橡胶纳米增强机理及新型增强导热复合材料的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶因其特有的高弹性,常被用作制备动态条件下使用的制品。由于橡胶是热的不良导体,动态条件下产生的大量生热无法及时导出,热量积聚产生的高温对橡胶制品的性能以及使用寿命有巨大损害。本文首先在炭黑填充丁苯体系的研究中首次发现了橡胶增强中的逾渗现象,深入探讨了橡胶复合材料纳米增强的机理及影响因素;然后从增强导热角度出发,提出了解决橡胶制品动态生热问题的新思路。根据纳米增强机理,选用纳米级导热填料如纳米氧化锌、纳米氧化铝等制备了新型增强导热橡胶复合材料,对其结构与性能进行了系统研究,并与传统增强填料填充体系进行了横向比较。
     在论文的第一部分中,通过研究不同粒径的炭黑补强丁苯橡胶体系中炭黑用量对丁苯橡胶复合材料拉伸强度的影响,首次发现并提出了橡胶增强中存在着类似于橡胶增韧塑料的逾渗行为,而在纳米氧化锌填充三元乙丙橡胶体系中也发现了相同的现象,且与橡胶复合材料中的模量逾渗以及导电逾渗的逾渗阈值明显不同。进一步的研究发现,这种效应来源于纳米填料增强橡胶的机理,纳米增强剂粒子在拉伸过程中诱导产生橡胶分子链的平行伸直链结构可能是其对橡胶产生显著增强的主要原因。采用FT-IR和分子模拟等方法对拉伸过程中橡胶分子链取向进行表征,结果发现纳米粒子的加入明显提高了分子链取向程度。通过均匀分布理想模型计算出纳米粒子在橡胶复合材料中的理论粒子间距,发现了橡胶增强逾渗中临界粒子间距(CPD)无法归一的问题。采用对临界粒子间距和临界粒径(CMPS)的主要影响因素进行细致深入的研究,从理论上解释了橡胶增强逾渗中临界粒子间距无法归一的原因,并结合实验结果对橡胶增强填料的临界粒径给予了新的诠释。此外,通过对橡胶增强影响因素的进一步探讨提出了一些新的观点。
     在论文的第二部分和第三部分中,首次提出了增强导热填料的概念,并从增强导热的思路出发首先研究了纳米氧化锌大量填充三元乙丙橡胶(EPDM)复合材料的结构与性能,以期有效地解决由于内部温升积聚带来的制品寿命缩短问题。结果表明,与微米氧化锌相比,纳米氧化锌在赋予橡胶复合材料优异导热性能的同时还具有更为良好的补强效果,而由于纳米氧化锌粒子在橡胶基体中团聚严重使其动态力学性能较差。为了改善纳米氧化锌在复合材料中的分散,我们采用了硅烷偶联剂Si69预处理以及原位改性的方法。使用FT-IR对Si69改性前后的纳米氧化锌粉体进行表征的结果表明,表面改性后的纳米氧化锌粒子表面出现了来自Si69分子的新基团,如1090cm-1出现了硅氧键的伸缩振动峰等,证明了Si69分子确实与粒子发生了化学反应并接枝到了纳米氧化锌粒子表面。通过研究Si69预处理以及原位改性对纳米氧化锌复合材料结构与性能的影响发现,Si69原位改性的纳米氧化锌复合材料中填料粒子与橡胶基体之间分散效果更好,显著提高了复合材料的力学性能,尤其是动态力学性能,而表面改性对复合材料导热性能方面影响并不大。由于纳米氧化锌密度很大约为5.6g/cm3且难以分散,我们进而研究了密度较低的纳米氧化铝填充EPDM复合材料的结构与性能。结果表明,纳米氧化铝橡胶复合材料的导热性能更优异,补强效果较好,动态力学性能不好。Si69原位改性对纳米氧化铝复合材料同样可以有效地改善了填料与橡胶基体之间的界面作用,显著提高了复合材料的力学性能,尤其是动态力学性能,而对导热性能方面影响不大;相比之下,使用SA湿法预处理并没有改善填料与橡胶之间的相互作用,反而使纳米氧化铝粒子团聚现象加重,使复合材料的力学性能明显下降。通过与传统增强填料炭黑N330、白炭黑进行横向对比发现,经过Si69原位改性的纳米氧化锌复合材料以及纳米氧化铝复合材料在导热性能以及动态力学性能方面均具有十分明显的优势,并且具有良好的补强效果,如纳米氧化铝复合材料的拉伸强度为12.9MPa,其导热系数比传统填料填充体系高约44%,而压缩疲劳生热低约50%。纳米氧化锌与纳米氧化铝作为新型增强导热填料,具有良好的补强效果、生热低且导热好等特点,很可能可以有效地解决由于内部温升积聚带来的制品寿命缩短问题。
Due to the peculiar high elasticity, rubber products usually work in the dynamic serving conditions. Since most rubber materials have the low thermal conductivity, the generated heat is accumulated, leading to the local high temperature. As a result, the high temperature aggravates the utilized properties and decreases the service life greatly. In this paper, there are two parts:(1) The percolation phenomenon in rubber reinforcement was found for the first time in the various grade carbon black filled styrene-butadiene rubber (SBR) systems. And afterwards the mechanism and influence factors of nano-reinforment in rubber composites were investigated, which had significant theoretical guidance in designing the novel rubber nanocomposites. (2) On purpose of solving the dynamic heat build-up and heat-accumulation problem in rubber composites, we put forward a new strategy. The nano-reinforced and thermal conductive rubber composites were prepared by employing a kind of nano-sized thermal conductive filler such as nano-zinc oxide (ZnO) or nano-alumina (A12O3), and improving the nano-filler dispersion through suitable methods. The structure and properties of novel nanocomposites were investigated systematically, and further compared with the traditional reinforcing fillers filled system.
     Firstly, the percolation phenomenon in rubber reinforcement was found for the first time in investigating the influence of carbon black volume fraction on the tensile strength of SBR composites, which was similar to the one in rubber toughened plastics system. Additionally, the same percolation phenomenon in rubber reinforcement was found in nano-ZnO reinforced ethylene-propylene-diene monomer (EPDM) systems, and the percolation threshold was significantly different from the percolation thresholds of Young's modulus and electrical conductivity. Further investigation indicated that the percolation in rubber reinforcement should be derived from the mechanism in rubber nanoreinforcement. Nano particles induced the rubber chains like the random coils to form the parallel-stretched chains structure among the particles during the stretching, which would strengthen the rubber matrix powerfully. The orientation of stretched rubber chains was characterized by using Fourier transform infrared spectroscopy (FT-IR) and molecular dynamic simulation. The experimental results suggested that nano particles could induce the rubber chains to form the oriented stretched chains significantly. The theoretic particle-particle distance in rubber composites was calculated by using the uniform distribution model. We found the critical particle distance (CPD) values of various grade carbon black filled composites were different from each other. Further investigation in the influence factors of CPD and critical minimum particle size (CPMS) answered the question of different CPD based on the nanoreinforcement theory and gave some novel explanations about the CPMS of reinforcing fillers. Moreover, some new ideas and suggestions were presented through discussing the influence factors of rubber reinforcement.
