X射线敏感的非晶硒合金材料与器件的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息数字化的迅速发展,数字成像技术成为X射线透视诊断成像发
    展的潮流,非晶硒+薄膜晶体管(TFT)直接数字平板实时成像系统性能优越,
    分辨率高,全面满足成像器件固体化、数字化、平板化的发展潮流。本论文即
    以研制非晶硒+TFT平板数字成像系统为最终目的展开实验和理论研究工作。
     论文首先从非晶硒合金膜的制备工艺和性能测试展开研究。选砷作为抑
    制非晶硒晶化的合金元素,采用先制备硒砷合金材料,再以该合金材料为蒸
    镀源材料的制膜方法,成功制备了稳定的非晶硒合金膜,其载流子迁移长度
    可达1300μm以上(10V/μm场强),达到厚膜应用要求。
     在常用X光子能量范围内,分析了X光子与非晶硒发生各种作用的概率,
    给出了初级X光子作用中的能量吸收,重点讨论了次级X光子重吸收过程。
     以X射线与非晶硒相互作用的物理过程为依据,通过建立模型,以光学
    传递函数为分析手段,采用理论分析和数值计算方法详细考查了探测X射线
    成像的非晶硒器件(不包含读出系统)的空间分辨率,给出了单色X射线入
    射时非晶硒器件空间分辨率表达式。在以能量吸收和X射线谱分布为权重求
    和的基础上,详细考查了入射X射线具有谱分布时非晶硒器件的空间分辨率。
    合理设计非晶硒厚度,尤其注意减小入射角有助于提高空间分辨率。
     在分析电荷收集效率和能量吸收基础上,引入一灵敏度概念,全面分析了
    非晶硒对X射线的灵敏度与载流子迁移特性、光子能量、非晶硒厚度和场强
    的关系。非晶硒载流子迁移长度至少应为非晶硒厚度的2倍,提高场强是增加
    灵敏度的有效方法。论文根据成像过程详细分析了非晶硒对X射线的量子探
    测效率DQE,增加非晶硒厚度和减小入射角可以有效提高DQE。成像系统的
    设计应权衡分辨率、灵敏度和量子探测效率,使综合性能最佳。
     在薄膜的基础上,经过多次实验,摸索出了制备非晶硒合金厚膜的成熟工
    艺。通过实验研究了非晶硒合金厚膜对X射线的光电响应特性。测量表明,
    光电流密度与照射率成线性关系,光电流密度强烈依赖于场强,在10V/μm
    场强下,激发一电子空穴对所需的X射线能量W_(±)约为45eV。
     分析了重要转换屏CsI:Na(CsI:TI)的荧光逸出效率、能量吸收以及对X
    射线的荧光转换因子,建立了较为完整的荧光转换因子模型。计算表明,荧光
    光子等效自由程至少应在转换屏厚度的10倍以上。
     在考查非晶硒+薄膜晶体管(TFT)直接数字X射线成像器件的基础上,
    
    
    针对非晶硒原子序数偏低,对高能X光了吸收小的缺点,论文提出了一种将
    非晶硒和高原子序数转换屏结合起来的联合靶平板数字固体成像器件方案。联
    合靶转换屏首选Q:Na,分析了X光子人射联合靶时的作用概率、能量吸收
    和灵敏度。aSe(sl们a联合靶有效提高了对高能X光子的响应,可望在不增
    加非晶硒厚度、无额外复杂工艺条件下拓宽其能量应用范围。
Digital x-ray imaging diagnosis is currently of great interest compared to
     traditional screen-film system. A large area, flat-panel, direct digital x-ray imaging
     detector, which uses amorphous selenium (a-Se) alloy layer for detecting x-rays and
     thin film transistor (TFT) for reading out signal, stands out among digital x-ray
     imaging detectors. Its excellent properties such as high resolution can meet almost
     all cases in diagnosing x-ray imaging. Experimental and theoretical studies are
     carried out for the goal of developing such a flat-panel digital x-ray imaging detector
     in this thesis.
     The stress is first put on the preparation of stabilized a-Se alloy film/layer.
     Arsenic is selected as alloying element for inhibiting crystallization of a-Se film.
     After long-playing probe the stabilized a-Se alloy films is successfully prepared by
     vacuum thermal evaporation, its carriers?transport properties are measured by time
     of flight technique, and about 1300 jim of carriers?mean ranges are achieved at the
     electric field of 1 OV/ pm
     The interaction probability of x-ray with a-Se is discussed in the medical used
     x-ray energy range, the absorbed energy in the primary interaction and the
     reabsorption of secondary x-rays in a-Se are studied in detail.
     According to physical interaction process of x-ray with a-Se, an expression of
     the optical transfer function (OTF) for a-Se layer is obtained after about ten facts
     related to the spatial resolution is studied theoretically, and the modulation transfer
     function (MTF), which is the absolute value of the OTF, is provided numerically for
     the monoenergetic x-ray photons. Based on the weighted averaging method of
     energy absorption and x-ray spectra, MTF of a-Se layer is further calculated for the
     case of x-ray spectra. Some important conclusion, such as decreasing a-Se layer
     thickness and the angle of oblique to improve the spatial resolution, and some useful
     parameters are obtained through above studies.
     After charge collection efficiency of a-Se layer is studied, a sensitivity model of
     a-Se to x-rays, related to charge carrier mean ranges, x-ray photon energy, layer
     thickness and electric field, is introduced, and the calculation has lead to some
     useful results. We also investigate the detective quantum efficiency (DQE) of a-Se
    
