猪瘟病毒石门株E2基因在永生化猪血管内皮细胞的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Classical swine fever, CSF)是由猪瘟病毒(Classical swine fever virus, CSFV)引起的猪的急性高度接触性传染病,严重危害着世界养猪业的发展,被世界动物卫生组织(OIE)列为法定必须报告的传染病。CSFV为有囊膜的RNA病毒,病毒基因组仅有一个大的开放阅读框(ORF),编码E0(或Erns)、E1和E2 3种囊膜糖蛋白,其中E2基因是猪瘟病毒的主要保护性抗原,可以有效刺激机体产生中和抗体,抵抗CSFV强毒株的攻击。由于传统弱毒活疫苗接种后无法在血清学诊断上与自然感染强毒株相区别,弱毒活苗还能通过母体胎盘的感染造成死胎、弱仔、先天性感染仔猪,导致免疫耐受,而基因工程疫苗的出现为这一问题的解决提供了新的思路。因此,本试验选取E2基因在逆转录病毒的介导下转染永生化猪脐血管内皮细胞(swine umbilical vein endothelial cells, SUVECs),并表达在该细胞膜上,初步构建基因工程疫苗。且本试验所选用的永生化猪脐血管内皮细胞为一种生理状态下的细胞系,不具有致瘤性,不存在生物安全方面的问题,这在研究和开发猪瘟基因工程细胞苗方面具有相当大的潜力。本试验获得了以下结果:
     1.重组逆转录病毒载体pBABE-puro-E2的构建。RT-PCR扩增猪瘟病毒石门株E2基因,将其连接到重组逆转录病毒载体pBABE-puro中,经PCR扩增和酶切鉴定,证明E2基因成功插入重组逆转录病毒载体pBABE-puro中,重组载体构建成功。聚乙二醇法提取和纯化质粒,以备包装假病毒用。
     2.假病毒的包装。构建好的重组逆转录病毒载体pBABE-puro-E2与pVSV-G质粒经磷酸钙共转染法,转入293GP细胞中包装成逆转录病毒假病毒,36~48 h后收取上清,分装备用。
     3.表达E2基因阳性细胞的筛选和初步免疫试验。包装好的假病毒转入永生化猪脐血管内皮细胞,嘌呤霉素筛选出阳性细胞,对筛选出的阳性细胞进行流式细胞分析和分选;经间接免疫荧光染色试验和RT-PCR鉴定,猪瘟病毒石门株E2基因在永生化猪脐血管内皮细胞膜上表达成功。将表达E2蛋白的永生化的猪脐血管内皮细胞作为基因工程细胞苗腹腔免疫4周龄的Balb/c小鼠,免疫3次后,用ELISA法检测免疫鼠的血清,小鼠产生了抗猪瘟病毒E2蛋白的抗体,效价达1∶3 500。
Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious vital disease of pigs. It is harmful to the global pig farmings and is listeded among type-A diseases of Office International des Epizooties(OIE).
     The genome of CSFV consists of a single-stranded positive RNA of about 12.3 kb, enco- ding three envelope glyprotein, i.e. E2, E0(Erns)and E1. E2 is the major protective antigen of the virion. It can stimulate organism to produce neutralizing antibody to resist CSFV velogenic strain aggression. Because it is impossible to discriminate between immunization with conventional vaccination and natural infection on serodiagnosis, and attenuated vaccines can through placenta to results in fetal death、weak piglet、congenitally infected pigs which can induce immunotolerance. But genetically engineering vaccine is a new method to solve these problems. So, the paper chose E2 as target gene to be expressed on immortality swine vein endothelial cells (SUVEC), to construct initial genetically engineering vaccine. And it has suitable developing potential on application, because the SUVEC is the physiological cell line without oncogenicity. The genetically engineering vaccines have no problem on biosafty. Main research contents include:
     1. The construction of recombinant retroviral vector pBABE-puro-E2. By a series of molecular biological methods, E2 gene of CSFV Shimen strain was inserted into retroviral vector pBABE-puro named pBABE-puro-E2. And the result of enzyme digestion and PCR identification showed the construction was successful. So, the recombinant plasmid was extracted with alkaline lysis method and purified with PEG 8 000, for the next transfection to procure retrovirus pseudovirion.
     2. Packing retrovirus pseudovirion. The recombinant plasmid pBABE-puro-E2 and the pVSV-G plasmid were transferred into 293GP cells by calcium phosphate cotransfection, and procured the packing retrovirus pseudovirion.