     Secondly, the concept of nano-reinforcing thermal conductive filler was put forward for the first time. According to the new strategy of nano-reinforcement and thermal conduction, preparation, structure and properties of novel nano-sized thermal conductive fillers such as nano-ZnO and nano-Al2O3 filled EPDM composites were investigated, on purpose of extending the serving time of rubber products. The experimental results indicated that nano-ZnO filled composites performed well in good thermal conductivity and better mechanical properties by comparisons with micro-sized ZnO filled systems. However, bad dispersion in nano-ZnO filled composites aggravated the dynamic mechanical properties. For improving the dispersion state of nano-ZnO particles, the silane coupling agent Si69 was used during various treatments:pretreatment and in-situ modification. The FT-IR spectra of nano-ZnO particles untreated and treated by Si69 showed that some new characteristic peaks appeared in the spectrum of treated nano-ZnO particles, which should be associated to the parts of Si69 molecules. For example, the stretching vibration band of silicon-oxygen bond was observed at 1090cm-1, which suggested that Si69 should be likely to graft on the surface of nano-ZnO particles through the chemical reaction. Study on the influences of Si69 pretreatment and in-situ modification on the structure and properties of nano-ZnO filled composites indicated that in-situ modification improved nano-filler dispersion in EPDM composites more obviously, endowed the composites with better mechanical properties, especially the dynamic properties. Surface modification influenced little on the thermal conductivity of composites. As a result of the high density up to 5.6g/cm3 and hard-dispersed property of nano-ZnO particles, structure and properties of nano-Al2O3 filled composites were investigated further. The results indicated that nano-Al2O3 improved the thermal conductivity greatly, better than nano-ZnO. However, mechanical properties were a little worse than nano-ZnO composites. Furthermore, influences of in-situ modification with Si69 and SA wet-pretreatment on the properties of nano-Al2O3 filled composites were as well investigated. Assisted by in-situ modification with Si69, the interfacial interaction between rubber matrix and nano-Al2O3 particles were enhanced effectively, and the mechanical properties (especially dynamic mechanical properties) of the nano-Al2O3 filled composites were improved obviously, without influencing the thermal conductivity. In comparison, SA pretreatment aggravated the mechanical properties because of more agglomerates in composites. By comparing to the traditional reinforcing fillers, such as carbon black N330 and silica, in-situ modified nano-ZnO and nano-Al2O3 filled composites exhibit excellent performance in mechanical (static and dynamic) properties as well as much better thermal conductivity. For example, in comparison with N330 carbon black filled composites with the similar volume fraction, tensile strength of nano-Al2O3 filled composites was up to 12.9MPa, about 44% higher in thermal conductivity, and more than 50% lower in compression heat build-up. In general, our work indicated that nano-ZnO and nano-Al2O3, as the novel nano-reinforcing thermal conductive fillers, endowed the rubber composites good reinforcement, low heat build-up and excellent thermal conductivity, which seemed more suitable to prepare rubber products serving in dynamic conditions, with the longer expected service life.
引文
[1]张琦,胡伟康,田明,等.纳米氢氧化镁/橡胶复合材料的性能研究[J].橡胶工业,2004,54(01):14-19.
    [2]Brantley H L, Day G L. Improved Tire Performance with Solution Sbr Type Polymers[J]. Kaut Gummi Kunstst,1987,40 (2):122-125.
    [3]Feng H D, Zhang X Y, Zhao S H. Tin-Coupled Star-Shaped Block Copolymer of Styrene and Butadiene (Ⅱ) Properties and Application[J]. J Appl Polym Sci,2009,111(2): 602-611.
    [4]Li H, Sun J, Song Y H, Zheng Q. The Mechanical and Viscoelastic Properties of Ssbr Vulcanizates Filled with Organically Modified Montmorillonite and Silica[J]. J Mater Sci, 2009,44(7):1881-1888.
    [5]Sierra C A, Galan C, Fatou J M G,et al. Dynamic-Mechanical Properties of Tin-Coupled Sbrs[J]. Rubber Chem Technol,1995,68(2):259-266.
    [6]Suzuki N, Ito M, Yatsuyanagi F. Effects of Rubber/Filler Interactions on Deformation Behavior of Silica Filled Sbr Systems[J]. Polymer,2005,46(1):193-201.
    [7]Liu X, Zhao S H. Measurement of the Condensation Temperature of Nanosilica Powder Organically Modified by a Silane Coupling Agent and Its Effect Evaluation[J]. J Appl Polym Sci,2008,108(5):3038-3045.
    [8]Visser S A. Effect of Filler Type on the Response of Polysiloxane Elastomers to Cyclic Stress at Elevated Temperatures [J]. J Appl Polym Sci,1997,63 (13):1805-1820.
    [9]Wang M J. Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates[J]. Rubber Chem Technol,1998,71 (3):520-589.
    [10]Wang M J. The Role of Filler Networking in Dynamic Properties of Filled Rubber[J]. Rubber Chem Technol,1999,72 (2):430-448.
    [11]Wu Y P, Zhao Q S, Zhao S H, et al. The Influence of in Situ Modification of Silica on Filler Network and Dynamic Mechanical Properties of Silica-Filled Solution Styrene-Butadiene Rubber[J]. J Appl Polym Sci,2008,108 (1):112-118.
    [12]张立群,伍社毛,耿海萍,等.导热天然橡胶的研究[J].合成橡胶工业,1998,21(04):15-19.
    [13]杨建.石墨填充橡胶材料的性能研究及纳米复合材料的制备[D].北京化工大学,2008
    [14]吴绍吟,李红英,马文石,等.纳米碳酸钙对溶聚丁苯橡胶胶料的补强作用[J].橡胶工业,1999,46(08):8-12.
    [15]吴绍吟,练恩生,马文石,李小锦,苟权俊.纳米碳酸钙填充NBR的研究[J].橡胶工业,2000,47(05):267-271.
    [16]周祚万,楚珑晟,张再昌.纳米氧化锌在橡胶复合材料中的初步应用[J].橡胶工业,2002,49(07):403-405.