    
    
     layer to x-rays in detail, increasing a-Se layer thickness and decreasing the angle of
     oblique can improve DQE. Spatial resolution, sensitivity and detective quantum
     efficiency should be optimized while designing the imaging detectox.
    
     Based on the former preparation techniques, Thicker a-Se alloy layer is
     manufactured afler solving some new problems in techniques, and the photoelectric
     properties of the so-made a-Se alloy layer to x-rays are measured through
     experiments. The results show that there is linear relationship between x-ray
     photocurrent and x-ray exposure rate, and the sensitivity of a-Se strongly depends
     on the electric field. About 45 eV is needed for x-rays to release an electron-hole
     pair in a-Se at the electric field of 10 V/pin.
    
     The fluorescence escape efficiency of CsI:Na (CsI:Tl) phosphor is discussed,
     and a converting factor model of the phosphor to x-rays is proposed. The calculation
     shows that the fluorescence photon mean range should be above 10 times of
     phosphor layer thickness.
    
     A new x-ray imaging detector, which uses a-Se layer in combithation with high
     atomic number phosphor layer, is put forward on the basis of ti-Se + TFT imaging
     system. It has the advantage of higher
引文
[1] Sprawls Perry Jr.医学成像的物理原理.(黄怡焯译)高等教育出版社(1991)
    [2] 顾本广.RSNA 2000探索新千年.世界医疗器械.2001,7(2) :42
    [3] 吕维雪.医学功能成像技术.世界医疗器械.2000,6(12) :56
    [4] 吕维雪.医学功能成像技术.世界医疗器械.2000,6(11) :50
    [5] 吕维雪.医学功能成像技术.世界医疗器械.2000,6(10) :72
    [6] 高上凯.三维超声成像的技术进展.世界医疗器械.2000,6(11) :11
    [7] 吕维雪.医学功能成像技术.世界医疗器械.2001,7(1) :61
    [8] 何斌,金永杰.DICOM医学图像文件格式.世界医疗器械.2001,7(1) :14
    [9] 张凯,吕扬生.DICOM标准及其应用.世界医疗器械.2001,7(2) :64
    [10] 杨福家.原子物理学.第三版.高等教育出版社(2000)
    [11] Metter R Van. Describing the signal-transfer characteristics of asymmetrical radiographic screen-film systems. Med.Phys,1992,19:53~58
    [12] Morishita J, MacMahon H, Doi K et al. Evaluation of an asymmetric screen-film system for chest radiography.Med.Phys, 1994,21:1769~1775
    [13] Yip K L.Lubinsky A R,Whiting B.Muka E and Kocher T E. A performance analysis of medical x-ray film digitizers. SPIE, 1990,1231:508~525
    [14] Barnes G T and Brezovich I A. The intensity of scattered radiation in mammography, Radiology, 1978,126:243~247
    [15] W Kalender. Monte Carlo calculations of x-ray scatter data for diagnostic radiology, Phys.Med.Biol, 1981,26: 835~849
    [16] Chan H P and Doi K. The validity of Monte Carlo simulation in studies of scattered radiation in diagnostic radiology.Phys.Med.Biol, 1983,28: 109~129
    [17] Chan H P and Doi K. Physical characteristics of scattered radiation in diagnostic radiology: Monte Carlo simulation studies. Med.Phys,1985,12: 152~165
    [18] Barroso R C,Goncalves O D, Eichler J, Lopes R T and Cardoso S C. Study of secondary x-rays from radiographic intensifying screens. Nucl.Instrum. Meth . Phys.Res.A, 1998,404: 407~412
    