     3. Selected the positive cells of expressing E2 protein and rudiment immunity test. Packing retrovirus pseudovirion infected the SUVEC and the positive cells were gotten by optimal concentration of puromycin, then the cells were analyzed by flow cytometry. Identified by indirect immunofluorescence test and RT-PCR, the CSFV shimen strain of E2 proteins were successfully expressed on SUVEC. The positive SUVEC as a gene engineering vaccine were inoculated into the Balb/c mice by intraperitoneal injection. After the third immunization, the mice were killed to collected sera and detected for anti-CSFV antibodies by ELISA. The result indicated that the sera of mice contained anti-CSFV antibodies and the valence of antibody is 1:3 500.
引文
[1] 殷震, 刘景华主编. 动物病毒学(第 2 版)[M]. 北京, 科学出版社, 1997.
    [2] 常华, 花群义, 段纲. 非洲猪瘟病毒的分子生物学研究进展[J].微生物学通报, 2007, 34(3): 572-575.
    [3] Van Rijin P A. A common neutralizing epitope on envelope glycoprotein E2 of different pestiviruses: Implications for improvement of vaccines and diagnostics for classical swine fever (CSF)?[J]. Veterinary Microbiology, 2007, 125(1-2): 150-156.
    [4] Colijin E O Dekker A, Wensvoort G, Terpstra C. Six antigenic groups within the genus pestivirus as identified by cross neutralization assays[J]. Veterinary Microbiology, 1995, 47(3-4): 317-329.
    [5] 蔡宝祥主编. 家畜传染病学(第 4 版)[M]. 北京, 中国农业出版社, 2002.
    [6] 易延彬, 张清洁, 杜松献. 当前猪瘟病毒的流行现状及防控策略[J].河南畜牧兽医综合版, 2007,28(5):17-18.
    [7] 刘湘涛, 赵启祖, 李忠润等. 猪瘟病毒和猪瘟的防制[A].谢庆阁,翟中和主编. 畜禽重大疫病免疫研究进展[M].北京:中国农业科技出版社, 1996, 321-338.
    [8] 王在时.猪瘟防治研究的回顾与展望[A].中国兽药监察所研究报告汇编, 第 14 辑, 陈永调, 郑明,王在时主编. 北京, 中国兽药监察所, 1999, 1-28.
    [9] Klinkenberg D, de Bree J, Laevens H, et al. Within- and between-pen transmission of Classical Swine Fever Virus: a new method to estimate the basic reproduction ratio from transmission experiments[J]. Epidemiol Infect, 2002, 128(2): 293-299.
    [10] de Smit A J, Bouma A, Terpstra C, et al. Transmission of classical swine fever virus by artificial insemination[J]. Vet Microbiol, 1999, 67(4): 239-249.
    [11] Elbers A R, Stegeman J A, de Jong M C et al. Factors associated with the introduction of classical swine fever virus into pig herds in the central area of the 1997/98 epidemics in The Netherlands[J]. Vet Rec, 2001, 149(13): 377-382.
    [12] Armin R W Elbers, Arjan Stegeman, Hans Moser, et al. The classical swine fever epidemic 1997-1998 in the Netherlands: descriptive epidemiology[J]. Preventive Veterinary Medicine, 1999, 42(3-4): 57-184.
    [13] Terpstra A, de Smit A J.The 1997/1998 epizootic of swine fever in the Netherlands:control strategies under a non-vaccination regimen[J].Veterinary Microbiology, 2000, 77(1-2): 3-15.
    [14] Kern B, Depner K R, Letz W, et al. Incidence of classical swine fever (CSF) in wild boar in a densely populated area indicating CSF virus persistence as a mechanism for virus perpetuation[J]. Zentralbl Veterinarmed, 1999, 46(1): 63-67.
    [15] Brandes H K, Hamnan F C, Lu T Y, et al. Efficient expression of the gene for spinach phosphoribulok- inase in Pichia pastoris and utilization of the recombinant enryme to explore the role of regulatory cysteinyl residues by site-directed mutagenesis[J]. J Biol Chem, 1996, 271: 6490-6796.
    [16] Brandkamp R G, Sreekrishna K, Smith P L, et al. Expression of a synthetic gene encoding the anticoa- gulant-antimetastatic protein ghilanten by the methylotropic yeast Pichia pastoris[J]. Protein Expressi- on Purification,1995, 6(6): 813-820.
    [17] Stegeman J A, Bouma A, Elbers A R, et al. The leukocyte count is a valuable parameter for detectingclassical swine fever[J]. Tijdschr Diergeneeskd, 2000, 125(17): 511-518.