    [17]周丽玲,陈桂兰,傅政,等.纳米氧化锌的结构形态及其在BR中的应用[J].橡胶工业,2003,50(01):15-18.
    [18]林桂,钱燕超,张立群,等.纳米二氧化钛填充橡胶复合材料的分散结构与性能[J].合成橡胶工业,2005,28(2):98-104.
    [19]Tian M, Qu C, Feng Y, et al. Structure and Properties of Fibrillar Silicate/Sbr Composites by Direct Blend Process[J]. J Mater Sci,2003,38 (24):4917-4924.
    [20]宁英沛,张志琨.纳米导电纤维填充硅橡胶的性能[J].合成橡胶工业,1995,18(8):332-334.
    [21]何海峰,崔作林.纳米导电纤维填充天然胶乳复合材料的电性能研究[J].功能材料,2000,31(2):202-203.
    [22]孙岳玲,龚安华.纳米晶须材料的研究概述[J].化学工程师,2008,22(5):41-43.
    [23]Sanui K, Ogata N, Kamitani K,et al. In-Situ Direct Polycondensation in Polymer Matrices. II. In-Situ Direct Polycondensation in Styrene-Butadiene Block Copolymers[J]. Journal of Polymer Science Part A:Polymer Chemistry,1993,31 (3):597-602.
    [24]吴友平,张立群,王益庆,等.层状硅酸盐/橡胶纳米复合材料的结构、性能、工业化及其在轮胎工业中的应用[J].橡胶工业,2008,55(12):709-715.
    [25]黄茂芳,李普旺,高天明,等.层状硅酸盐/橡胶纳米复合材料(二)凝聚共沉法制备的蒙脱土/天然橡胶纳米复合材料及其性能研究[J].世界橡胶工业,2008,35(02):1-3.
    [26]索大鹏,陈志刚,杨娟.聚合物层状硅酸盐纳米复合材料的制备和应用[J].江苏大学学报(自然科学版),2003,24(05):51-54.
    [27]姚岐轩.层状硅酸盐/橡胶纳米复合材料(一)用熔融插层法提高层状硅酸盐/天然橡胶纳米复合材料的工艺和加工性能[J].世界橡胶工业,2008,35(01):1-6.
    [28]Yuan Q W, Mark J E. Reinforcement of Poly(Dimethylsiloxane) Networks by Blended and in-Situ Generated Silica Fillers Having Various Sizes, Size Distributions, and Modified Surfaces[J]. Macromol Chem Phys,1999,200 (1):206-220.
    [29]Yuko Ikeda, Tanaka A, Kohjiya S. Reinforcement of Styrene-Butadiene Rubber Vulcanizate by in Situ Silica Prepared by the Sol-Gel Reaction of Tetraethoxysilane[J]. J Mater Chem,1997,7 (8):1497-1503.
    [30]张立群,吴友平,王益庆,等.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业,2000,23(02):71-77.
    [31]Zhang L, Wang Y, Wang Y, et al. Morphology and Mechanical Properties of Clay/Styrene-Butadiene Rubber Nanocomposites[J]. J Appl Polym Sci,2000,78 (11): 1873-1878.
    [32]Wu Y-P, Wang Y-Q, Zhang H-F, et al. Rubber-Pristine Clay Nanocomposites Prepared by Co-Coagulating Rubber Latex and Clay Aqueous Suspension[J]. Compos Sci Technol, 2005,65(7):1195-1202.
    [33]严志云,贾德民.橡胶纳米复合材料研究进展[J].广东化工,2005,27(03):34-37+53.
    [34]Hamed G R. Reinforcement of Rubber[J]. Rubber Chem Technol,2000,73 (3):524-533.
    [35]Zhang L Q, Jia D M. The Nano-Reinforcing Technique and Science of Rubber[J]. Symposium of international rubber conference, Beijing, China,2004, Volume A:21.
    [36]Wu Y, Jia Q, Liu L, et al. Theoretical Studies on Rubber Reinforcement[J]. CHINA SYNTHEIC RUBBER INDUSTRY,2004,27 (1):1-5.
    [37]Nielsen L E. Generalized Equation for the Elastic Modulus of Composite Materials [J]. J Appl Phys,1970,41 (11):4626-4627.
    [38]Kilian H G Reinforced Vanderwaals-Networks-a New Concept of Characterization[J]. Kaut Gummi Kunstst,1986,39 (8):689-694.
    [39]Kilian H G, Strauss M, Hamm W. Universal Properties in Filler-Loaded Rubbers[J]. Rubber Chem Technol,1994,67 (1):1-16.
    [40]Reichert W F, Goritz D, Duschl E J. The Double Network, a Model Describing Filled Elastomers[J]. Polymer,1993,34 (6):1216-1221.
    [41]Meissner B. Tensile Stress-Strain Behaviour of Rubberlike Networks up to Break. Theory and Experimental Comparison[J]. Polymer,2000,41 (21):7827-7841.
    [42]Meissner B, Matejka L. Description of the Tensile Stress-Strain Behavior of Filler-Reinforced Rubber-Like Networks Using a Langevin-Theory-Based Approach. Part I[J]. Polymer,2000,41 (21):7749-7760.
    [43]Meissner B, Matejka L. Description of the Tensile Stress-Strain Behaviour of Filler-Reinforced Rubber-Like Networks Using a Langevin-Theory-Based Approach. Part Ii[J]. Polymer,2001,42 (3):1143-1156.
    [44]宋名实.交联高聚物网络结构同力学性能相关性的研究——Ⅰ.交联高聚物弹性模量的定量表征[J].中国科学技术大学学报,1982,(S2):73-82.
    [45]宋名实.聚合物网的网络结构同力学性能间相关性的研究——自由连接链的交联—缠结网大形变弹性分子理论[J].中国科学技术大学学报,1985,(03):286-298.
    [46]宋名实.聚合物网的网络结构同力学性能间相关性的研究交联—缠结网弹性分子理论同实验的对比[J].中国科学技术大学学报,1986,(02):162-174.
    [47]宋名实.炭黑填充硫化胶的网络结构同力学性能间相关性——(Ⅰ)炭黑填充硫化胶大形变弹性分子理论[J].化工学报,1988,(01):20-31.
    [48]宋名实,张焕芝.炭黑填充硫化胶网络结构与力学性能相关性的研究——Ⅲ硫化橡胶弹性大形变的唯象理论[J].高分子材料科学与工程,1986,(05):21-32.
    [49]宋名实,张焕芝.炭黑填充硫化胶的网络结构同力学性能间相关性——(Ⅱ)炭黑的补强作用和它的表征[J].化工学报,1988,(01):32-43.
