颈前路钛网植骨重建术后沉陷的临床意义及新型钛网研制和相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:颈椎伤病的治疗关键在于减压以及减压后颈椎的稳定性重建,即根据患者具体病情,通过手术去除患者不同节段的颈椎致压物,而后采用酌情选择不同的植骨、融合技术,恢复维持手术节段的稳定性,其中前者决定患者手术后近期疗效,而后者是获得良好远期疗效的保证。目前颈前路椎体次全切除减压植骨融合术在临床上被广泛应用于颈椎退变、创伤、肿瘤等多种伤患。减压后采用钛网的原位植骨重建方式由于其操作相对方便,避免了供骨区并发症,同时具有较高的植骨融合率,因此在临床上使用较为普遍。然而,术后钛网发生沉陷的比例相当高,并有可能导致原有颈椎生理曲度和椎间高度的丢失,造成术后患者出现颈肩部酸痛,神经功能恢复停止或再次加重,甚至出现颈椎后突畸形,融合固定失败等严重并发症,需要再次手术。目前普遍认为钛网其外形设计上的缺陷是造成沉陷发生的重要原因。因此,有必要对影响患者术后钛网沉陷的相关因素及其临床意义进行研究,并设计一种新型钛网来避免术后沉陷,以提高手术疗效。
     目的:通过本课题的研究进一步明确影响颈前路钛网植骨重建术后钛网沉陷的相关因素及其临床意义,在总结现有钛网缺陷的基础上,结合现代颈前路植骨融合材料的设计理念,设计和研制新型的全接触式植骨重建钛网,并通过计算机模拟技术建立颈前路椎体次全切除钛网植骨重建手术的三维有限元模型,与现有钛网进行对比,通过相关生物力学分析,验证新型钛网的安全性和有效性。
     方法:(1)收集120例采用颈前路椎体次全切除减压钛网植骨融合术治疗的颈椎患者临床及影像学资料,分析患者年龄、性别、融合节段、钢板类型、垫片使用等因素对钛网沉陷的影响;探讨钛网沉陷与患者颈椎曲度丢失、神经功能改善不佳、颈肩痛、内固定失败等问题的关系。(2)分析颈前路椎体次全切除减压钛网植骨融合术后钛网沉陷的原因,在总结现有钛网缺陷的基础上,参考国人正常颈椎椎体上、下终板倾斜角等解剖数据,设计并研制新型全接触式植骨重建钛网,扩大钛网-椎体终板接触面,以期避免术后钛网沉陷;(3)以现有钛网为研究对照,建立使用两种不同钛网的椎体次全切除植骨重建手术的三维有限元模型;比较其生物力学应力分布差异。
     结果:(1)随访发现96例(79.7%)患者术后出现钛网沉陷,其中包括73(60.7%)例轻度沉陷(1~3mm)和23(19.0%)例严重沉陷(> 3mm)。双节段椎体次全切除减压钛网植骨重建较单节段更易出现钛网沉陷(p <0.001)。严重的钛网沉陷可降低患者手术疗效,并导致患者出现颈肩痛、症状复发、内固定失败等并发症;(2)分析导致患者术后钛网沉陷的原因可能包括:患者自身骨质疏松、终板刮除过多、过度撑开、钛网-终板接触不贴附、接触面小、钛网修建不当,其中患者自身骨质疏松、终板刮除过多和过度撑开可通过术前病例筛选、改进手术技术等加以避免,然而目前现有钛网外形上的固有缺陷难以解决。结合现代颈前路植骨融合材料的设计理念,设计了新型全接触式植骨重建钛网,由钛合金制成,由柱状主体及上、下端面组成。柱状主体设计与现有钛网相似,两端与上、下端面相连。上端面为环形,在矢状面上向上拱起呈穹窿状,外圈为一环形加厚结构,下端面同样为环状,矢状面上呈向后上方倾斜,外圈为一环形加厚结构。设计上考虑到不同患者椎体大小、形态上的个体差异可制成不同规格型号的产品。在实际使用中,根据减压槽的长度和宽度可选用不同型号的钛网,避免术中修剪造成钛网终板接触面锐利。新型钛网通过扩大钛网-椎体终板接触面,避免术后钛网沉陷。(3)建立了两种颈前路C5椎体次全切除减压钛网植骨重建手术的三维有限元模型,在屈曲、侧屈及扭转三种载荷工况下,采用新型钛网可降低钛网椎体终板接触面及钢板表明应力分布,减少C4、C6椎体相对位移。
     结论:钛网沉陷是颈前路椎体次全切除钛网植骨重建术后常见现象,严重的钛网沉陷可降低患者的手术疗效,产生严重并发症;由于目前临床所使用的钛网设计上的缺陷是钛网沉陷的重要原因,并且难以完全解决,所设计的新型全接触式植骨重建钛网进一步扩大钛网-椎体终板接触面,可有效增加手术节段的稳定性,避免术后钛网沉陷。
Summary of Background Data: Decompression and reconstruction of the cervical stability are the key points in the treatment of cervical diseases or injuries. It means that the surgeons need to remove all the compressive matters at different levels according to the different condition of different patients, and also have to choose suitable techniques of bone graft and fusion to maintain the stability of the cervical spine. The first one is responsible for the immediate clinical results and the second one will promise the better long-term outcome. Recently, the operation called“anterior cervical corpectomy and fusion (ACCF)”has been widely used in the treatment of cervical degenerative diseases, cervical injuries and cervical tumors in the clinical practice. After decompression, one kind method