EVOH/蒙脱土纳米复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文中,用聚乙烯砒咯烷酮和十六烷基三甲基氯化铵处理蒙脱土原土得到有机蒙脱土,分别简写为PVP-MMT及HD-MMT。为了达到更好的插层效果,选用PVP-MMT然后用熔融插层法制备出聚乙烯-乙烯醇/有机蒙脱土纳米复合材料(EVOH/PVP-MMT)。采用X-射线衍射(XRD)、原子力显微镜(AFM)、差示扫描量热法(DSC)分别研究了有机化蒙脱土的组成、纳米复合材料的相态、形貌及结晶行为,同时研究了复合材料溶剂阻隔性和流变性能。
     XRD表明聚合物基体已经插入到有机蒙脱土片层间;复合体系中蒙脱土含量越小,插层蒙脱土间距越大;当复合体系中有机蒙脱土含量≤8%时,形成剥离型纳米复合材料;当有机蒙脱土含量在8%~15%时,形成插层型纳米复合材料;当有机蒙脱土含量大于15%时,复合材料中蒙脱土片层间距无明显变化。AFM表明EVOH/PVP-MMT8%复合材料中PVP-MMT分布均匀且有较光滑的表面。EVOH/蒙脱土复合材料中有类晶区存在,整个EVOH/蒙脱土复合材料呈现一种大尺度的有序性。DSC显示经季铵盐处理过的蒙脱土片层在EVOH/有机蒙脱土纳米复合材料结晶过程中的异相成核作用不明显。在相同结晶条件下,EVOH/PVP-MMT纳米复合材料的结晶速率比EVOH慢:由于MMT的加入使得EVOH/PVP-MMT纳米复合材料的熔融温度(Tm)从EVOH 180.7℃降低到175.2℃,结晶温度(T_c)从EVOH157.9℃降低到153.1℃,而玻璃化转变温度(T_g)却较EVOH升高了大约2.6℃。EVOH/蒙脱土纳米复合材料性能测试表明,有机蒙脱土含量为5%、10%的EVOH/PVP-MM/复合材料对水的阻隔性比EVOH提高大约3.3%;当蒙脱土的含量为20%时,EVOH/PVP-MMT复合材料对水的阻隔性的提高不明显。流变试验表明加工温度在200℃以上,转速20rpm左右,挤出物料表面光滑,韧性优良;EVOH/PVP-MM7插层复合材料熔体为假塑性流体,剪切速率增加,表观粘度下降,即存在剪切变稀现象;有机化蒙脱土含量增加,熔体流动性下降,粘度升高;EVOH/PVP-MMT插层复合材料熔体的表观粘度随温度的升高而降低,蒙脱土含量增加,熔体对温度的敏感性下降。
In the thesis, the montmorillonite (MMT) was treated by polyvinyl pyrrolidone and hexadecyl quaternary ammonium salt respectively to get two kinds of montmorillonite with good intercalation written as PVP-MMT and HD-MMT, and then the ethylene-vinyl alcohol copolymer (EVOH)/PVP-MMT nano-composites were prepared by dynamic melt blending. The phase morphology as well as the crystallization behavior of the nano-composites were characterized by using X-ray diffraction (XRD), atomic force microscope (AFM) and differential scanning calorimetry (DSC).
     XRD indicate that EVOH intercalate into the galleries of montmorillonite, the less content of PVP-MMT, the larger of interlamellar spacing will be. When the content of PVP-MMT is 8%, the exfoliated nano-composites are produced, and the intercalated nano-composites could be prepared as the content is 15%. Additionally, the interlamellar spacing has no clear changes after PVP-MMT content exceeds 15%. AFM indicate that the nanocomposites with 8% PVP-MMT have a more uniform distribution and smooth surface than nanocomposites containing 20% PVP-MMT. The interaction between polymer matrix and MMT observed in nanoscale is obtained, from which the analogical crystallization was found in these micrographs, and the nanocomposites expose ordering structure due to the ordered segment of EVOH. The result of DSC shows that the heterogeneous nucleation acting of montmorillonite lamella treated by quaternary ammonium salt in the crystallization process is not distinct. In same condition, the rate of crystallization of EVOH/PVP-MMT is higher than that of EVOH. The Tc of the nanocomposites decreases from 159.7℃(EVOH) to 153.1℃, and the T_m decreases from 180.7℃to 175.2℃due to the mixing of MMT. However, the T_g of EVOH/PVP-MMT increases about 2.6℃comparing with that of EVOH. The water resisting property of the nanocomposites with 5%, 10% PVP-MMT increase 3.3% comparing to that of neat EVOH, which is good for barrier property as the EVOH/PVP-MMT nanocomposites using as packing materials. What is over, the relative adsorption quantity of water have a little change when the PVP-MMT content reach 20% in nanocomposites. The extrusive material is smooth and its performance is good, when the temperature is set at above 200℃and the shear rate at about 20rpm; The melt of EVOH/PVP-MMT composite is a type pseudoplastic fluid, and the viscosity decreases with the increase of the shear rate, which is a shear-thinning phenomenon; The flowing property decreases and the viscosity increases, when the amount of montmorillonite increases; The viscosity of EVOH/PVP-MMT composite decrease with the increase of the temperature, and the change is puny, so the material can be machininged in wide temperature.