    [50]Song M, Xia H S, Yao K J, Hourston D J. A Study on Phase Morphology and Surface Properties of Polyurethane/Organoclay Nanocomposite[J]. Eur Polym J,2005,41 (2): 259-266.
    [51]Song M S, He Z R. The Molecular Theory of Viscoelasticity for Thermoplastic Elastomer Sbs (Sis) at Large Deformations[J]. Rheol Acta,1990,29 (1):31-45.
    [52]吴祖嵋.几何相变与逾渗[J].物理教师,1995,9:29-30.
    [53]贾向明,杨其,李光宪,等.填充型导电高分子复合材料的逾渗理论进展[J].中国塑料,2003,17(06):9-14.
    [54]杨瑞成,羊海棠,彭采宇,等.逾渗理论及聚合物脆韧转变逾渗模型[J].兰州理工大学学报,2005,31(01):26-30.
    [55]Wu S. Phase Structure and Adhesion in Polymer Blends:A Criterion for Rubber Toughening[J]. Polymer,1985,26 (12):1855-1863.
    [56]Margolina A, Wu S. Percolation Model for Brittle-Tough Transition in Nylon/Rubber Blends[J]. Polymer,1988,29 (12):2170-2173.
    [57]Wu S. A Generalized Criterion for Rubber Toughening:The Critical Matrix Ligament Thickness[J]. J Appl Polym Sci,1988,35 (2):549-561.
    [58]Oshinski A J, Keskkula H, Paul D R. Rubber Toughening of Polyamides with Functionalized Block Copolymers:1. Nylon-6[J]. Polymer,1992,33 (2):268-283.
    [59]李强,郑文革,漆宗能,等.聚合物共混体脆韧墨迹的逾渗阈值及其与分散度的关系[J].中国科学:B辑,1992,(3):236-242.
    [60]Fu Q, Wang G, Shen J. Polyethylene Toughened by Caco3 Particle:Brittle-Ductile Transition of Caco3-Toughened Hdpe[J]. J Appl Polym Sci,1993,49 (4):673-677.
    [61]Wang Z H, Liu J, Wu S Z, et al. Novel Percolation Phenomena and Mechanism of Strengthening Elastomers by Nanofillers[J]. Physical chemistry, Chemical physics,2010,
    12,3014-3030.
    [62]黄旭.碳纳米管填充导电橡胶的研究进展[J].合成橡胶工业,2009,32(4):339-344.
    [63]张继阳.镀银玻璃微珠/硅橡胶导电复合材料逾渗值的研究[J].特种橡胶制品,2007,28(1):19-23.
    [64]Vysotsky V V, Roldughin V I. Aggregate Structure and Percolation Properties of Metal-Filled Polymer Films[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,160(2):171-180.
    [65]陈琪,卢咏来,丁雪佳,等.氧化铝/MVQ导热复合材料的结构与性能[J].橡胶工业,2008,55(10):581-587.
    [66]梁基照,杨铨铨.导电高分子复合材料逾渗阈值的预测[J].华南理工大学学报(自然科学版),2007,35(08):80-82+88.
    [67]庄继德.现代汽车轮胎技术[M].北京:北京理工大学出版社,2001.3
    [68]M.沃德著 I,中国科学院化学研究所高聚物力学性能组译.固体高聚物的力学性能[M].北京:科学出版社,1980
    [69]张忠富 何燕.轮胎滚动阻力影响因素及测试方法[J].轮胎工业,2004,24(4):238-241.
    [70]杨光大.高速运输必须高重度重视轮胎的质量,选型,使用和管理[J].轮胎工业,1997,17(3):131-135.
    [71]卢江荣.降低生热向轮胎行业提出持续挑战[J].现代橡胶技术,2003,29(1):22-27.
    [72]段咏欣,赵素合,张兴英,等.溶聚丁苯橡胶的结构与性能[J].橡胶工业,2002,49(11):645-649.
    [73]李侃社,王琪.聚合物复合材料导热性能的研究[J].高分子材料科学与工程,2002,(04):10-15.
    [74]涂春潮,齐暑华,周文英,等.填充型导热橡胶研究进展[J].合成橡胶工业,2006,29(4):305-309.
    [75]Agari Y, Uno T. Estimation on Thermal Conductivities of Filled Polymers[J]. J Appl Polym Sci,1986,32 (7):5705-5712.
    [76]Tang M M, Rong M Z, Ma C G, Zhang M Q, Ye J R. Effect of Surface Treatment and Particle Size of Alumina Filler on Thermal Conductivity of Sbr[J]. CHINA SYNTHETIC RUBBER INDUSTRY,2003,26 (2):104-107.
    [77]Privalko, V. Novikov, V. Model treatments of the heat conductivity of heterogeneous polymers[M]. Springer:Berlin,1995.
    [78]Agari Y, Ueda A, Nagai S. Thermal Conductivity of a Polymer Composite[J]. J Appl Polym Sci,1993,49 (9):1625-1634.
    [79]闫刚,魏伯荣,杨海涛,肖琰.聚合物基复合材料导热模型及其研究进展[J].玻璃钢/复合材料,2006,(03):50-52.
    [80]邓小艳,饶保林.粉体填充聚合物材料的热传导理论[J].宇航材料工艺,2008,38(3):1-5.
    [81]Agari Y, Uno T. Thermal Conductivity of Polymer Filled with Carbon Materials:Effect of Conductive Particle Chains on Thermal Conductivity[J]. J Appl Polym Sci,1985,30 (5): 2225-2235.
    [82]Every A G, Tzou Y, Hasselman D P H, Raj R. The Effect of Particle Size on the Thermal Conductivity of Zns/Diamond Composites[J]. Acta Metallurgica et Materialia,1992,40 (1):123-129.
    [83]王家俊.聚酰亚胺/氮化铝复合材料的制备与性能研究[D].浙江大学,2001
    [84]Lewis T B, Nielsen L E. Dynamic Mechanical Properties of Particulate-Filled Composites[J]. J Appl Polym Sci,1970,14 (6):1449-1471.
    [85]Agari Y, Ueda A, Nagai S. Thermal Conductivities of Composites in Several Types of Dispersion Systems[J]. J Appl Polym Sci,1991,42 (6):1665-1669.
    [86]陶国良.高导热先进复合材料设计制备及应用技术研究[D].南京工业大学,2006
    [87]Hatta H, Taya M, Kulacki F A, Harder J F. Thermal Diffusivities of Composites with Various Types of Filler[J]. J Compos Mater,1992,26 (5):612-625.
    [88]Tavman I H, Akinci H. Transverse Thermal Conductivity of Fiber Reinforced Polymer Composites[J]. Int Commun Heat Mass,2000,27 (2):253-261.