of autogenous local bone graft with titanium mesh cage (TMC) has been widely used, because it has the advantages of convenient employment, less related complications of harvesting bone block from the iliac crest and higher bone fusion rate. However, postoperative subsidence of TMC has been found in most patients with ACCF using TMC, which could lead to loss of cervical lordosis and intervertebral height, and even more subsidence-related complications, including neck pain, neurologic deterioration and instrument failure. The patients sometimes need revision surgery. At present, the design defects of the current TMC were widely considered as one of most important reason for the postoperative subsidence, which could be very difficult to be resolved by other salvage measurement. For this reason, a new type of full-contact TMC was designed to avoid subsidence and increase surgical results of ACCF.
     Objectives: To clarify the risk factors for the subsidence of the titanium mesh cage (TMC) after anterior cervical corpectomy and fusion, and to discuss their clinical correlation. On the basis of summary the defects of the current TMC and with the design of the modern bone grafting materials used in the cervical spine, to design and manufacture a new type of full-contact TMC, and make sure its safty and effect by a finite element study using computer simulation technique. The characteristics of stress distribution of new full-contact TMC were analyzed when compared with the current TMC.
     Methods: (1) A total of 120 patients with anterior cervical corpectomy and TMC fusion were included in the first part of this study. TMC subsidence, radiologic findings, and clinical results were evaluated in the 12-month follow-up period. Risk factors including age, sex, level of corpectomy, type of plate and using end caps were evluated, and also discuss the correlation of TMC subsidence with neck pain, neurologic deterioration and instrument failure. (2) The reasons for subsidence of TMC after ACCF were analyzed in the details in the second part of this study. On the basis of the study of defect of current TMC and reference to the anatomic data of normal Chinese patients such as the gradient of vertebral endplates in the cervical spine, a new type of full-contact TMC was designed and manufactured to avoid subsidence by enlarging the contact area of TMC and the vertebral endplates. (3) A finit element analysis was carried out to compare the biomechanical characteristics of two different kinds of TMC. The difference of stress distribution was recorded.