    
    [19] Dance D R and Day G J, The computation of scatter in mammography by Monte Carlo methods. Phys.Med.Biol, 1984,29:237-247
    [20] Sorenson J A and Floch J. Scatter rejection by air gap: An empirical model. Med.Phys, 1986,12:308-316
    [21] Dance D R, Perstiden J and Carlsson G A. Calculation of dose and contrast for two mammographic grids. Phys.Med.Biol, 1992,37:235-248
    [22] Neitzel U. Grids or air gap for scatter reduction in digital radiography: a model calculation. Med.Phys, 1992,19: 475-481
    [23] Krol A, Bassano D A, Chamberlain C C and Prasad S C.Scatter reduction in mammography with air gap. Med.Phys. 1996,23:1263-1270
    [24] Speiser R C, zanrosso E M Jeromin L S and Carison R A. Dose comparisons for mammographic systems. Med.Phys.1986,13(5) :667-673
    [25] Chan H P and Doi K. Energy and angular dependence of x-ray absorption and its effect on radiographic response in screen-film systems. Phys.Med.Biol, 1983,28 (5) :565-579
    [26] Dance D R,Day G J. Escape probabilities for fluorescent x-rays. Phys.Med.Biol, 1985, 30(3) :259~262
    [27] Jennings R J, Eastgate R J.Siedband M P and Ergun D L. Optimal x-ray spectra for screen-film mammography. Med.Phys. 1981,8(5) :629-639
    [28] Swank R K.Calculation of modulation transfer functions of x-ray fluorescent screens. Applied Optics, 1973,12(8) : 1865-1870
    [29] Swank R K. Absorption and noise in x-ray phosphor. J.Appl.Phys,1974,45:4199-4203
    [30] Maroni C and Zamboni R. Detective quantum efficiency in x-ray screen-film systems. Opt.Commun, 1982,44:73?8
    [31] Yaffe M J and Rowlands J A.X-ray detectors for digital radiography. Phy.Med. Biol,1997 42:1-39
    [32] Harrison R M. Digital radiography-a review of detector design. Nucl. Instr. and Meth. 1991,A310:24?4
    [33] Kotera N.Guchi S E, Miyahara J et al. US Patent, 1981,4239968
    [34] Kotera N, Guchi S E, Miyahara J et al. US Patent, 1981,4258264
    [35] Seggern H von, Voigt T, Knupfer W and Lange G.Physical model of photostimulated luminescence of x-ray irradiated BaFBr:Eu2+, J.Appl.Phys, 1988,64,1405?412
    [36] Harrison A, Lane L C, Templer R H and Seddon J M, Mechanism of charge storage and luminescence stimulation in BaFBrRE phosphors, Nucl.lnstr.and Meth. 1991^310,220?
    223
    [37] Ito M and Amemiya Y, X-ray energy dependence and uniformity of an imaging plate detector. Nucl.lnstr.and Meth. 1991,A310:369-372
    [38] Thorns M. The dynamic range of x-ray imaging with image plates, Nucl.lnstr.and Meth.1997,A389:437-440
    [39] Yamamoto M, Kumasaka T, Uruga T, Kamiya N, Iwasaki H and Ueki T.Evaluation of high spatial resolution imaging plate. Nucl.lnstr.and Meth. 1998,A416, 314-318
    [40] Thorns M.Bauchau S.Hausermann D.Kunz M, Bihan T Le, Mezouar M and Strawbridge D. An improved X-ray detector for use at synchrotrons. Nucl.lnstr.and Meth. 1998,
    