    [89]Agari Y, Ueda A, Nagai S. Thermal Conductivity of a Polyethylene Filled with Disoriented Short-Cut Carbon Fibers [J]. J Appl Polym Sci,1991,43 (6):1117-1124.
    [90]Lu S-Y. The Effective Thermal Conductivities of Composites with 2-D Arrays of Circular and Square Cylinders[J]. J Compos Mater,1995,29 (4):483-506.
    [91]Yin Y, Tu S-T. Thermal Conductivities of Ptfe Composites with Random Distributed Graphite Particles[J]. J Reinf Plast Comp,2002,21 (18):1619-1627.
    [92]Cai W-Z, Tu S-T, Tao G-L. Thermal Conductivity of Ptfe Composites with Three-Dimensional Randomly Distributed Fillers[J]. J Thermoplast Compos,2005,18 (3): 241-253.
    [93]刘加奇,张立群,杨海波,等.粒子填充聚合物基复合材料导热性能的数值模拟[J].复合材料学报,2009,26(01):36-42.
    [94]卢建航.用准稳态法测定橡胶及橡胶基复合材料的导热系数和比热容[J].轮胎工业,2001,21(5):305-309.
    [95]何燕.用激光导热仪测定炭黑填充橡胶的导热系数[J].合成橡胶工业,2008,31(4):255-258.
    [96]Tajima H. Compositions of Heat-Releasing Materials[P]. JP Patent, JP 05 016 296.1993
    [97]El-Tantawy F. New Double Negative and Positive Temperature Coefficients of Conductive EPDM Rubber Tic Ceramic Composites [J]. Eur Polym J,2002,38 (3): 567-577.
    [98]Gwaily S E, Badawy M M, Hassan H H, Madani M. Natural Rubber Composites as Thermal Neutron Radiation Shields:Ⅰ. B4c/Nr Composites[J]. Polym Test,2002,21 (2): 129-133.
    [99]Gungor A. Mechanical Properties of Iron Powder Filled High Density Polyethylene Composites[J]. Mater Design,2007,28 (3):1027-1030.
    [100]Tavman I H, Thermal and Mechanical Properties of Copper Powder Filled Poly(Ethylene) Composites[M]. Vol.91.1997, Lausanne, Suisse:Elsevier.
    [101]Vinod V S, Varghese S, Kuriakose B. Aluminum Powder Filled Nitrile Rubber Composites [J]. J Appl Polym Sci,2004,91 (5):3156-3161.
    [102]Nasr G M, Badawy M M, Gwaily S E, Shash N M, Hassan H H. Thermophysical Properties of Butyl Rubber Loaded with Different Types of Carbon Black[J]. Polym Degrad Stabil,1995,48 (2):237-241.
    [103]何均敏,张平.石墨填充聚丙烯的研究[J].工程塑料应用,1995,(05):9-11.
    [104]钱欣,濮阳楠,金扬福.酚醛树脂/石墨导热塑料性能研究[J].工程塑料应用,1997,(03):10-12.
    [105]Kio R. Rubber-Carbon Fiber Compositions with Anisotropic Heat Conductivity[P]. Japan, JP 04 173 235.1992
    [106]Meyer L, Jayaram S, Cherney E A. Thermal Conductivity of Filled Silicone Rubber and Its Relationship to Erosion Resistance in the Inclined Plane Test[J]. IEEE T Dielect El In, 2004,11 (4):620-630.
    [107]Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J. Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes[J]. Thermochim Acta,2005,430 (1-2):155-165.
    [108]Gwaily S.E, Nasr G.M, Badawy M.M, H.H H. Thermal Properties of Ceramic-Loaded Conductive Butyl Rubber Composites[J]. Polym Degrad Stabil,1995,47 (3):391-395.
    [109]M S, K I, M N. Silicone Rubber Composition and Its Use[P]. Japan, JP 09 296 114.1997
    [110]刘春光,罗青松.纳米氧化锌的制备技术与应用进展[J].纳米科技,2005,2(01):13-16.
    [111]刘立华.纳米氧化锌的制备研究进展[J].唐山师范学院学报,2008,30(02):59-61.
    [112]齐涵,周素红,徐佳佳,等.纳米氧化锌主要用途及其粒度测量[J].中国粉体工业,2006,11:219-222.
    [113]于泳.纳米氧化锌在轮胎胶料中的应用研究[J].轮胎工业,2002,22(12):729-732.
    [114]赵光贤.纳米氧化锌及其在橡胶中的应用[J].中国橡胶,2002,18(8):18-21.
    [115]朱胜利,施世泰.纳米氧化锌在橡胶制品中的应用研究[J].弹性体,2002,12(2):48-51.
    [116]武玺.纳米氧化锌在橡胶中的作用机理及应用[J].轮胎工业,2004,24(2):67-70.
    [117]李秀梅.纳米氧化锌的性质和用途[J].通化师范学院学报,2004,25(4):54-56.
    [118]王久亮,刘宽,秦秀娟,等.纳米氧化锌的应用研究展望[J].哈尔滨工业大学学报,2004,36(2):226-230.
    [119]王宝利,朱振峰.无机纳米粉体的团聚与表面改性[J].陶瓷学报,2006,27(1):135-138.
    [120]朱卫兵,陈剑松,廖静,等.超声波直接沉淀法制备纳米氧化锌及改性研究[J].无机盐工业,2008,40(3):22-24.
    [121]陈尔凡,周本廉.偶联剂对T-ZnO晶须/环氧树脂复合材料的影响[J].塑料工业,2003,31(4):19-21.
    [122]周燕,邓建成,管小艳.硅烷偶联剂对纳米氧化锌表面改性的机理研究[J].湘潭大学自然科学学报,2006,28(4):53-56.
    [123]周莉,臧树良,胡秀英.纳米氧化锌的表面改性研究[J].石油化工高等学校学报,2009,22(2):5-8.
    [124]杜淼,孙中溪.纳米氧化铝制备方法研究进展[J].无机盐工业,2005,37(12):9-11.
    [125]冯文洁,唐海红,赵志英,等.浅谈纳米氧化铝的研制及应用[J].山西冶金,2004,95(03):49-51.
    [126]谢冰,章少华.纳米氧化铝的制备及应用[J].江西化工,2004,(01):21-25.
    [127]侯毅峰,刘锋,张美静.纳米氧化铝的制备及应用[J].机械管理开发,2009,24(05):73-74.
    [128]李继光,孙旭东,张民,等.碳酸铝铵热分解制备α-Al2O3超细粉[J].无机材料学报,1998,13(06):803-807.
    [129]李咏梅,刘欣,贾虎生.纳米α-Al2O3粉添加对氧化铝陶瓷性能的影响[J].太原理工大学学报,2007,38(02):98-100.