     Results: (1) After follow up, subsidence of TMC was found in 96 (79.7%) patients, including mild subsidence (1 to 3 mm) in 73 (60.7%) patients and severe subsidence ( > 3 mm) in 23 (19.0%) patients. Two-level corpectomy was more susceptible to severe subsidence when compared with 1-level corpectomy (p < 0.001). Japanese Orthopedic Association recovery rate for severe subsidence was significantly lower than that for no subsidence (p=0.010). Severe subsidence was correlated with subsidence-related complications, including neck pain, neurologic deterioration, and instrument failure. (2) The reasons for postoperative subsidence of TMC after ACCF could included osteoporosis, over remove of vertebral endplates, over distraction, no-match of TMC and vertebral endplate, small contact area and unsuitable clip of TMC. The first three reasons could be resolved by preoperative selection of patients and improve surgical technique during operation, but the inherent defects of the current TMC are difficult to be resolved. For this reason, the new type of full-contact TMC was designed with the design of the modern bone grafting materials used in the cervical spine. The new full-contact TMC used titanium allegation, which was structured by one main cylinder and upper and lower ending part. The main cylinder is similar with the current TMC and connected with the upper and lower ending part. The upper ending part is ring form and characterized by fornix formation in the sagittal plane. The lower ending part is also ring form and characterized by obliquity in the sagittal plane. Both the upper and lower ending part were thickened at the external ring to enlarge the contact area with vertebral endplates. With the consideration of different sizes of cervical vertebral body, the new TMC was designed with different sizes with the advantage of no more clipping before using it, which could be helpful to avoid subsidence of TMC. (3) Two finite-element models of C5 anterior cervical corpectomy and fusion with new and current TMC were reconstructed. Analytic results showed using new TMC could reduce the stress of TMC-endplate contact and anterior cervical plates, it also could reduce the relate displacement between C4 and C6 vertebrae.
     Conclusions: TMC subsidence was a common phenomenon after anterior cervical corpectomy and fusion with TMC. Severe subsidence might have led to bad clincial results and subsidence-related complications. The design defect of current TMC was one of the most important reasons for this problem and could not be resolved by other salvage measurement. The new full-contact TMC designed to enlarge the contact area between the TMC and vertebral endplates, which are useful in maintain of the cervical stability and avoidance of postoperative subsidence.
引文
1. Majd ME, Vadhva M, Holt RT. Anterior cervical reconstruction using titanium cage with anterior plating. Spine 1999;24:1604-1610.
    2. Eck KR, Bridwell KH, Ungacta FF, et al. Analysis of titanium mesh cages in adults with minimum two-year follow-up. Spine 2000;25:2407-2415.
    3. Riew KD, Rhee JM. The use of titanium mesh cages in the cervical spine. Clin Orthop Relat Res 2002;394:47-54.
    4. Chuang HC, Cho DY, Chang CS, et al. Efficacy and safety of the use of titanium mesh cages and anterior cervical plates for interbody fusion after anterior cervical corpectomy. Surg Neurol 2006;65:464-471.
    5. Kanayama M, Hashimoto T, Shigenobu K, et al. Pitfalls of anterior cervical fusion using titanium mesh and local autograft. J Spinal Disord Tech 2003;16:513-518.
    6. van Jonbergen HP, Spruit M, Anderson PG, et al. Anterior cervical interbody fusion with a titanium box cage: early radiological assessment of fusion and subsidence. Spine J 2005;5:645-649.
    7. Bartels RH, Donk RD, Feuth T. Subsidence of stand-alone cervical carbon fiber cages. Neurosurgery 2006;58:502-508.
    8. Hasegawa K, Abe M, Washio T, et al. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Spine 2001;26:957-963.
    9. Daubs MD. Early failures following cervical corpectomy reconstruction with titanium mesh cages and anterior plating. Spine 2005;30:1402-1406.
    10. Dorai Z, Morgan H, Coimbra C. Titanium cage reconstruction after cervical corpectomy. J Neurosurg 2003;(1 Suppl):3-7.