     A413:175~184
    [41] Miyahara J,Takahashi K,Amemiya Y,Kamiya N and Satow Y.A new type of x-ray area detector utilizing laser stimulated luminescence.Nucl.Instr.and Meth.1986,A246:572~578
    [42] 熊光楠,黄廉卿,侯才源.X光影像板及数字X光影像仪.光电子·激光,2000,9:90-91
    [43] Maidment A D A and Yaffe M J.Analysis of signal propagation in optically coupled detectors for digital mammography: II lens and fibre optics. Phys.Med.Biol, 1996,41: 475-493
    [44] Roehrig H.Faqjardo L,Yu T and Schempp W V. Signal.noise and detective quantum efficiency in CCD-based x-ray imaging systems for use in mammography. SPIE, 1994,2163:320-332
    [45] Koch A and Riekel C. X-ray video camera with 10μ m spatial resolution. Rev.Sci.Instrum, 1996 ,67(5) : 1737-1740
    [46] Bissonnette J P,Cunningham I A,Jaffray D A,Fenster A and Munro P. A quantum accounting and detective quantum efficiency analysis for vide-based portal imaging. Med.Phys. 1997,24(6) :815-826
    [47] 西北核技术研究所.便携式脉冲数字化X射线成像仪研制报告.1998. 11
    [48] Hejazi S and Trauernicht D P. Potential image quality in scintillator CCD-based imaging systems for digital radiography and digital mammography.SPIE, 1996,2708,440-449
    [49] Maidment A D A,Fahrig R and Yaffe M J. Dynamic range requirement in digital mammography. Med.Phys. 1993,20(6) : 1621-1633
    [50] Zanella G and Zannoni R. Design of CCD-based x-ray area detectors in terms of DQE. Nucl.Instr.and Meth. 1998,A406: 93-102
    [51] Herron J M,Gur D,Daxon E G,Good W F,Shaw C C,Maitz G S,and Boyer J W. Digital x-ray imaging with two-dimensional charge-coupled device (CCD) arrays. SPIE, 1990,1231:472-478
    [52] Williams M B,Simoni P U,SmilowitzL,Stanto M,Phillips W and Stewart A. Analysis of the detective quantum efficiency of a developmental detector for digital mammography. Med.Phys.l999,26(11) :2273-2285
    [53] Slump C H,Laanstra G J,Kuipers H,Boer M A,Nijmeijer A G J,Bentum M J,Kemner R,Meulenbrugge H J and Snoeren R M. A novel x-ray detector with multiple screen-CCD sensors for real-time diagnostic imaging.SPIE, 1996,2708:450-461
    [54] Swank R K. Measurement of absorption and oise and in an x-ray image intensifier. J.Appl. Phys, 1974,45(8) : 3673-3678
    [55] Stevels A L N and schrama-de Pauw A D M. Vapour-deposited CsI:Na layers. Philips. Res. Repts, 1974,29(4) :340-352,353-362
    [56] Roehrig H, Nudelman S, Fisher H D, Frost M M and Capp M P, Photoelectronic imaging for radiology, IEEE Trans.Nucl.Sci. 1981,NS-28(1) :190-205
    [57] Eijk B van der and Kuhl W. An x-ray image intensifier with large input format. Philips Tech.Rev, 1983/84,41: 137-148
    [58] Rowlands J A and Taylor K W. Absorption and noise in cesium iodide x-ray image intensifiers. Med.Phys,1983,10(6) :786-795
    [59] Kubo H and Yoshida A. X-ray image intensifier having variable-size fluorescent crystals.
    