    [130]骆小平,赵云风,田杰谟,巢永烈,张世新,张云龙.纳米氧化铝玻璃复合体强度及断裂韧性的研究[J].华西医科大学学报,1998,29(04):39-42.
    [131]熊文明,周方钦,江放明.纳米氧化铝对贵金属Pd(Ⅱ)的吸附性能研究[J].分析试验室,2005,21(12):46-48.
    [132]王伟,刘立柱,杨阳,等.聚酰亚胺/氧化硅/氧化铝纳米杂化薄膜的制备及结构与性能研究[J].绝缘材料,2005,(05):12-15.
    [133]赵斌,饶保林.聚酰亚胺/纳米氧化铝复合薄膜的研究[J].绝缘材料,2005,(06):23-25+29.
    [134]赵红振,齐暑华,周文英,等.氧化铝粒子对导热硅橡胶性能的影响[J].特种橡胶制品,2007,28(05):19-21.
    [135]周文英,齐暑华,涂春潮,等.Al2O3对导热硅橡胶性能的影响[J].合成橡胶工业,2006,29(06):462-465.
    [136]王亮.纳米碳酸钙和纳米氧化铝的表面官能化改性及应用研究[D].北京化工大学,2008
    [137]陈维,王蓉蓉,刘斌.硅烷偶联剂对氧化铝-环氧浇注体系的改性作用研究[J].绝缘材料通讯,1999,(04):15-17.
    [138]冯长根,蔡佩君,张林,等.氧化铝表面有机改性及其在聚苯乙烯中分散性能的研究[J].北京理工大学学报,2003,(05):645-648+654.
    [139]薛茹君,吴玉程.硅烷偶联剂表面修饰纳米氧化铝[J].应用化学,2007,24(11):1236-1239.
    [140]赵小玲.纳米氧化铝的制备及改性工艺研究[D].西北大学,2003
    [1]Bokobza L. Filled Elastomers:A New Approach Based on Measurements of Chain Orientation[J]. Polymer,2001,42 (12):5415-5423.
    [2]Marzocca A J, Mansilla M A. Analysis of Network Structure Formed in Styrene-Butadiene Rubber Cured with Sulfur/Tbbs System [J]. Journal of Applied Polymer Science,2007,103 (2):1105-1112.
    [3]Flory P J. Statistical Mechanics of Swelling of Network Structures[J]. Journal of Chemical Physics,1950,18 (1):108-111.
    [4]Brandrup J, Immergut E H, Grulke E A, Polymer Handbook,4th Ed.[M].1999:New York:Wiley.
    [5]Kremer K, Grest G S. Dynamics of Entangled Linear Polymer Melts-a Molecular-Dynamics Simulation[J]. Journal of Chemical Physics,1990,92 (8): 5057-5086.
    [6]Liu J, Cao D P, Zhang L Q. Molecular Dynamics Study on Nanoparticle Diffusion in Polymer Melts:A Test of the Stokes-Einstein Law[J]. Journal of Physical Chemistry C, 2008,112 (17):6653-6661.
    [7]Plischke M, Barsky S J. Molecular Dynamics Study of the Vulcanization Transition[J]. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics),1998,58 (3):3347-3352.
    [1]Edwards D C. Polymer-Filler Interactions in Rubber Reinforcement[J]. J Mater Sci,1990, 25 (10):4175-4185.
    [2]Zhang L Q, Jia D M.. The Nano-Reinforcing Technique and Science of Rubber[J]. Symposium of international rubber conference, Beijing, China,2004, Volume A:21.
    [3]Kraus G. Reinforcement of Elastomers by Carbon-Black[J]. Rubber Chem Technol,1978, 51 (2):297-321.
    [4]Hamed G R. Reinforcement of Rubber[J]. Rubber Chem Technol,2000,73 (3):524-533.
    [5]Heinrich G, Kluppel M, Vilgis T A. Reinforcement of Elastomers [J]. Curr Opin Solid St M,2002,6 (3):195-203.
    [6]Wang M J. Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates[J]. Rubber Chem Technol,1998,71 (3):520-589.
    [7]Bokobza L. New Developments in Rubber Reinforcement[J]. Kautschuk Gummi Kunststoffe,2009,62 (1-2):23-27.
    [8]Bokobza L. The Reinforcement of Elastomeric Networks by Fillers[J]. Macromol Mater Eng,2004,289 (7):607-621.
    [9]张立群,吴友平,王益庆,等.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业,2000,(02):71-77.
    [10]冯予星,刘力,张立群,等.PP/POE共混合金的研究[J].工程塑料应用,1999,(12):6-9.
    [11]Wu S H. Phase-Structure and Adhesion in Polymer Blends-a Criterion for Rubber Toughening[J]. Polym,1985,26 (12):1855-1863.
    [12]Margolina A, Wu S H. Percolation Model for Brittle-Tough Transition in Nylon Rubber Blends[J]. Polym,1988,29 (12):2170-2173.
    [13]Wu S H. A Generalized Criterion for Rubber Toughening-the Critical Matrix Ligament Thickness[J]. J Appl Polym Sci,1988,35 (2):549-561.
    [14]Naunton W J S, The Applied Science of Rubber[M].1961:Edward Arnold Ltd.:London. 207-253.
    [15]Kraus G, Reinforcement of Elastomers[M].1965:Interscience Publishers:New York. .125-152.
    [16]Smith T L, Rinde J A. Ultimate Tensile Properties of Elastomers.V. Rupture in Constrained Biaxial Tensions[J]. Journal of Polymer Science Part a-2-Polymer Physics, 1969,7(4PA2):675-&.
    [17]Dickie R A, Smith T L. Ultimate Tensile Properties of Elastomers.6. Strength and Extensibility of a Styrene-Butadiene Rubber Vulcanizate in Equal Biaxial Tension[J]. Journal of Polymer Science Part a-2-Polymer Physics,1969,7 (4PA2):687-&.
    [18]Boonstra B B. Mixing of Carbon Black and Polymer-Interaction and Reinforcement[J]. J Appl Polym Sci,1967,11 (3):389-&.
    [19]Obrien J, Cashell E, Wardell G E, Mcbrierty V J. Nmr Investigation of Interaction between Carbon-Black and Cis-Polybutadiene[J]. Rubber Chem Technol,1977,50 (4): 747-764.
    [20]Wang M J, Wolff S, Donnet J B. Filler Elastomer Interactions.3. Carbon-Black-Surface Energies and Interactions with Elastomer Analogs[J]. Rubber Chem Technol,1991,64 (5):
    714-736.