    11. Narotam PK, Pauley SM, McGinn GJ. Titanium mesh cages for cervical spine stabilization after corpectomy: a clinical and radiological study. J Neurosurg 2003;(2 Suppl):172-180.
    12. Hee HT, Majd ME, Holt RT, et al. Complications of multilevel cervical corpectomies and reconstruction with titanium cages and anterior plating. J Spinal Disord Tech 2003;16:1-9.
    13. Sasso RC, Ruggiero RA, Reilly TM, et al. Early reconstruction failures after multilevel cervical corpectomy. Spine 2003;28:140-142.
    14. Akamaru T, Kawahara N, Sakamoto J, et al. The transmission of stress to graft bone inside a titanium mesh cage used in anterior column reconstruction after total spondlectomy: a finite-element analysis. Spine 2005;30:2783-2787.
    15. Lim TH, Kwon H, Jeon CH, et al. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical fusion. Spine 2001;26:951-956.
    16. Ferch RD, Shad A, Cadoux-Hudson TA, et al. Anterior correction of cerivical kyphotic deformity: effects on mylopathy, neck pain, and sagittal alignment. J Neurosurg 2004;(1 Suppl Spine):13-19.
    17. Nakase H, Park YS, Kimura H, et al. Complications and long-term follow-up results in titanium mesh cage reconstruction after cervical corpectomy. J Spinal Disord Tech 2006;19:353-357.
    18. Das K, Couldwell WT, Sava G, et al. Use of cylindrical titanium mesh and locking plates in anterior cervical fusion. J Neurosurg 2001;94:174-178.
    19.徐建伟,贾连顺,陈德玉,等.颈椎前路椎体次全切除钛网植骨早期塌陷的讨论[J].中国矫形外科杂志,2002,13:1267-1269.
    20.徐建伟,陈德玉,贾连顺,等.颈椎前路椎体次全切除钛网植骨钛网剪切技术探讨[J].脊柱外科杂志,2003,1(5): 2657-259.
    21.任先军,梅瑞芳,周军海.颈椎终板的解剖及生物力学的实验研究[J].中国脊柱脊髓杂志,1999,17(2):172-174.
    22. Truumees E, Demetropoulos CK, Yang KH, et al. Effects of disc height and distractive forces on graft compression in anterior cervical discecomty model. Spine;2002;27:2441-2445
    23.郭永飞,陈德玉,王良意,等.颈椎椎体终板倾斜角的影像学测量[J].中国临床康复,2003,7(14):2006-2007.
    24. Kumaresan S, Yoganasan N, Pintar FA, et al. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation [J]. J Orthop Res, 2001;19(5): 977-984.
    25. White III AA, Panjabi MM. Clinical Biomechanics of the Spine. Hiladelphia:J. B. Lippincott, 1990.
    26. Voo LM, Kumaresan S, Yoganandan N, et al. Finite element analysis of cervical facetectomy [J]. Spine,1997;22(9): 964-969.
    27. Goel VK, Clausen JD. Prediction of load sharing among spinal components of aC5-C6 Motion segment using the finite element approach. [J] Spine,1998;23(6):684-691
    28. Moroney SP, Schultz AB, Miller JAA, et al. Load-displacement properties of lower cervical spine motion segments [J]. J Biomech, 1988;21(9):769-779.
    29.张平,李健,程立明.有限元单元法在脊柱生物力学应用研究进展[J].中国临床解剖学杂志, 2003;21: 640-641.
    30.程黎明,贾连顺,黄本才,等.下颈椎三维有限元模型的建立. [J]第二军医大学学报,2003;24(3):338-340.
    31.陈新民,郎继孝,陈德喜,等.应用三维有限元模型研究颈椎不同工况下的生物力学变化[J].临床杂志,2002,6(4):294-296.
    32. Maurel N, Lavaste F, Skalli W. A three dimensional parameterized finite element model of the lower cervical spine: study of the influence of the posterior articular facets. [J] J Biomech, 1997;30(9):921-31.
