高性能聚乙烯薄膜与复合片材的制备及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的进步和社会的发展,人们对材料的要求越来越高且多样化。人们希望材料既耐高温又易于成型加工;既有较高的韧性又有较大的刚度;既有较好的持久性又价格低廉。因此,改性已成为研制高性能聚合物材料的一个重要途径。
     本文系统研究了茂金属聚乙烯对复合聚乙烯薄膜的微观结构及其物理力学性能影响,探讨了在聚乙烯吹膜过程中添加抗静电剂和色母料后薄膜性能的变化,还探讨了聚丙烯对聚乙烯复合片材刚性和低温抗冲击性能的影响,重点揭示了不同类型茂金属聚乙烯对薄膜的改性作用和机理。并得出如下主要结论:
     1)茂金属聚乙烯明显增大了聚乙烯薄膜的摩擦系数,当其添加量在10%-20%时即可达到较好效果。
     2)茂金属聚乙烯降低了薄膜的起封温度和起始热封强度。在茂金属聚乙烯添加量为15%左右时,薄膜雾度值为5%-8%。另外,茂金属聚乙烯提高了薄膜的抗冲击性能和拉伸性能。
     3)当茂金属聚乙烯微观结构与聚乙烯薄膜基础原料相似时,其改性效果较差。
     4)添加一定量白色母粒后,聚乙烯薄膜纵横向刚性均有所下降,但韧性增加。薄膜的纵向刚性高于横向刚性的原因在于:聚乙烯大分子链在薄膜加工方向上的排列更为规整,结晶度更高。
     5)色母料导致薄膜光泽度少许增加。当白色母添加量控制在6-8%时,薄膜的不透度和光泽度均能保持在80%左右。
     6)抗静电剂明显降低了薄膜表面电阻值。当抗静电剂添加量小于4%时,所有改性薄膜的表面电阻值在最初的一个月以内均呈较快下降趋势,但在一个月以后表面电阻值均逐渐趋于平稳。当抗静电剂添加量不超过4%时,薄膜的爽滑性和透明性保持不变,但热封强度略有下降。
     7)在复合片材结构、加工工艺等参数不变的情况下,当EAA含量从7%提升至9%时,铝箔和粘结树脂之间剥离强度的平均值从5-6N/m提升至8-9N/m。
     8)在多层共挤复合片材中,添加一定量聚丙烯后,复合片材的刚性略有提高,其中,片材横向刚性的提升高于纵向刚性。
     本论文的特色在于:基于实际生产条件,系统地进行了多种聚乙烯薄膜和复合片材共混功能化改性研究,特别是借用X射线衍射和差热量热法分析手段,详细研究了聚乙烯原料及其共混改性膜结晶性与微观结构,这为聚乙烯复合膜开发研究提供示范作用。
With the development of society and technology, the polymeric materials and theirgoods are always expected to have high-temperature resistance, high stiffness, goodflexibility, easy processing and cheapness. Thus the physical and chemical modifications ofpolymeric materials are usually become important ready development techniques. Theeffects of metallocene polyethylene, antistatic agents, functional master-batch on the heatsealability, the friction coefficient, transparency, the impact resistance, and tensileproperties of polyethylene blown films were carefully investigated in detail in this thesis.In addition, the isotactic polypropylene and ethylene-acrylic acid copolymer were used toimprove the rigidity and the binding of composite sheets respectively. The main findingsare as follows:
     (1)Metallocene polyethylene remarkably increases the friction coefficients and theinitial seal strength and decreases the initial seal temperature of blending polyethylenefilms, and also improves the impact resistance and tensile strength of the films. The hazevalues of the films are reduced when the metallocene polyethylene is at the dosages of15%. However, many of desirable properties can not be realized if the microstructure ofmetallocene polyethylene is more or less similar to that of polyethylene in the basic blownfilm formulation.