    [21]Van De Walle A, Tricot C, Gerspacher M. Modeling Carbon Black Reinforcement in Rubber Compounds[J]. Kaut Gummi Kunstst,1996,49 (3):172-179.
    [22]Kilian H G, Strauss M, Hamm W. Universal Properties in Filler-Loaded Rubbers [J]. Rubber Chem Technol,1994,67 (1):1-16.
    [23]Strauss M, Pieper T, Peng W G, Kilian H G. Structure of Filled Rubbers and Mechanism of Reinforcement[J]. Makromolekulare Chemie-Macromolecular Symposia,1993,76: 131-136.
    [24]Kilian H G. Reinforced Vanderwaals-Networks-a New Concept of Characterization [J]. Kaut Gummi Kunstst,1986,39 (8):689-694.
    [25]Reichert W F, Goritz D, Duschl E J. The Double Network, a Model Describing Filled Elastomers[J]. Polymer,1993,34 (6):1216-1221.
    [26]Meissner B, Matejka L. Description of the Tensile Stress-Strain Behaviour of Filler-Reinforced Rubber-Like Networks Using a Langevin-Theory-Based Approach. Part Ii[J]. Polymer,2001,42 (3):1143-1156.
    [27]Meissner B, Matejka L. Description of the Tensile Stress-Strain Behavior of Filler-Reinforced Rubber-Like Networks Using a Langevin-Theory-Based Approach. Part I[J]. Polymer,2000,41 (21):7749-7760.
    [28]Meissner B. Tensile Stress-Strain Behaviour of Rubberlike Networks up to Break. Theory and Experimental Comparison[J]. Polymer,2000,41 (21):7827-7841.
    [29]宋名实.聚合物网的网络结构同力学性能间相关性的研究——自由连接链的交联—缠结网大形变弹性分子理论[J].中国科学技术大学学报,1985,(03):286-298.
    [30]宋名实.聚合物网的网络结构同力学性能间相关性的研究交联—缠结网弹性分子理论同实验的对比[J].中国科学技术大学学报,1986,(02):162-174.
    [31]Bokobza L. Filled Elastomers:A New Approach Based on Measurements of Chain Orientation[J]. Polymer,2001,42 (12):5415-5423.
    [32]Raos G, Allegra G Mesoscopic Bead-and-Spring Model of Hard Spherical Particles in a Rubber Matrix. I. Hydrodynamic Reinforcement[J]. J Chem Phys,2000,113 (17): 7554-7563.
    [33]Raos G, Moreno M, Elli S. Computational Experiments on Filled Rubber Viscoelasticity: What Is the Role of Particle-Particle Interactions?[J]. Macromolecules,2006,39 (19): 6744-6751.
    [34]Mark J E, Abou-Hussein R, Sen T Z, Kloczkowski A. Some Simulations on Filler Reinforcement in Elastomers [J]. Polymer,2005,46 (21):8894-8904.
    [35]Song M, Xia H S, Yao K J, Hourston D J. A Study on Phase Morphology and Surface Properties of Polyurethane/Organoclay Nanocomposite[J]. Eur Polym J,2005,41 (2): 259-266.
    [36]Kohjiya S, Kato A, Ikeda Y. Visualization of Nanostructure of Soft Matter by 3d-Tem: Nanoparticles in a Natural Rubber Matrix[J]. Prog Polym Sci,2008,33 (10):979-997.
    [37]Hamed G R, Hatfield S. On the Role of Bound Rubber in Carbon-Black Reinforcement[J]. Rubber Chem Technol,1989,62 (1):143-156.
    [38]Yu Q X, Handbook of Materials for Rubber Industry 2nd Ed[M].2007:Beijing: Chemistry Industry Press.
    [39]Leblanc J L. Rubber-Filler Interactions and Rheological Properties in Filled
    Compounds[J]. Prog Polym Sci,2002,27 (4):627-687.
    [40]张立群,金日光,耿海萍,等.短纤维橡胶复合材料临界长径比数学模型研究[J].复合材料学报,1998,15(03):85-91.
    [41]张立群,金日光,耿海萍,等.短纤维橡胶复合材料强度的理论研究i:纵向拉伸强度的理论预测[J].复合材料学报,1998,15(04):89-96.
    [1]Zhenhua Wang, Jun Liu, Sizhu Wu, Wenchuan Wang and Liqun Zhang. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers. Physical Chemistry, Chemical Physics,2010,12,3014-3030.
    [2]张立群,王振华等,橡胶纳米增强中的逾渗行为及机理研究,合成橡胶工业,2008,31(4):245
    [3]王振华,张立群等,全国高分子学术论文报告会,天津,中国2009:H-P-143
    [1]Zhang L Q, Wu Y P, Wang Y Q, et al. The Nano-Reinforcing and Nano-Compounding Technique of Rubber[J]. China Syntheic Rubber Industry,2000,23 (2):71-77.
    [2]张琦,胡伟康,田明,等.纳米氢氧化镁/橡胶复合材料的性能研究[J].橡胶工业,2004,(01):14-19.
    [3]Heinrich G, Kluppel M, Vilgis T A. Reinforcement of Elastomers[J]. Curren Opin in Soli Stat and Mater Sci,2002,6 (3):195-203.
    [4]Hamed G R. Reinforcement of Rubber[J]. Rubber Chem Technol,2000,73 (3):524-533.
    [5]Zhang L Q, Wang Z H, Wu Y P, et al. Percolation Phenomena and Mechanism in Rubber Reinforcement with Different Nano Fillers[J]. China Syntheic Rubber Industry,2008,31 (4):245-250.
    [6]Kraus G Reinforcement of Elastomers by Carbon-Black[J]. Rubber Chem Technol,1978, 51 (2):297-321.
    [7]Wu Y P, Jia Q X, Liu L, Zhang L Q. Theoretical Studies on Rubber Reinforcement[J]. China Syntheic Rubber Industry,2004,27 (1):1-5.
    [8]Leblanc J L. Rubber-Filler Interactions and Rheological Properties in Filled Compounds[J]. Prog Polym Sci,2002,27 (4):627-687.
    [9]Brantley H L, Day G L. Improved Tire Performance with Solution Sbr Type Polymers[J]. Kaut Gummi Kunstst,1987,40 (2):122-125.
    [10]Sierra C A, Galan C, Fatou J M G, Quiteria V R S. Dynamic-Mechanical Properties of Tin-Coupled Sbrs[J]. Rubber Chem Technol,1995,68 (2):259-266.
    [11]Feng H D, Zhang X Y, Zhao S H. Tin-Coupled Star-Shaped Block Copolymer of Styrene and Butadiene (Ii) Properties and Application[J]. J Appl Polym Sci,2009,111 (2): 602-611.