    33. Pelker PP, Duranceau JS, Panjabi MM. Cervical spine stabilization a three-dimensional biomechanical evaluation of rotational stability strength and failure mechanisms. [J] Spine, 1991;16(2):117-122
    34. Panjabi MM, Lydon C, Vasavada A, et al. On the understanding of clinical instability [J]. Spine, 1994;19(23): 2642-2650.
    35. Yoganandan N, Kumaresan S, Voo L, et a1. Finite element applications in human cervical spine modeling [J]. Spine, 1996;21(15): l824-l834.
    36. Panjabi MM. Cervical spine models for biomcchanicalresearch [J]. Spine, 1998;23(24): 2680-2700.
    37. Escott EJ, Rubinstein D. Free DICOM image viewing and processing software or your desktop computer: what’s available and what it can do for you [J]. Radio- graphics, 2003;23(5):1341-1357.
    38. Jang SH, Kim WY. Defining a new annotation object for DICOM image: a practical approach [J]. Comput Med Imaging Graph, 2004;28(7):371-375.
    39. Yoganandan N, Kumaresan S, Voo L, et a1. Finite element applications in human cervical spine modeling[J]. Spine, 1996; 21(15): l824-l834.
    40. Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research[J]. Proc Inst Mech Eng Part H-J Eng Med, 2002; 216: 28l-298.
    41. Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine Part 2: cervical spine soft tissue responses and biomechanical modeling [J]. Clin Biomech,2001; 16: l-27.
    42. Mercer S,Bogduk N. The ligaments and anulus fibrosus of human adult cervical intervertebral discs[J]. Spine, 1999; 24(7): 619-626.
    43. Przybylski GJ, Patel PR, Carlin GJ,et a1. Quantitative anthropometry of the subatlantal cervical longitudinal ligaments[J]. Spine, 1998; 23(8): 893-898.
    44. An HS, Wise JJ, Xu RM. Anatomy of the cervicothoracic junction: A study of cadaveric dissection, cryomicrotomy, and magnetic resonance imaging [J]. J Spinal Disord, 1999; l2(6): 519-525.
    45. Carter DR, Hayes WC. The compressive behavior of bone as a two phase porous structure[J]. J Bone Joint Surg AM, 1977; 59(7): 954-962.
    46. Belytschko TB, Kulak RF, Schultz AB, et al. Finite element stress analysis of an intervertebral disc [J]. Biomechanics 1974; 7: 277-285.
    47. Bozic KJ,Keyak JH,Skinner HB, et a1. Three-dimensional finite-element modeling of a cervical vertebra: an investigation of burst fracture mechanism[J]. J Spinal Disord, 1994; 7(2): 102-110.
    48. Teo EC, Paul JP, Evans JH. Finite-element stress-analysis of a cadaver second cervical vertebra[J]. Med Biol Eng Comput. 1994; 32(2): 236-238.
    49. Wang H, Hu B, Bai J. Computational analysis of two atlantoaxial fixation thods[A].
    5th IFAC Sym Model Cont Biomed Syst[C]. England: Pergamon Pr, 2003; 175-178.
    50. Goel VK, Clausen JD. Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite elementapproach[J]. Spine, 1998; 23(6): 684-691.
    51. Yoganandan N, Kumaresan S, Voo L. Finite element model of the Human lower cervical spine:Parametric analysis of the C4-C6 unit[J]. J Biomeoh Eng,l997;119(1):87-92.
    52. Voo LM, Kumaresan S, Yoganandan N, et al. Finite element analysis of cervical facetectomy[J]. Spine, 1997; 22(9): 964-969.
    53. Kumaresan S, Yoganasan N, Pintar FA. Finite element model of cervical laminectomy with graded facetectomy[J]. J Spinal Disord, 1997; 10(1): 40-46.