    [18] Armengol E, Wiesmuller K H, Wienhold D, et al. Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus[J]. Journal of General Virology, 2002, 83(3): 551-560.
    [19] Van Rijn P A, van Gennip H G P, de Meijer E J, et al. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brecia[J]. Journal of General Virology, 1993, 74: 2053-2060.
    [20] 花象柏. 对“繁殖障碍型猪瘟”的病原发病机理的思考[J].江西畜牧兽医杂志, 1996, 2: 10-12.
    [21] Martin Beer, Ilona Reimann, Bernd Hoffmann, et al. Novel marker vaccines against classical swine fever[J].Vaccine, 2007, 25(30): 5665-5670.
    [22] Terpstra C, deSmit A J. The 1997/1998 epizootic of swine fever in the Netherlands: control strategies under a non-vaccination regimen[J]. Veterinary Microbiology, 2000, 77 1-2):3-15.
    [23] Saatkamp H W, Dijkhuizen A A, Geers R, et al. Simulation studies on the epidemiological impact of national identification and recording systems on the control of classical swine fever in Belgium[J]. Pr- eventive Veterinary Medicine, 1996, 26(2): 119-132.
    [24] Saatkamp H W, Berentsen P B M, Hors t H S,et al. Economic aspects of the control of classical swine fever outbreaks in the European Union [J]. Veterinary Microbiology, 2000, 73(2-3): 221-237.
    [25] Moennig V. Introduction to classical swine fever: virus, disease and control policy[J]. Vet Microbiol, 2000, 73(2-3): 93-102
    [26] Moormann R J M, Annemarie Bouma, Kramps J A, et al. Development of a classical swine fever sub- unit marker vaccine and companion diagnostic test[J]. Veterinary Microbiology, 2000, 73 (2-3): 209- 219.
    [27] 付烈振, 张楚瑜, 朱燕.猪瘟和猪瘟病毒的分子生物学[A]. 谢庆阁、翟中和主编. 畜禽重大疫病免疫研究进展[M]. 北京: 中国农业科技出版社, 1996, 32-40.
    [28] 李成. 应用电镜技术对猪瘟病毒的研究[J].中国兽医科技, 1989, 7: 24-25.
    [29] 王镇, 闵光伟, 李明义, 等. 猪瘟病毒的形态结构与形态发生[J]. 微生物学报, 2000, 40(3): 237- 242.
    [30] 聂玉春, 王镇, 周海霞, 等. 猪瘟病毒的形态结构及侵染机理研究[J]. 电子显微学报, 2002, 21(5):555-556.
    [31] Freitas T R P, Caldas L A, Rebello M A. Prostaglandin A1 inhibits replication of classical swine fever virus[J]. Memórias do Instituto Oswaldo Cruz, 1998, 93(6): 815-818.
    [32] Meyers G, Rümenapf T, Thiel H J, et al. Molecular cloning and nucleotide sequence of the genome of hog cholera virus[J]. Journal of Virology, 1989. 171(2): 555-567.
    [33] Moormann R J, Warmerdam P A, van der Meer B, et al. Nucleotide sequence of hog cholera virus RN- A:properties od the polyprotein encoded by the open reading frame spanning the viral genomic RNA [J]. Vet Microbiol, 1990, 23(1-4): 185-191.
    [34] Moormann R J, Warmerdam P A, van der Meer B, et al. Molercular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelops protein E1 [J]. Journal of Virology, 1990,177(1): 184-198.
    [35] 黄茜华, 张楚瑜, 王家富, 等. 猪瘟病毒石门株全基因组 cDNA 文库构建、序列测定及分析[J].科学通报, 1999, 44(17): 1823-1826.
    [36] Terpstra C. Hog cholera:an update of present knowledge[J]. Br Vet J, 1991, 147(5): 397-406.
    [37] 吕宗吉, 涂长春, 余兴龙. 猪瘟病毒基因组结构与功能的研究进展[J]. 广东畜牧兽医科技, 2001, 26(4): 8-12.
    [38] 王镇, 丁明孝. 猪瘟病毒的分子生物学研究进展[J]. 微生物学通报, 1998, 25(1): 57-59.
    [39] Elbers K, Tautz N, Becher P, et al. Processing in the pestivirus E2- NS2 region: identifacation of protein p7 and E2p7[J]. Journal of Virology, 1996, 70: 4131-4135.
    [40] Dahle J, Liess B. Comparitive study with cloned Classical swine fever virus strains ALFORT and GLENTORF: clinical,pathological,virological and serological finding in weaner pigs[J]. BerlMunch Tierarztl Wochenschr, 1995, 82: 232-238.