     (2) Although the white master batch unexpectedly diminishes both longitudinal andlatitudinal rigidities of blown polyethylene films, the impact toughness of the films wouldbe gained as much. The macromolecular orientation along the production line can accountfor the greater rigidity of the films in the longitudinal direction than in the latitudinaldirection. The white master batch leads to the reduced stiffness and the increased gloss ofthe blown polyethylene films to a less extent. Both the transparency and the gloss of thefilms can maintain at ca.80%if the dosing level of master batch is6-8%.
     (3) The antistatic agents lower significantly the surface electric resistance andreluctantly the heat seal strength, but do not cause obvious changes in the transparency and smoothness of the blown polyethylene films at the concentrations of0-4%.
     (4) While the composite sheet structure and processing parameters are kept same,the average peel strengths of the penta-layer composite sheet-polyethylene/EAA/aluminum/EAA/polyethylene are increased from5-6N/m to8-9N/m,corresponding to the increases of EAA from7%to9%.
     (5) In the multi-layer co-extruded composite molding sheet, the additive isotacticpolypropylene causes the slightly enhanced rigidity, a bit higher in the latitude than inlongitude, and the unfortunately declined impact toughness at low temperatures.
     The main feature of the thesis work is that, the blending modifications of several kindsof high performance polyethylene films and composite sheets were carried out based onthe realistic production conditions. The crystallinity and microstructure of manypolyethylene raw materials and compounding films were investigated with X-raysdiffraction and differential scan calorimetry in detail, and this can act as the exemplareffect for the research and development of high performance polyolefin films and sheets.
引文
[1]吴涛.茂金属聚乙烯制备高性能膜材料的研究(D).成都:四川大学,2003
    [2]关肇基,姜斌.国外聚乙烯开发近况[J].化工新型材料,41(2):74-8,1995
    [3]王金刚.茂金属聚乙烯及其改性产品的性能研究[D].浙江:浙江大学,1-57,2005
    [4]邵承栋.乙烯,乙烯醇共聚物的生产及市场前景分析[J].石油化工技术经济,(1):43-46,2003
    [5]刘生鹏,张苗,胡昊泽,林婷,危淼.聚乙烯改性研究进展[J].武汉工程大学学报,(03),2012
    [6]于德禧,李蕴能,李兰,孟丽萍.茂金属聚合物进展[J].中国塑料,14(2)12-17,2000
    [7]丘丽萍.抗静电PE膜的研制[J].现代塑料加工应用,(03),1995
    [8]黄兴.高阻隔性塑料开发进展[J].化工新型材料,29(5):26-29,2000
    [9]艾娇艳,刘朋生.茂金属催化剂的发展及工业化[J].弹性体,(3):48-50,2003