    54. Kumaresan S, Kumaresan S, Yoganasan N, et al. Finite element analysis of anterior cervical spine interbody fusion[J]. BioMed Material Eng ,1997; 7(4): 221-230.
    55.陈伯华,孙鹏, Natarajan N, et al.颈椎三维有限元模型的建立及意义[J].中国脊柱脊髓杂志,2002;12(2):105-108.
    56. Saito T, Yamamuro T, Shikata J, et a1. Analysis and prevention of spinal column deformity following cervical laminectomy pathogenetic analysis of post laminectomy deformities[J]. Spine, 1991; l6: 494-502.
    57. Kleinberger M. Application of finite element techniques to the study of cervical spine mechanics. In: Proceeding of the 37th stapp car crash conference San Antoni, Texas, November 7-8, 1993, 261-272.
    58.郎继孝,陈新民,董振风等.正常人颈椎前曲运动的三维空间有限元研究[J].颈腰痛杂志,2001;22(2):265-266.
    59.李雪迎,王春明,殷秀珍等.颈椎牵引的三维有限元分析[J].中华理疗杂志, 1999;22(6):350-383.
    60. Teo EC, Zhang QH, Huang RC. Finite element analysis of head-neck kinematics during motor vehicle accidents: Analysis in multiple planes. Med Eng Phys, 2007;29(1):54-60
    61. Clausen JD, Goel VK, et al. Uncinate processes and Luschka joints influence the biomechanics of the cervical spine: quantification using a finite element model of the C5-C6 segment. J Orthop Res 1997;15(3):342-7.
    62. Ng HW, Teo EC, Lee KK, Qiu TX. Finite element analysis of cervical spinal instability under physiologic loading. J Spinal Disord Tech, 2003; 16(1):55-65.
    63. Voo LM, Kumaresan S, et al. Finite element analysis of cervical facetectomy. Spine, 1997;22(9):964-9.
    64. Natarajan Raghu N, Chen Bohua H,An, Howard S, Andersson,Gunnar B. J. Anterior Cervical Fusion: A Finite Element Model Study on Motion Segment Stability Including the Effect of Osteoporosis. Spine, 2000; 25(8): 955-961
    65. Maiman DJ, Kumaresan S, Yoganandan N, Pintar FA. Biomechanical effect of anterior cervical spine fusion on adjacent segments. Biomed Mater Eng, 1999;9(1):27-38.
    66. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation. J Orthop Res, 2001;19(5):977-84.
    67. Lopez-Espina, Carlos G. MS; Amirouche, Farid PhD; Havalad, Vinod MD. Multilevel Cervical Fusion and Its Effect on Disc Degeneration and Osteophyte Formation. Spine, 2006; 31(9): 972-978
    68. Lee CK, Kim YE, Lee CS, Hong YM, Jung JM, Goel VK. Impact response of theintervertebral disc in a finite-element model. Spine, 2000; 25(19):2431-9.
    69. Ha SK. Finite element modeling of multi-level cervical spinal segments (C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc. Med Eng Phys, 2006 ; 28(6): 534–541
    70. Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics[J]. Spine, 2004; 29(4): 376-385.
    71. Ng Hw, Teo EC, Zhang QH. Prediction of inter-segment stability and osteophyte formation on the multi-segment C2-C7 after unilateral and bilateral facetectomy[J]. Proc lnst Mech Eng Part H-J Eng Med, 2004; 218(3): 183-191.
    72. Stemper BD, Yoganandan, Pintar FA. Validation of a head-neck computer model for whiplash simulation[J]. Med Biol Eng comput, 2004; 42(3): 333-338.
    73. Yoganandan N,Knowles SA,Maiman DJ,et a1.Anatomic study of the morphology of human cervical facetjoint[J]. Spine, 2003; 28(20): 2317-2323.
    74. Ng HW, Teo EC. Probabilistic design analysis of the influence of material property on the human cervical spine[J]. J Spinal Disord Tech, 2004; l7(2): 123-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700