    [41] Rijnbrand R, Straaten T, Rijn P, et al. Internal entry of ribosomes is directed by the 5' noncoding region of classical swine virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation colon [J]. Journal of Virology, 1997, 71: 451-457.
    [42] Sizova D V, Kolupaeva V G, Pestova T V, et al. Speck interaction of eukaryotic translation initiation factor 3 with the 5'nontranslated regions of hepatitis C virus and classical swine fever virus RNAs[J]. Journal of Virology, 1998, 72(6): 4775-4782.
    [43] Lucy P B, Andreas H, David J R, et al. Viral Internal Ribosome Entry Site Structures Segregate into Two Distinct Morphologies [J]. Journal of Virology , 2003, 77(11): 6574-6579.
    [44] Simon P , Richard J J. Pestivirus Internal Ribosome Entry Site Structure and Function: Elements in the 5’untranslated Region important for IRES Function[J]. J Virol, 2002, 76(10): 5024-5033.
    [45] Deng R, Brock K V. 5' and 3' untranslated regions of pestivirus genome: primary and secondary structure analyses[J]. Nucleic Acids Res, 1993, 21(8): 1949-1957.
    [46] Brown E A, Zhang H, Ping L, et al. Secondary structure of the 5'nontranslated regions of hepatitis C virus and pestivirus genomic RNAs[J]. Nucleic Acid Res, 1992, 20(19): 5041-5045.
    [47] Reusken C B, Dalebout T J, Eerligh P, et al. Analysis of hepatitis C virus/classical swine fever virus c- himeric 5'NTRs: sequences within the hepatitis C virus IRES are required for viral RNA replication[J]. Gen Virol, 2003, 84(7): 1761-1769.
    [48] Nagai M, Hayashi M, Sugita S, et al. Phylogenetic analysis of bovine viral diarrhea viruses using five different genetic regions[J]. Virus Res, 2004, 99(2): 103-113.
    [49] Xiao M, Gao J, Wang W Y, et al. Specific interaction between the classical swine fever virus NS5B protein and the viral genome[J]. Eur J Biochem, 2004, 271(19): 3888-3896.
    [50] Becher P, Orlich M, Kosmidou A, et al.Genetic diversity of pestiviruses: identification of novel groups and implications for classification[J]. Virology, 1999, 262(1): 64-71.
    [51] Julia F. Ridpath. BVDV genotypes and biotypes: practical implication for diagnosis and control[J]. Biologicals, 2003, 31:127-131.
    [52] Becher P, Orlich M, Anthony D, et al. Phylogenetic analysis of pestiviruses from domestic and wild ruminants[J]. Journal of General Virology, 1997, 78: 1357-1366.
    [53] valos-Ramirez R, Orlich M, Thiel H J, et al. Evidence for the presence of two novel pestivirus species[J]. Virology, 2001, 286(2): 456-465.
    [54] Vilcek S, Belak S. Organization and diversity of the 3'-noncoding region of classical fever virus genome [J]. Virus Genes, 1997, 15(2):181-186.
    [55] Depner K, Paton D J, Cruciere C, et al. Evaluation of the enzyme-linked immunosorbent assay for the rapid screening and detection of the Classical swine fever virus antigens in the blood of pigs[J]. RevSci Tech, 1995, 14: 677-689.
    [56] Laevensh H, Koenen F, Deluyker H, et al. An experimental infection with Classical swine fever virus weaner pigs.I.Transmission of the virus, course of the disease and antibody response[J].Vet Q, 1998, 20(2): 41-45.
    [57] Laevens H, Koenen F, Deluyker H, et al. Experimental infection of slaughter pigs with Classical swine fever virus: ransmission of the virus,course of the disease and antibody response [J]. Vet Rec, 1999, 145(9): 243-248.
    [58] Lin T C, Shimizu Y, Kumagai T, et al. Pathogenesis of Hog cholera virus infection in experimentally inoculated swine[J]. NatlInst Animhealth Tokyo, 1969, 9: 20-27.
    [59] Koning M, Lengsfeld T, Pauly T, et al. Classical swine fever virus: independent induction of protective immunity by two structural glycoprotein[J]. J Virol, 1995, 10: 6479-6488.
    [60] Calera J A, Paris S Monod. Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus[J]. Infect.Immun, 1996, 65: 4718-4724.
    [61] Van Rijin P A, Nan Gennip Rene G P, de Meijer E J, et al. A preliminary map of epitopes on envelope glycoprotein E1 of HCV strain Brescia[J]. Veterinary Microbiology, 1992, 33: 221-230.