引文
1 漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社,2002:3~25
    2 徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002:9~10
    3 R. Birriiner, H. Gleiter. On the Kondo-Effect in Dilute Alloys of Iron and Nanoscale Copper. Phys. Lett., 1984, 102 A: 365~370
    4 A. Okada, M. Kawasumi, T. Kurauchi, et al. Synthesis and Properies of Nylon6-Clay Hybrid. Prepr., 1987, 28: 447~452
    5 N. Hasegawa, M. Kawasumi, M. Kato, et al. Preparation and Mechanical Properties of Polypropylene-Clay Hybrids Using a Maleic Anhydride-Modified Polypropyleneoligomer. J. Appl. Polym. Sci., 1998, 67: 87~92.
    6 陈光明,漆宗能.聚苯乙烯/蒙脱土纳米复合材料的剪切诱导有序结构(Ⅰ)广角X射线衍射与透射电镜研究.高等化学学校学报,1999,12 (20):1987~1989
    7 马永梅,漆宗能.聚合物/层状无机物纳米复合材料.塑料,2001,(6):56~60
    8 刘晓辉,范家起,李强等.聚乙烯/蒙脱土复合材料Ⅰ制备、表征及动态力学性能.高分子学报,2000,(5):563~569
    9 张径,杨玉昆.插层法悬浮聚合制PMMA/蒙脱土纳米复合材料.高分子学报,2001,(1):79~83
    10 徐卫兵,戈明亮,何平笙.聚丙烯/蒙脱土纳米复合材料性能.中国塑料,2000,14(11):27~31
    11 梁国栋,徐卫兵.聚乙烯/接枝物/蒙脱土纳米复合材料制备与性能.现代塑料加工应用,2001,(1):30~34
    12 H. Naoki, Hirotaka, Okamoto, et al. Preparation and Mechanical Properties of Polypropylene-clay Hybrids Based on Modified Polypropylene and Organphilic Clay. J. of Appl. Polym. Sci, 2000 (18): 1922~1932
    13 朱笑初,景肃.PBT/粘土纳米复合材料的制备和表征.塑料工业,2000(2):36~40
    14 Y. Kurokawa. Preparation of a Nanocomposite of Polypropylene and Smectite. J. od. Mater. Sci. lett., 1996(15): 1481~1485
    15 Y. Kurokawa, H. Yasuda, M. Kashiwagi. Structure and Properties of Montmofillonie/Polypropylene Nanocomposites. J. of Mater. Sci. lett., 1997(16): 1670~1674
    16 J. M. Gloguen, J. M. Lefebvre. Plastic Deformation Behavior of Thermoplastic/Clay Nanocomposites. Polymer, 2001(42): 841~5847
    17 M. Kawasumi, N. Hadegawa. Preparation and Mechanical Properties of Polpropylene Clay. Hybrida Macromolecules, 1997(30): 333~6343
    18 H. B. Liu, D. W. Kim, et. al. Nanocomposite Derived from Inter- calative Spontaneous Polymerization of 2-Ethynlpyridine within Layered Aluminocilicate, 2001(13): 2756~2760
    19 H. X. Feng, Y. Wang, W. D. Fang. The Synthesis of Poly(vinyl acetate)/Montmorillonite Nanocomposites Materials. 2005 International Conference on Advanced Fibers and Polymer Materials, 2005: 730~735
    20 方卫东.溶液聚合原位插层法制备聚合物/蒙脱土纳米复合材料.兰州理工大学硕士学位论文,2005:21~23
    21 陈奎.聚合物/蒙脱土纳米复合材料及蒙脱土价电子理论的研究.兰州理工大学硕士学位论文,2005:19~22
    22 陈奎,杨瑞成,吴明亮等.聚合物/蒙脱土剥离型纳米复合材料逾渗理论分析.兰州理工大学学报,2006,32(1):29~32
    23 杨瑞成,羊海棠,彭采宇等.逾渗理论及聚合物脆韧转变逾渗模型.兰州理工大学学报,2003,31(1):32~26
    24 傅公维.聚丙烯腈/蒙脱土纳米复合材料及蒙脱土吸附动力学的研究.兰州理工大学硕士学位论文,2005:25~27
    25 H. X. Feng, G. W. Fu, R. C. Yang. Preparation of Polyacrylonitrile/Montmorillonite Nanocomposite. International Symposium on Engineering Plastics, 2004: 166~167
    26 彭采宇.丙烯酸-丙烯酰胺共聚物/蒙脱土纳米复合材料的研究.兰州理工大学硕士学位论文,2005:14~16
    27 羊海棠.聚合物/蒙脱土纳米复合材料及逾渗理论的研究.兰州理工大学硕士学位论文,2004:18~20
    28 R. A. Vaia, H. Ishii, E. P. Giannelis. Synthesis and Properties of Two-dimensional. Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates. Chem. Mater., 1993, (5): 1694~1694
    29 R. A. Vaia, K. D. Jandt, E. J. Kramer, et al. Microstructural Evolution of Melt Intercalated Polymer-organically Modified Layered Silicates Nanocomposites. Chem. Mater., 1996, (8): 2628~2635