    [10]何祚云,熊远凡,杨月辉.阻隔性尼龙树脂研究进展[J].中国塑料,10(6):17-18,1996
    [11]周景秋等.覆膜商标纸对FOCKE701包装机组运行的影响[J].烟草科技,2010
    [12] Bruce P, Metallocene PE films for Medical Devices [J].Plastics Engineering,(8):25-32,1997
    [13] Lux M, Muller WF, Many talents of metallocene polyethylene [J], Kunststoffe PlastEurope,88(8):15-17,1998
    [14] Rong M Z, Zhang M Q, Zheng Y X,Zeng H M, Walter R, Friedrich K, Irradiationgraft polymerization on nano-inorganic particles: an effective means to designpolymer-based nanocomposites[J],Journal of Materials Science Letter,19,1159-61,2000
    [15] Bergner L, Plastic molding compound treated with an antistatic agent.USP5200446,1993
    [16]田瑶珠,于杰,罗筑,陈兴江,郝智,熊玉竹.不同类型4种抗静电剂在PE-HD中的应用效果及机理分析[J].中国塑料,(01),2004
    [17]王慧敏.蓖麻油烷醇酰胺硼酸酯的合成与应用研究[J].精细化工,06(24),1999
    [18]陈瑞珠,张锦强,潘恩黎.EAA与端噁唑啉聚醚偶联接枝物对PE的抗静电作用[J].南京化工大学学报,(04),1995
    [19]魏凤琴,韩兵.改性气相Nano-SiO2/复合材料的力学性能的研究[J].科技向导,(11),2011
    [20]孙鹏,郑立行,揣成智.可降解材料对聚乙烯薄膜性能的影响[J].塑料工业,(10),2009
    [21]刘广建,刘洁,田忠军.填料对PP、PE滤板专用料增强增韧改性研究[J].塑料,2004(07)
    [22] Bucknall C B, Clayton D, Keast W E. Rubber-toughening of plastics. II. Creepmechanisms in HIPS/PPO blends[J], Journal of Materials Science,7,1443-53,1972
    [23] BRAGAW C G,The Theory of Rubber Toughening of Brittle Polymers [M]. AmericanPlastics Department,86-106,1971
    [24]杨瑞成,羊海棠,彭采宇,冯辉霞.逾渗理论及聚合物脆韧转变逾渗模型[J].兰州理工大学报,(01),2005
    [25]汪晓东,励杭泉,金日光.共混方式对PP/UHMWPE合金的力学性能的形态结构的影响[J].高分子材料科学与工程,(03),1995
    [26]张弓,蒋龙,申开智,官青.低密度聚乙烯在振动填充注射过程中的自增强[J].高分子学报,(05),1998
    [27]黄兴.高阻隔性塑料开发进展[J].化工新型材料,29(5):26-29,2000
    [28]宋旭艳,彭少贤,郦华兴,应继儒.改进材料阻隔性能的方法[J].塑料加工,37(6):39-41,2001
    [29]乔放,朱小光,关淑敏等.聚烯烃/聚酰胺合金层状结构形态控制研究进展[J].高分子通报,(2):77-86,1996
    [30]王金银,彭立新.茂金属聚乙烯材料结构与加工性能研究[J].云南化工,34(3):23-7,2007
    [31]于德禧,李蕴能,李兰,孟丽萍.茂金属聚合物进展[J].中国塑料,14(2):12-17,2000
    [32]陈伟,郑刚,孙春燕等.茂金属催化剂淤浆法聚乙烯中试评价[J].石油化工材料,(01),2002
    [33]陈杰.茂金属聚乙烯的发展及我们的对策[J],现代塑料加工应用,8(5):55-58,1996
    [34]李新贵,黄美荣.热致液晶聚酯一热塑性塑料合金的性能和应用前景[J],塑料工业,(4):39-43,1992
    [35]崔春明,陈伟,景振华.金属茂催化剂的结构和催化活性[J],石油炼制与加工,27(2):28-32,1996
    [36]王金梅,吕兵,洪晓宇,景振华.乙烯二聚共聚双功能均相催化体系的研究[J],石油炼制与加工,26(12):26-28,1995
    [37]陈宁,庄严,吴瑞征.中国塑料加工工业协会改性塑料专业委员会.塑料薄膜包装材料用助剂发展现状(R).北京:2001
    [38]王基铭,袁晴棠.石油化工技术进展[M],北京,中国石化出版社,2002
    [39] Pukanszky B,VAnes M, Maurer F H J, Voros, G, Micromechanical deformations inparticulate filled thermoplastics: volume strain measurements[J], Journal of MaterialScience,29:2350,1994