    [62] Van Rijn P A, Miedema G K, Wensvoort G, et al. Antigentic structrure of envelope glycoprotein E1 of hog cholera virus. Journal of Virology, 1994, 68: 3934-3942.
    [63] Campbell S M, Rosen J M, Hennighauson L G, et al. Comparison of the whey acidic protein gene of rat and mouse[J]. Nucleic Acids Res, 1984, 12: 8685-8697.
    [64] Carmona E, Dufour E, Plouffe C et al. Potency and selectivity of the cathepsin L1 propertide as an inhibitor of cysteine proteases[J]. Biochemistry, 1996, 35: 8149-8157.
    [65] CHang H. Kim, Younghoon Oh, Tae H Lee, et al. Codon optimization for high-level expression of human in mammalian cells[J]. Gene, 1997, 199(1-2): 293-301.
    [66] Huslt M M, Himes G, Newbigin E, et al. Glycoprotein E2 of classcial swine fever virus: expression in insect cell and identification as a ribonuclease[J].Virol, 1994, 200: 558-565.
    [67] Koning M, Lengsfeld T, Pauly T, et al. Classical swine fever virus: independent induction of protective immunity by two structural glycoprotein[J]. J Virol, 1995, 10: 6479-6488.
    [68] 胡建和, 陈永耀, 王子良. 新型猪瘟疫苗的研究和应用前景[J]. 中国兽医科技, 2003, 33(3): 36-39.
    [69] 徐志文, 郭万柱, 石谦, 等. 猪瘟病毒基因组及基因工程疫苗的研究进展[J]. 四川畜牧兽医, 2005(3): 32-35.
    [70] Van Rijn P A, Van Genniph G P, Moormann R J M. An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virusCSFV)[J]. Vaccine, 1999, 17(5): 433-440.
    [71] Chen C Y, Oppertnann H, Hitzeman R A, et al. Homologous versus heterologous gene expression in the yeast, S.cereviside [J].Nucleic Acids Res, 1984, 12: 8951-8970.
    [72] Schneider R, Unger G, Stark R, et al. Identification of a structural glycoprotein of an RNA virus as ribonuclease[J]. Sci, 1993, 261: 1169-1171.
    [73] Hulst M M, Panoto F E, Hoekman A, et al. Inactivation of the RNase activity of glycoprotein E(rns) of Classical swine fever virus results in a glytopathogenic virus[J]. J Virol, 1998, 72(1): 151-157.
    [74] Hulst M M, Westra D F, Wensvoort G, et al. Glycopretein E1 of Hog cholera virus expressed in insectcell protects swine from Hog cholera [J]. J Virol, 1993, 67: 5435-5442.
    [75] 聂玉春,柯叶艳,陈建国,等. 猪瘟病毒中国标准强毒株-F114 株全长 cDNA 的构建[J]. 微生物学报,2001,41(4): 452-456.
    [76] Vilcek S, Belak S. Organization and diversity of the 3’noncoding region of Classical swine fever virus genome[J]. Virus Genes, 1997, 15(2): 181-186.
    [77] Bruschke C J, Hulst M M, Moormann R T, et al. Glycoprotein Erns of Pestivruses induces apopotosis in lymphocytes of several species[J]. J Virol, 1997, 71(9): 669-669.
    [78] 陆宇, 陈建国, 丁明孝. 猪瘟病毒及其疫苗研究进展[M].中国病毒学, 1996, 11(3): 201-207.
    [79] Greiser Wilker I, Depner K, Fritzemeier J, et al. Application of a computer program for genetic typing of Classical swine fever virus isolated from Germany[J]. J Vir Methods, 1998, 75(2): 141-150.
    [80] Deng R B. Rock K V. 5’and 3’untranslated region of pestivirus genome primary and secondary structure analyze [J]. Nucleic Acids Res, 1993, 21: 1949-1957.
    [81] Mormann R J M, Warmerdam P A M, Van Der Meer B, et al. Molecular cloning and nucleotide sequence of Hog cholera virus strain brescia and mapping of the genomic region encoding envelope protein E1[J]. Virology, 1990, 177: 184-198.
    [82] Lowings P, Ibata G, Needham J, et al. Classical swine fever virus diversity and evolution[J]. J Gen Virol, 1996, 77(6): 1311-1321.
    [83] Flores E F. Swine and ruminant pestiviruses require the same cellular factors to enter bovine cells[J]. J Gen Virol, 1996, 77:1295-1303.