    30 M. Kawasumi, N. Hasegawa, M. Kato, et al. Preparation and Mechanical Properties of Polypropylene-clay Hybrids. Macromolecules, 1997, 30(6):6333~6338
    31 Y. Kojima, A. Usuki, M. Kawasumi, et al. Fine Structure of Nylon-6-Clay Hybrid. Poly. Sci. Part B, 1994, 32:625~630
    32 L. Liu, Z. Qi, X. Zhu. Studies on Nylon6/clay Nanocomposites by Melt- intercalation Process. J. Appl. Polym. Sci., 1999,71 : 1133~1138
    33 王胜杰,李强,王新宇等.聚苯乙烯/蒙脱土熔融插层复合的研究.高分子学报,1998,(2):129~133
    34 S. J. Wang, L. Qiang, Z. N. Qi. Synthesis and Properties of Silicone Rubber/organomontmorillonite Hybrid Nanocomposites. J. Appl. Polym. Sci.,1998,69: 1557~1561
    35 刘立敏,乔放,朱晓光等.熔体插层制备尼龙6/蒙脱土 纳米复合材料的性能表征.高分子学报,1998,3:304~310
    36 H. G. Jeon, H. T. Jung, S. D. Hudson. Morphology of Polymer/silicate Nanocomposites- High Density Polyethylene and a Nitrile Copolymer. Polymer Bulletin, 1998, 41:107~113
    37 K. Yano, A. Usuki, A. Okada, et al. Synthesis and Properties of Polyimide-clay Hybid. Polym. Sci. Part A, 1993,31 : 2493~2498
    38 M. Kawasumi, N. Hasegawa, A. Usuki, et al. Nematic Liquid Crystal/clay Mineral Composite. Mater. Eng. Sci. C, 1998,6:135~143
    39 王胜杰,李强,漆宗能等.硅橡胶/蒙脱土复合材料的制备、结构与性能.高分子学报,1998,2(2):149~153
    40 E. P. Giannelis, R. Krishnamoorti, E. Manias. Polymer-silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes. Advances in Ploymer Science, 1999, 138:107~109
    41 R. A. Vaia, K. D. Jabdt, E. J. Kramer, et al. Kinetics of Polymer Melt Intercalation. Macromolecular, 1995, 28:8080~8085
    42 R. A. Vaia, K. D. Jabdt, E. J. Kramer, et al. Microstructural Evolution of Melt Intercalated Polymer-organically Modified Layered Silicates Nanocomposites. Chem. Mater.,1996, 8:2628~2635
    43 R. M. Barrer, R. J. B. Craven. Smectite Molecular Sieves. Ⅳ: Kinetics of Intercalation in Microporous Fluorhectorites. J. Chem. Soc., 1992, 88:645~651
    44 C. Breen, T. Deane, J. J. Flynm, et al. Vapor-phase Sorption Kinetics for Tetrahydrofuran, Tetrahydropyran, and 1,4-dioxan by Al (super 3+) - and Cr (super 3+) -exchanged Montmorillonite. Clays and Clay Minerals, 1987, 35(5): 343~346
    45 P. F. Green, E. J. Kramer, J. Edward. Temperature Dependence of Tracer Diffusion Coefficients in Polystyrene. J. Mater. Res., 1986, 1 : 202~204
    46 M. Antonietti, J. Coutandin, R. Grutter, et al. Diffusion of Labeled Macromolecules in Molten Polystyrenes Studied by a Holographic Grating Technique. Macromolecule, 1984, 17(4): 798~802
    47 朱笑初,景肃,孟娟等.PBT/粘土纳米复合材料的制备和性能表征.塑料工业,2000(2):36~40
    48 胡春木,卢梅菊.PP/EVOH共挤片材生产技术探讨.塑料,1998,27(4):41~45
    49 徐卫兵,戈明亮,何平笙.聚丙烯/蒙脱土纳米复合材料的制备与性能.中国塑料,2000,14(11):27~28
    50 王留阳,何索芹,朱诚身等.尼龙66/蒙脱土纳米复合材料的制备与表征.中国塑料,2001,15(10):23~24
    51 N. Artzi, Y. Nir, M. Narkis, et al. Melt Blending of Ethylene-Vinyl Alcohol Copolymer/Clay Nanocomposites: Effect of the Clay Type and Processing Conditions. Journal of Polymer Science Part B Polymer Physics, 2001, 6(27):1741~1753
    52 白晓丽.聚合物/粘土纳米复合材料结晶行为研究.郑州大学研究生硕士论文,2002:3~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700