,不仅有效抑制了超调,而且比经验算法响应速度快,满足了用户对辗环机精度和生产效率的需求。为其应用于工业现场控制奠定了基础。仿真实验的后续工作将是在辗环机设备上进行实验。由于时间紧迫、条件有限,未能在辗环机设备上进行实验,是本文工作的一大缺憾。
Predictive Control was born in the late 1970s in Europe and the United States in the field of industry, which is developed on the control of a computer algorithm, is a model based on the advanced control technology. With the research and development of adaptive control algorithm, and the development and application of the impulse response to the step response for the non-parametric model predictive control algorithm, Clarke and others raised the generalized model predictive control ( GPC) in 1984 which is based on controlled autoregressive moving average model of integration(CARIMA), and it used the method of multi-step forecast, the capability of anti-load disturbance, random noise, delay variation was significantly increased. And combining literacy and self-correction mechanism, it has a good performance of robustness. So it is widely taken attention by the academic and engineering in recent years, and has applied in industry. In this paper, we read a large number of literature reference about Rolling Machine, and had a simulation about the model, we make an effort to resolve the irreversible process issue and the realization of control without overshoot.
     The paper introduces D51-250 ring-rolling machine control system designing, and introduces the principle of Rolling Machine, the control algorithm remain used the algorithm of experience on the current domestic and international, even though it can achieve a certain degree of processing requirements, but in terms of advanced degrees, but also it can not reach a higher extent. Because the Rolling Machine is a nonlinear system, delayed, the time-varying characteristics of complex systems, the establishment of model is very complicated, it not only need to do a lot of experiments and calculation, but also it need have a strong theoretical foundation of nonlinear system modeling. The process of Rolling Machine needs non-overshoot, because its processing is a irreversible process. In the production process of irreversible, it is not permitted overshoot in the work-piece machining, because these processes is different from the process of temperature adjusting, the temperature adjusting allows the temperature is above or below the set value, but in certain process, if the actual value is more than the set value then it will be impossible to return, such as Rolling Ring calls for the outer diameter of D, but the processing gets to the D`> D, then the outer diameter of the work-piece can no longer meet the requirements of diameter D, it is only greater than the set value. And this is an irreversible process. Irreversible process widely exists in forging process, such as coiling machine and paper machine process.
     Secondly, we build a system modeling for the Rolling Machine Control System. Because of the special nature of the Rolling Machine system, it is very difficult to build, but if the accuracy of the algorithm use a kind of model is not very high, and to building a system of the model which contain the basic feature of the model is feasible, thus, some of the factor does not affect the system, we build a Rolling Machine model which neglected the factor. The model is based on adopted analytical method and system identification method combination of methods. Rolling Machine System model, taking into account the whole process of the major factors, can reflect a more complete about the matter of fact; can be used to design Rolling Machine open loop control system, optimal control system, adaptive control system, predictive control systems.
     Then, to solve the above problems, learn from the advanced research at domestic and abroad, we summed up a algorithm which can effectively inhibit overshoot, and the algorithm has much faster speed than the traditional experience algorithm, and has the GPC advantages:
     1) Anti-load disturbance, random noise and delayed variation was significantly improved;
     2) Combining literacy and self-correction mechanism, good performance robustness.
     The main approach is to use the model derived j step, then output the optimal value of y ( k + j), in the moment of k can get the compensation value for time t of the moment of k +1 by calculation, that is to say, to use the changed trend of incremental control to amend the variable which get from the Optimal control of open-loop control. Then we get the expression u(k+1) in the moment of k, we used the changed trend to amend the control incremental. This will be more precise tracking, and it played a very prominent role in inhibiting the overshoot.
     The whole system of Rolling Machine is a complex system, it’s nonlinear, time-delay, and has many other characteristics, it needs a large number of experimental and calculated to build an accurate system model, and this system is a highly nonlinear systems, which requires strong nonlinear theory of knowledge. And the characteristics of predictive control is through a multi-step prediction, rolling optimization and feedback correction to achieve control strategy that will improve the object delay and order Robust , in other words, the Rolling Machine System does not require model has high precision, and it can achieve better control performance. So it can reasonably neglect many restrictive conditions for complex systems of Rolling Machine System modeling, and a simple interpretations of the model is established, which is by generalized predictive control to achieve control requirements and the no overshoot. Comparing with the original control method, it greatly improved the speed and accuracy of processing.
     This paper introduces the special nature of the Rolling Machine system, it integrated Rolling Machine and overshoot suppression algorithm of Generalized System Model predictive control together, and have researched the irreversible process of the control system. By citing overshoot suppression algorithm of GPC, it achieves precise control in irreversible process. This paper gave full proof not only in theory, but also has done a lot of simulations. The simulation results show the effectiveness of this strategy. And its industrial application laid the foundation for control of the scene. The simulation result and the Rolling Machine has been molding can prove that the strategy is feasible.