    [84] Summerfield A, Knoetig S M, Tschudin R, et al. Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells[J]. Virology, 2000, 272(1): 50-60.
    [85] Gisler A C, Nardi N B, Nonnig R B, et al. Classical swine fever virus in plasma and peripheral blood mononuclear cells of acutely infected swine[J]. Zentralbl Veterinarmed, 1999, 46(9): 585-593.
    [86] Flores E F. Swine and ruminant pestiviruses require the same cellular factors to enter bovine cells[J]. J Gen Virol, 1996, 77: 1295-1303.
    [87] Fletcher S P, Jackson R J. Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5'untranslated region important for IRES function[J]. J Virol, 2002, 76(10): 5024-5033.
    [88] Rumenapf Y .Processing of the envelope glycoproteins of pestivirus[J]. J Virol, 1993, 67: 3288-3294.
    [89] Dewulf J, Laevens H, Koenen F, et al. An experimental infection with classical swine fever in E2 sub-unitmarker-vaccine vaccinated and in non-vaccinated pigs[J]. Vaccine, 2000, 19(4-5): 475-482.
    [90] 李红卫,刘湘涛,李小兵等. 我国猪瘟病毒兔化弱毒株囊膜糖蛋白 E0 基因的克隆及序列测定[J]. 中国病毒学, 1999,14(2): 169-173.
    [91] Milev N, Peev I, Gergov P, et al. Cultivation and demonstration of the classic swine fever virus[J]. Vet Med Nauki, 1987, 24(4): 21-26.
    [92] V Moennig. Pestiviruses: a review[J]. Vet Microbiol, 1990, 23: 35-54.
    [93] H Stanstrom. C-type particles produced by apartmmanent cell line frim a leukemic pig origin and properties or the host cells and some evidence for the occurrence of C-type like particies[J]. Viro1, 1974, 57: 175-178.
    [94] Roehe P M, Edwards S. Comparison of pestivirus multiplication in cells of different species[J].Research In Veterinary Science, 1994, 57: 210-214.
    [95] Sakoda Y, Hikawa M, Tamura T, et al. Establishment of a serum-free culture cell line, CPK-NS, which is useful for assays of classical swine fever virus[J]. Journal of virological Methods, 1998, 75:59-68.
    [96] Colijin E O, Bloemraad M, Wensvoort G,et al. An improved ELISA for the detection of serum antibodies directed against classical swine fever virus[J ] . Vet Microbiol, 1997 , 59 :15-25.
    [97] K D alsgaard, E O verby. Vaccination of pigs against hog cholera (classical swine fever) with a etergent split vaccine[J ] . Acta Vet Scand , 1976 , 17 :465-474.
    [98]朱良, 彭隽, 王栋.猪瘟疫苗研究进展及我国传统疫苗的研究现状[J]. 中国兽药杂志. 2005, 39(2):33-37.
    [99] S Tesmer, D Urbaneck, V Kaden, et al. Effect of attenuated hog cholera virus vaccine from the inoculation virus strain“C”on pregnant sows and their progeny[J ]. MonVeterin , 1973 , 28 :251-254.
    [100] 于家良. 猪瘟免疫失败的原因及对策[J]. 养殖与饲料. 2007, 4: 42-43.
    [101] 罗勇, 陈创夫, 杨建疆, 等. 猪瘟疫苗超前免疫效果观察[J]. 畜牧兽医杂志, 2006, 15: 6-7.
    [102] Ahrens U, Kaden V, Drexler C, et al. Efficacy of the Classical swine fever (CSFV) marker vaccine Porcilis Pesti in pregnant sows[J]. Vet Microbiol, 2000, 77(122): 83-97.
    [103] Widjojoatmodjo M N, Van Genniph G, Bouma A, et al. Classical swine fever virus E(rns) deletion mutants: Transcomplementation and potential use as nontransmissible,modif-ied,live-attenuated marker vaccines[J]. J Virol, 2000, 74(7): 2 973-2 980.
    [104] Van Genniph G, Bouma A,van Riji PA, et al. Experimental nontransmissible marker vaccine for Classical swine fever (CSF) by transcomplementation of E(rns) or E2 of CSFV[J]. Vaccine, 2002, 20(11-12): 1544-1556.
    [105] 王红宇, 吴琦, 刘晶, 等. 规模化猪场猪瘟防制中应注意的问题[C ]. 中国畜牧兽医学会家畜传染病学分会第八次学术研讨会论文集, 1999, 234-237.