    [40]胡国南.国内外色母粒生产概况及发展趋势[J].塑料制造,(03),2010
    [41]李郁.钛白粉的表面处理及在色母粒中的应用(D).北京:北京化工大学,2005
    [42]吴立峰.塑料着色和色母粒[M].北京:化学工业出版社,1994
    [43]陈荣圻,染料化学[M].北京:纺织工业出版社,1989
    [44]谢亚芬,添加剂对聚乙烯吹塑薄膜质量的影响[J],贵州化工,6(3),2006
    [45] TMI公司编.TMI弯曲挺度仪操作手册
    [46]透明材料雾度的测量[J].照明工程学报,8(3):36-40,1997
    [47]张丕运.共挤BOPP合成纸性能的主要影响因素研究(D).无锡:江南大学,2008
    [48][英]麦克劳德HA著,周九林,尹树百译.光学薄膜技术.北京:国防工业出版社,1974
    [49]李涛.抗静电剂在PP与PE中的应用[J].现代塑料加工应用,(01),2003
    [50]罗忠富,黄锐,卢艾等.纳米CaCO3增韧增强HDPE复合材料的研究[J].中国塑料,14(8):25-9,2000
    [51]王旭.聚合物基纳米粒子复合材料的研究[D].成都,四川大学博士论文2001
    [52] Lee Y-J, Manas-Zloczower I,Feke D L, Analysis of titanium dioxide agglomeratedispersion in linear low density polyethylene and resulting properties of compounds[J].Polymer Engineering and Science,12:1037-44,1995
    [53]陈昌杰.功能性薄膜之—抗静电薄膜[J].塑料包装,17(2),2007
    [54]胡勇刚,薄膜级抗静电母粒配方研究[C].2008年全国塑料着色与色母粒学术交流会论文集.
    [55]周祥兴编著.软质塑料包装技术[M].北京:化学工业出版社,107和193,2001
    [56]涂志刚,吴增青.BOPP薄膜中的功能性助剂[J],塑料包装,12(4):40-4,2002
    [57] Sato N, Kurauchi T. Invited Article Interpretation of Acoustic Emission Signal fromComposite Materials and its Application to Design of Automotive CompositeComponents[J], Research in Non-destructive Evaluation,9(3),1997
    [58] Omastova M, Pavlinec J, Pionteck J, et al. Electrical and mechanical properties ofconducting polymer composites[J],Synthetic Metals,102:1251-1252,1999
    [59]房春燕,曾舒.纳米氧化锌/PE复合薄膜性能研究[J].塑料工业,(09),2007
    [60]毕大鹏,李家政,潘明旺.聚乙烯/硅橡胶共混膜的制备及其透气性能[J].材料科学与工程学报,(06),2011
    [61]多层共挤技术专题[J].中国塑料,(8):105-108,2009
    [62]北京化工大学,华南理工大学.塑料机械设计[M].第2版.北京:轻工业出版社,1995
    [63]邹盛欧.茂金属聚乙烯开发近况[J].化工新型材料,(5):3-7,1997
    [64]邓舜扬等.新型塑料薄膜[J].中国轻工业出版社,381和388,1994
    [65]王立,袁幼菱,潘杰,叶朝阳,封麟先.茂金属双峰聚乙烯的研究进展[J].合成树脂及塑料,16(6):37-40,1999
    [66]孙彤彤.茂金属催化剂在合成树脂中的应用[J].塑料包装,(03),2002
    [67]仲伟霞.茂金属聚乙烯的结构与性能研究[D].北京:北京化工大学,2001
    [68] Domka L. Surface modified precipitated calcium carbonates at a high degree ofdispersion[J], Colloids and Polymer Science.271(11):1091-8,1993
    [69]邓浩,王澜.高阻隔包装材料研究进展[J].塑料制造,(03),126-130,2007
    [70]黎勇,苑红垒.多功能多层共挤复合包装薄膜的研制与应用[J],技术与应用,6:69-70,2006
    [71]陈伟,景振华,王涛.茂金属加合物催化剂及其聚乙烯的研究开发[J],合成树脂及塑料,15(2):6-10,1998
    [72]陈伟,王洪涛等.茂金属聚合物技术工业试验[J],合成树脂及材料,21(3):9-13,2004
    [73]陈杰.金属茂聚乙烯的发展及我们的对策[J],现代塑料加工应用,8(5):55-58,1996
    [74]王基铭,袁晴棠.石油化工技术进展[M],北京,中国石化出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700