引文
[1] 左治江,华林.环件冷辗扩技术在新时期的发展[J].锻压技术,2005,(4):101-106
    [2] 李超,华林.精密冷辗扩机的现状和发展.机械制造 2006,(6):46-48
    [3] Clarke D W,Mohtadi,C..and Tuffs,P.S..Generalized predictive control.Part 1 and part 2 Basic Algorithm..Automatica,l987,23(2):137-162
    [4] D. W. Clarke, C. Mohtadi, P. S. Tuff. Generalized Predictive Control-part2: The Extensions and Interpretations. Automatica, 1987, 23(2): 149-160
    [5] Clarke D W,Mohtadi, C. .Properties of Generalized predictive control. Automatic. l989,25(6):859-875
    [6] Mamalis A C, Johnson W, Hawkyard J B. Ring Rolling: Literature Review and Some Recent Experiment Result. Metallurga and Metal Forming, 1976:132-140
    [7] Johnson W, Mamalis A C Rolling of Rings. International Metals Reviews, 1979(4): 137-148
    [8] 李春天,黄欣.环件轧制技术及其在国内的应用.锻压装备与制造技术.2004(5):8-13
    [9] 华林,黄兴高,朱春东.环件轧制理论和技术.北京:机械工业出版社,2001.6-218
    [10]华林,赵仲治.环件辗扩成形及其在汽车工业中应用.汽车工程,1993. 15(4): 250-256
    [11]华林,赵仲治,张猛.后桥从动伞齿轮锻件辗扩毛坯设计.汽车工艺,1991. (1): 11-13
    [12]Eruo E, Shivpuri R. A Summary of Ring Rolling Technology, Recent Trends in Machines, Process and Production Lines . Int J Mach. Tools Manfufact, 1992, 32(3): 399-413
    [13]赵志业.金属塑性变形与轧制理论.北京:冶金工业出版社,1982.163 -198
    [14]Hua Lin, Mei xue-song , Wu Xu-tang. Vibration and control in ring rolling process Trans. Nonferrous Met. Soc.China,1999, 9(2):213-217
    [15]Urban De Souda , Suhas Vaze , Zach Pursell , Ken Phillips. Profile ring rolling. Advanced Material and Processes,2003,(3):35-37
    [16] 范宏才, 现代锻压机械. 机械工业出版社. 1994, (3): TG315/F09
    [17] 李斌,国内外冷辗环机特点分析. 锻压机械.1997,(2):8-9
    [18] 史宏江,毛华杰,袁乐健,华林,冷辗扩技术在新时期的发展.机械制造.2004(10):23-25
    [19] 胡军,胡大帮,芮丰,精密冷辗机电液伺服系统研究.流体传动与控制.2005(5):9-11
    [20] 郝用兴,辗环机进给系统模型的建立.华北水利电学院学报.1995(9):61-82
    [21]袁著祉,递推广义预测自校正控制器,自动化学报,15(4):348351,1989
    [22]徐立鸿,袁震东,ARMAX 模型的递推广义预测控制算法,控制理论与应用,7(3):102107, 1990
    [23]Peng L, Fisher G and Shah S L, Tuning Generalized Predictive Control Using a Pole-placement Criterion, Proc. American Control Conference, 23912395,1992
    [24]Visser H R, Verbruggen H B, Bosch P P J and Soeterboek A R M, Unified Predictive Pole-placement Controller: an Integrated Approach, Control and Computer , 17(3):7174, 1989
    [25]Irving E, Falinower C M and Fonte C. Adaptive Generalized Predictive Control with Multiple Reference Model, 2nd IFAC Workshop on Adaptive Systems in Control and Signal Processing, Lund, 1986
    [26]孙茂相等,广义预测极点配置前馈控制的一种算法,信息与控制,21(6): 338342,1992
    [27]孙峻,徐德民,一种抑制超调的快速跟踪预测控制算法,工业仪表与自动化装置.2002(3):64-66
    [28]Gorez R, Wertz V and Zhu K Y, On a Generalized Predictive Control Algorithm, System & Control Letters, 9:369377, 1987
    [29]Koh E K,Generalized Pole-placement for Systems Requiring Fast Sampling, Proc. American Control Conference, 713714, 1992
    [30]Richer N L, Model Predictive Control with State Estimation, Ind. Eng. Chem.Res . 29(3):374382, 1990
    [31]Balchen J G, L jungquist D and Strand S, State-Space Predictive Control, Chem.Eng. Sci. 47(4):787807, 1992
    [32]Kwon W H, Advances in Predictive Control; Theory and Application, Asian Control Conference. 1994
    [33]WANG Zhe , WANG Guodong , LIU Xianghua , et al . Applications of self-adaptivestrip shape control for UC mill based on neural network prediction model/ / Proc of 7th Inter. Conf . on Steel Rolling[C] . Tokyo Japan , 1998
    [34]Bemporad A , Garulli A. Output feedback predictive control of constrained linear systems viaset membership state estimation [J ]. Int J Contr, 2000, 73(8) : 655266
    [35]林国重,盛东初,液压传动与控制,北京工业出版社,1986,23-59
    [36]Zamarreno J M , Vega P. Neural predictive control: Application to a highly nonlinear system [A ]. Proc13th IFACWorld Cong[C]. San Francisco, 1996 . 19224
    [37]Buescher K L , Baum C C. A two timescale approach to nonlinearmodel predictive control[A ]. Proc Amer Contr Conf [C ]. Seatle, 1995. 225022256
    [38]慈宇红,杨华,李英辉,输入平稳的快速无超调预测控制算法.控制工程.2006(9):407-412
    [39]Daoping Huan, A. R. vanCauwenberghe. Neural network based Multiple Feedback Long-range Predictive control neural-computing, 18(1998):127-130
    [40]席裕庚.预测控制.北京:国防土业出版社,1993:1-12
    [41]Chen H, Allgower F. Nonlinear model predictive control schemeswith guaranteed stability. Nonlinear Model Based Process Control [M]. Kluwer Academic Publishers, Netherlands: 1998. 4652494
    [42]陈虹、刘志远、解小华,非线性模型预测控制的现状与问题,控制与决策,2001,16 (4):385-391
    [43]隋美青,王正欧.基于神经网络的多变量发酵过程自适应控制.信息与控制,2002, 31(4) : 371-374.