    [106] Luckow V A, Lee S C, Barry G F, et al. Efficient generation of insectious recombinant baculovirus by site-specific t ransposon mediated insertion of forgein gene into a baculovirus genome propagated in Escherichia coli [J ]. J Virol, 1993, 67(8): 4566~4579.
    [107] Huslt M M, westra D F, Wenvoort G, et al. Glycoprotein E2 of hog cholera virus expressed in insect cells protects swine from hog cholera [J]. J Virol, 1993, 67: 5435-5442.
    [108] Moormann R J , Bouma A. Developmeng of a classical swine fever subunit marker vaccine and companiondiagnostic test [J ]. Vet Microbiol , 2000 , 73(223): 209-219.
    [109] Bouma A, De Smit A J, De Jong M C, et al. Determination of the onset of the herd-immunity induced by E2 subunit vaccine against classical swine fever virus[J ]. Vaccine, 2000, 18(14): 1374-1381.
    [110] De Smit A J, Van Gennip H G P, Miedema G K W, et al. Prevention of transplacental transmission of moderate-virulent classical swine fever virus (CSFV) after a single or double vaccination with a CSF E2 subunit vaccine[J ]. Vet Quart, 2000, 22: 150-153.
    [111] Ziegler U, Kaden V. V accination of weaner pigs against classical swine fever with the subunit vaccine "Porcilis Pesti": influence of different immunization plans on excretion and transm ission of challenge virus [J ]. Berl Munch Tierarztl Wochenschr, 2002, 115(728): 267-273.
    [112] 余兴龙, 涂长春, 徐兴然, 等. 猪瘟病毒 E2 基因的点突变、在大肠杆菌中的高效表达及其表达 产物的免疫原性[J ]. 生物工程学报, 2003 , 19(4): 339-443.
    [113] 陈创夫, 余兴龙, 马正海, 等. 细胞因子与猪瘟病毒 E2 基因真核双表达载体的构建及其免疫增强作用[J ]. 中国农业科学, 2002 , 35(11): 1406-1410.
    [114] Rumenapf E T, Stark R, Meryers G, et al. Structural protein of hog cholera virus expressed by vaccine virus further characterization and induction of protein immunity[J]. Virol,1991, 65:589-597.
    [115] Matthias K, Thomas L, Thomas P, et al. Classical swine fever virus: independent induction of protective immunity by two structural glycolprotein[J ]. Virol , 1995 , 69(10):6479-6486.
    [116] Hahn J, Park S H, Song J Y, et al . Construction of recombinant swine poxviruses and expression of the classical swine fever virus E2 protein[J ]. J Virol Methods, 2001, 93(1-2): 49-56.
    [117] van Ziji M, Wensvoort G, de Kluyver E, et al. Live attenuated pseudo rabies virus expressing envelop glycol protein E1 of hog cholera virus protects swine against both pseudo rabies and hog cholera[J ]. Virol, 1991, 65(5): 2761-2765.
    [118] Peeters B, Bienkowsla S K, Hulst M M, et al. Biologically safe, non-transmissible pseudorabies virus vector vaccine protects pigs against both Aujeszkys disease and classical swine fever [J ]. Gen Virol, 1997, 12(78): 3311-3315.
    [119] Moormann R J M , Van Gennip H G P , Miedema G K W , et al . Infections RNA transcribed from an engineered full-Length cDNA template of the genome of a pestivirus [J ] . Journal of Virolgy , 1996 , 70(2): 763-770.
    [120] Hammond J M, Mccoy R J, Jansen E S, et al. Vaccination with a single dose of a recombinant porcine adenovirus expressing the classical swine fever virus gp55 (E2) gene protects pigs against Classical swine fever[J ]. Vaccine, 2000, 18(11-12): 1040-1050.
    [121] Hammond J M, Jansen E S, Morrissy C J, et al. Oral and subcutaneous vaccination of commercial pigs with a recombinant porcine adenovirus expressing the classical swine fever virus gp55 gene[J ]. Arch Virol, 2001, 146(9): 1787-1793.
    [122] Hammond J M , Mccoy R J, Janson E S , et al . Vaccination with a single dose of a recombinant procine adenovirus expressing the classical swine fever virus gp55 (E2) gene protects pigs against classical swine fever [ J ] . Vaccine , 2000 , 18(11-12): 1014~1050.
    [123] 邢钊, 张健, 范琳主编. 兽医生物制品实用技术 [M] . 北京: 中国农业出版社, 2000 : 70-74.
    [124] Hodgman T C A. New superfamily of replicative proteins [J ]. Nature, 1988, 333(5): 22-23.