    [12]Li H, Sun J, Song Y H, Zheng Q. The Mechanical and Viscoelastic Properties of Ssbr Vulcanizates Filled with Organically Modified Montmorillonite and Silica[J]. J Mater Sci, 2009,44(7):1881-1888.
    [13]Visser S A. Effect of Filler Type on the Response of Polysiloxane Elastomers to Cyclic Stress at Elevated Temperatures[J]. J Appl Polym Sci,1997,63 (13):1805-1820.
    [14]Suzuki N, Ito M, Yatsuyanagi F. Effects of Rubber/Filler Interactions on Deformation Behavior of Silica Filled Sbr Systems[J]. Polymer,2005,46 (1):193-201.
    [15]Liu X, Zhao S H. Measurement of the Condensation Temperature of Nanosilica Powder Organically Modified by a Silane Coupling Agent and Its Effect Evaluation[J]. J Appl Polym Sci,2008,108 (5):3038-3045.
    [16]Wu Y P, Zhao Q S, Zhao S H, Zhang L Q. The Influence of in Situ Modification of Silica on Filler Network and Dynamic Mechanical Properties of Silica-Filled Solution Styrene-Butadiene Rubber[J]. J Appl Polym Sci,2008,108 (1):112-118.
    [17]Wang M J. Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates[J]. Rubber Chem Technol,1998,71 (3):520-589.
    [18]张立群,伍社毛,耿海萍,等.导热天然橡胶的研究[J].合成橡胶工业,1998,(04):15-19.
    [19]Bokobza L. The Reinforcement of Elastomeric Networks by Fillers[J]. Macromol Mater Eng,2004,289 (7):607-621.
    [20]朱胜利,施世泰.纳米氧化锌在橡胶制品中的应用研究[J].弹性体,2002,12(2):48-51.
    [21]周祚万,楚珑晟,张再昌.纳米氧化锌在橡胶复合材料中的初步应用[J].橡胶工业,2002,(07):403-405.
    [22]赵光贤.纳米氧化锌及其在橡胶中的应用[J].中国橡胶,2002,18(8):18-21.
    [23]于泳.纳米氧化锌在轮胎胶料中的应用研究[J].轮胎工业,2002,22(12):729-732.
    [24]Sim L C, Ramanan S R, Ismail H, et al. Thermal Characterization of A12o3 and Zno Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes[J]. Thermochim Acta,2005,430 (1-2):155-165.
    [25]Sim L C, Lee C K, Ramanan S R, et al. Cure Characteristics, Mechanical and Thermal Properties of A12O3 and ZnO Reinforced Silicone Rubber[J]. Polym-plast Technol,2006, 45 (3):301-307.
    [26]Payne A R. Dynamic Properties of Heat-Treated Butyl Vulcanizates[J]. J Appl Polym Sci, 1963,7:873.
    [27]Hasse A, Klockmann O, Wehmeier A, Luginsland H D. Influence of the Amount of Diand Polysulfane Silanes on the Crosslinking Density of Silica Filled Rubber Compounds[J]. Kautschuk Gummi Kunststoffe,2002,55 (5):236-243.
    [28]Hasse A, Luginsland H D. Reinforcement of Silica-Filled Epm Compounds Using Vinylsilanes[J]. Kautschuk Gummi Kunststoffe,2002,55 (6):294-299.
    [1]Zhenhua Wang, etc. Preparation of nano-zinc oxide/EPDM composites with both good mechanical properties and thermal conductivity. Journal of Applied Polymer Science, Accepted
    [2]王振华 张立群等,纳米氧化锌/EPDM复合材料性能研究,橡胶工业,2009,56(10):581
    [3]Zhenhua Wang, etc.3rd International Symposium on Integrated Molecular and Macromolecular Materials (ISIMME 2008). Xi'an, Shanxi, China.2008.
    [4]王振华 张立群等,第十五届中国轮胎技术研讨会,青岛,山东,中国2008
    [5]王振华 张立群等,“东海橡胶杯”第五届全国橡胶制品技术研讨会,宁波,浙江,中国2009
    [6]王振华 张立群等,第16届全国复合材料学术会议,长沙,湖南,中国 2010
    [1]Abdel-Aziz M M, Gwaily S E, Madani M. Thermal and Electrical Behaviour of Radiation Vulcanized EPDM/A12O3 Composites[J]. Polym Degradn Stabil,1998,62 (3):587-597.
    [2]Meyer L H, Cherney E A, Jayaram S H. The Role of Inorganic Fillers in Silicone Rubber for Outdoor Insulation-Alumina Tri-Hydrate or Silica[J]. Ieee Electr Insula Magazi,2004, 20(4):13-21.
    [3]Ramirez I, Cherney E A, Jayaram S, et al. Nanofilled Silicone Dielectrics Prepared with Surfactant for Outdoor Insulation Applications [J]. Ieee Trans on Dielec and Electr Insula, 2008,15 (1):228-235.
    [4]Sim L C, Lee C K, Ramanan S R, et al. Cure Characteristics, Mechanical and Thermal Properties of A12O3 and ZnO Reinforced Silicone Rubber[J]. Polym-Plast Tech and Engin,2006,45 (3):301-307.
    [5]Zhao H X, Li R K Y. Crystallization, Mechanical, and Fracture Behaviors of Spherical Alumina-Filled Polypropylene Nanocomposites[J]. J Polym Sci Part B-Polym Phys,2005, 43 (24):3652-3664.
    [6]Zhou W Y, Qi S H, Tu C C, et al. Effect of the Particle Size of A12O3 on the Properties of Filled Heat-Conductive Silicone Rubber[J]. J Appl Polym Sci,2007,104 (2):1312-1318.
    [7]El-Sabbagh S H, Ahmed N M, Selim M M. Preparation and Characterisation of High Performance Rubber Vulcanizates Loaded with Modified Aluminium Oxide[J]. Pigm & Resin Tech,2006,35 (3):119-131.
    [8]Zhou W Y, Yu D M, Wang C F, et al. Effect of Filler Size Distribution on the Mechanical and Physical Properties of Alumina-Filled Silicone Rubber[J]. Polym Engin Sci,2008,48 (7):1381-1388.
    [9]闫刚,魏伯荣,杨海涛,等.聚合物基复合材料导热模型及其研究进展[J].玻璃钢/复合材料,2006,(03):50-52.
    [10]陶国良.高导热先进复合材料设计制备及应用技术研究[D].南京工业大学,2006
    [1]Zhenhua Wang, etc. Properties of nano-Alumina/EPDM composites with good performance in thermal conductivity and mechanical properties. Polymer for Advanced Technologies, Accepted

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700