    [44]陈增强,袁著扯.基于神经网络的非线性系统间接自校正预测控制器.南开大学学报(自然科学版),1999, 32 (3)53:-57
    [45]史旭华.神经网络自适应广义预测解耦控制器的设计.系统仿真学报,2005, 17 (1) : 178-180.
    [46]孙明玮,陈增强,袁著祉,典型工业过程的无超调预测控制设计,控制与决策,2000 15(3):213-216
    [47]李奇,李世华,一类神经网络智能 PID 控制算法的分析与改进,控制与决策,1998, 13 (4):312-316
    [48]李翔,陈增强,袁著祉.基于 T-S 模型的模糊神经网络的广义预测控制.Proceedingsof the 3rd world congress on intelligent control and automation, 2000: 885-889
    [49]Lee K L, Billings S. A. A new direct approach of computing multi-step ahead predictions for non-linear models.Int J Control, 2003, 76(8):810-822
    [50]Cominos P, Munro N. PID controllers: recent tuning methods and design to specification.IEE Proc. -Control Theory Appl, 2002, 149 (1); 46-53
    [51]Keel L H, Rego J I, Bhatacharyya S P. A new approach to digital PID controller design on Automatica. Contr, IEEE Trans. 2003, 48 (4) : 687-692
    [52]张广莹,邓正隆,林玉荣,一类基于神经网络的非线性模型预测控制.系统仿真学报,15 (2) , 2003 : 275-277, 293
    [53]杨平,彭道平,韩璞,于希宁.神经网络预测控制算法及其应用控制工程,10 (4) , 2003 : 349-351
    [54]苏成利,李平,一类非线性系统的神经网络预测控制.自动化技术与应用,22 (4) , 2003 : 5-7
    [55]陈博,钱锋,刘漫丹,一种基于 BP 网络的预测控制算法及其应用.华东理工大学学报,29 (4) , 2003 : 400-404
    [56]陆军,李殿璞,华克强,CMAC 神经网络在非线性预测控制中的应用.自动化与仪器仪表,2, 2001: 5-7
    [57]郭丹,李平,曹江涛.基于 Elman 网络的非线性系统神经元自适应预测控制.计算机仿真,20 (8) , 2003 : 55-60
    [58] 薛福珍,柏洁.基于先验知识和神经网络的非线性建模与预测控制.系统仿真学报,16(5),2004:1057-1063
    [59]Jie Zhang,A. Julian Morris. Recurrent Neural-Fuzzy Networks for Nonlinear Process Modeling. IEEE Trans. On Neural Networks , Vol. 10 , No.2, 1999.3:313-326
    [60]朱全民.非线性系统辨识.控制理论与应用.1994 (6): 641-652
    [61]李秀英,韩志刚.非线性系统辨识方法的新进展.自动化技术与应用.2004 (10):5-7
    [62]S.A.Billings.Identification of Nonlinear System Survey . Proc[J). IEE. 1980, 127 (6) :272-285
    [63]Titterington,D. M. and Kitsos C P .Recent Advances in Nonlinear Experimental Design [J]. Technometrics ,1989,(31) :49-60
    [64]S. A. Billings, J. O. Gray. Nonlinear System Design .London, UK, Peter Peregrim Ltd .1984
    [65]Anders Stenman , Fredrek Gustafasson and Lennart L jung . Just in time models fordynamical systems.35th IEEE Conference on Decision and Control,1996, I 115- I I20
    [66]Qiubao Zheng and Hidenori Kimura. Just-in-time modeling dor function prediction and its applications.3rd Asion Control Conference, 2000, 1816-1821
    [67]舒迪前,预测控制系统及其应用,机械工业出版社,1996,176-188
    [68]J-J.E 斯洛廷,李卫平著,蔡自光,罗公亮,桂卫平等译,饶立昌,孙增析校,应用非线性控制,国际工业出版社,1992,1-6
    [69]王伟,广义预测控制理论及其应用,科学出版社,1998,10-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700