    [125] Andrew M E, Morrissy C J, Lenghaus C, et al. Protection of pigs against classical swine fever with DNA-delivered gp55 [J ].Vaccine, 2000, 18:1932-1938.
    [126] Markowska-Daniel I, Collins R A, Pejsak Z. Evaluation of genetic vaccine against classical swine feve[J]. Vaccine, 2001, 21(17-19): 2480-2484.
    [127] J M Hammond, E SJansen , C J Morrissy , et al . A prime-boost vaccination strategy using naked DNA followed by recombinant porcine adenovirus protects pigs from classical swine fever [J ]. Veterinary Microbiology, 2001, 80(2): 101-119.
    [128] 王宁, 张楚瑜, 付烈阵, 等. 猪瘟病毒囊膜蛋白DNA疫苗的研制[J]. 中国预防兽医学报, 1999 21(3): 201-203.
    [129]周鹏程, 聂玉春, 曹圻, 等. 特异寡聚核苷酸对猪瘟病毒在细胞中增殖抑制作用的研究[J]. 中国病毒学,2001,16(3): 270-274.
    [130] YU Xing-long, TU Chang-chun, LI Hong-wei, et al. DNA-mediated protection against classical swine fever virus [ J ]. Vaccine, 2001, 19(11-12): 1520-1525.
    [131] 程从升, 王文成, 李素, 等. 猪瘟 DNA 疫苗在猪体及环境的生物安全性研究[J]. 微生物学报,2005, 45(2): 292-297.
    [132] Moormann R J, Bouma A, Kramps J A, et al. Development of a classical sw ine fever subunit marker vaccine and companion diagnostic test [J ]. Vet M icrobiol, 2000, 73(223): 209-219.
    [133] de Smit A J, Bouma A, de Kluijver E P, et al. Duration of the protection of E2 subunit marker vaccine against classical swine fever after a single vaccination [ J ]. Vet Microbiol, 2001, 78(4): 307-317. [134 ] Widjojoatmodjo M N, Van Gennip H G, Bouma A, et al. Classsical swine fever virus Erns deletion mutants: transcomp lamentation and potential use as nontransmissible, modified, live-attenuated marker vaccines[J ]. J Virol, 2000, 74(7): 2973-2980.
    [135] de Smit A J, Bouma A, V an Gennip H G, et al. Chimeric (marker) C-strain viruses induced clinical protection against virulent classical swine fever virus (CSFV) and reduce transm ission of CSFV between vaccinated p igs [ J ]. V accine, 2001, 199(11-12): 1467-1476.
    [136] Van Gennip H G, Bouma A, Van Riji P A, et al. Experimental non-transm issible marker vaccine for classical sw ine fever (CSF) by trans-complementation of Erns or E2 of CSFV [ J ]. V accine, 2002, 20(11-12):1544-1556.
    [137] De Smit A G, Bouna A, De Kluijver E P, et al. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination[J]. Vet Microgiology, 2001, 78: 307-317.
    [138] Smit A J, Bouma A, de Kluijver EP, et al. Prevention of transplacental transmission of moderate virulent classical swine fever virus after single or double vaccination with an E2 subunit vaccine[J]. Vet Q,2000, 22(3): 150-153.
    [139] 刘伯华, 刘湘涛, 韩雪清, 等. 急、慢性猪瘟病毒分离株和疫苗株 E2 基因的序列分析[J]. 畜牧兽医学报, 2001, 32(6): 568-575.
    [140] Hulst M M, Moormann R J M. Inhibition of Pestivirus Infection in Cell Culture by Envelope Proteins Erns and E2 of Classical Fever Virus: Erns and E2 Interact with Different Receptors[J]. Journal of General Virology, 1997, 78: 2779-2787.
    [141] 洪海霞. 永生化猪脐静脉血管内皮细胞系的建立及其生物学特征分析(D). 陕西: 西北农林科技大学动物医学院, 2007.
    [142] 田宏, 刘湘涛, 林彤, 等. 重组猪瘟病毒 E2 基因逆转录病毒载体的构建及其表达活性[J]. 中国兽医学报, 2007, 27(4): 460-463.
    [143] 杨慧, 段德义, 吴杰军, 等.逆转录病毒载体ex vivo途径表达TH和GDNF基因[J].神经解剖学杂 志, 2004, 20(3): 215-219.
    [144] 刘建玲. 猪瘟病毒 E2 基因在 PK-15 细胞中的表达及本体动物的免疫研究(D). 陕西: 西北农林科技大学动物医学院, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700