    U.S.Patent,1989,4880965
    [60] Kubo H, Yoshida A, Saito K, Toriya S and Sano T. High MTF x-ray image intensifier. SPIE,1992,1736:21-23
    [61] Spekowius G, Boerner H, Eckenbach W and Quadflieg P. Simulation of the imaging performance of x-ray image intensifier/TV camera chains. SPIE, 1995,2432:12-23
    [62] Kamm K F, Steiner R and Tikorn K.Assessment of objective image quality in digital radiography-non-invasive determination of the detective quantum efficiency. SPIE, 1996,2708, 194-205
    [63] Thirlwall J T. The detective quantum efficiency of medical x-ray image intensifiers. Rev.Sci.Instrum, 1998,69:3963-3957
    [64] Kandarakis I, Cavouras D, Kanellopoulos E, Nomicos C D and Panayiotakis G S. Experimental determination of detector gain, zero frequency detective quantum efficiency, and spectral compatibility of phosphor screens: comparison of CsI:Na and Gd2O2S:Tb for medical imaging applications. Nucl.Instr.and Meth. 1998. A417:86-94
    [65] 向世明.倪国强.光电子成像器件原理.国防工业出版社(1999) .
    [66] Cho G, Contl M, Drewery J S, Fujieda I, Kaplan S N, Perez-Mendez V, and Qureshi S. Assessment of TFT amplifiers for a-Si:H pixel particle detectors. IEEE Trans.Nuclear Science, 1990,37:1142-1148 [67] Antonuk L E, Yorkston J and Boudry J.Large area amorphous silicon photodiode arrays for radiotherapy and diagnostic imaging. Nucl.Instr. and Meth. 1991,A310:460-464
    [68] Fujieda I,Cho G,Drewery J,Gee T,Kaplan S N,Perez-Mendez V,Wildermuth D and Street R A. X-ray and charged particle detection with CsI(Tl) layer coupled to α-Si:H photo diode Layers. IEEE Trans.Nucl.Sci,1991,38(2) :255~261
    [69] Antonuk L E, Boudry J,Huang W,McShan D L,Morton E J,Yorkston J,Longo M J and Street R A. Demonstration of megavoltage and diagnostic x-ray imaging with hydrogenated amorphous sillicon arrays. Med.Phys,1992,19(6) :1455~1466
    [70] Nagarkar V V,Gupta T K,Miller S R,Klugerman Y,Squillante M,R and Entine G,Structured CsI(Tl) scintillators for x-ray imaging applications.IEEE Trans.Nul.Sci,1998,45(3) :492~ 496
    [71] Kandarakis I, Cavouras D, Panayiotakis G S, Triantis D and Nomicos C D.An experimental method for the determination of spatial-frequency-dependent detective quantum efficiency (DQE) of scintillators used in x-ray imaging detectors. Nucl.Instrum.Meth.Phys.Res.A, 1997,399:335-342
    [72] Siewerdsen J A, Antonuk L E, El-Mohri Y, Yorkston J, and Huang W. Signal, noise power spectrum, and detective quantum efficiency of indirect-detection flat-panel for diagnostic radiology. Med.Phys, 1998,25(5) : 614-628
    [73] Kubo H D,Shapiro E G and Seppi E J. Potential and rol of a protoype amorphous sillicon array portal imaging device in breathing synchronized radiotherapy. Med.Phys, 1999,26 (11) : 2410-2414
    [74] Roehrig H,Cheng C W. Real-time imaging detectors for portal imaging. SPIE, 1993, 2009:144-166
    [75] Taibi A, Guerra A D, Gambaccini M, Marziani M and Tuffanelli A. Evaluation of a digital
    
    x-ray detector based on a phosphor-coated CCD for mammography. Nucl.Instr. and Meth. 1997,A392:210~213
    [76] Boag J W. Xeroradiography. Med.Phys.Biol. 1973,18(1) : 3-37
    [77] Fatouros P P and Rao G U V. On optimzing the Xeromammographic image. Med.Phys, 1979,6(1) : 1-11
    [78] Fatouros P P and Rao G U V. Xeromammographic image quality. Med.Phys, 1980, 7(4) : 331-340
    [79] Fatouros P P. Resolution and noise in Xeromammographic image quality. Med.Phys, 1982, 9(6) : 819-829
    [80] Kao C C. Electric field,transfer,and spread functions in xerographic image studies. J.Appl.Phys, 1973,44(4) : 1543-1551
    [81] Schiebel U.Hillen W and Zaengel T. Image quality in selenium-based digital radiography. SPIE, 1986,626:176-184
    [82] Hillen W, Schiebel U, and Zaengel T. A selenium-based sysytem for digital slot-radiography. SPIE, 1988,914:253-261
    [83] Papin J P and Huang H K. A prototype amorphous selenium imaging plate system for digital radiography. Med.Phys. 1987,14(3) : 322-329
    [84] Neitzel U, Maack 1 and S G K. Image quality of a digital chest radiography system based on a selenium detector, Med.Phys, 1994,21, 509-516
    [85] Launders J H, Kengyelics S M and Cowen A R.A comprehensive physical image quality evaluation of a selenium based digital x-ray imaging system for thorax radiography. Med.Phys, 1998, 25, 986-997
    [86] Kom D M,Johnson S P.Nelson O L,Potts J E. A meathod of electronic readout of electrophotographic and electroadiographic images. J Appl.Photo.Eng,1978,4:178-182
    [87] Monts H D and Beaumont F. A new photoconductor imaging system for digital radiography. Med.Phys. 1989,16(1) : 105-109
    [88] Rowlands J A, Hunter D M and Araj N. X-ray imaging using amorphous selenium:A photoinduced discharge readout method for digital mammography .Med.Phys, 1991, 18(3) :421-431
    [89] Rowlands J A and Hunter D M. X-ray imaging using amorphous selenium : Photoinduced discharge(PID) readout for digital genergy radiography. Med.Phys, 1995, 22(12) :1983-1996
    [90] May J W and Lubinsky A R. High-resolution computed radiography by scanned luminescent toner xeroradiography. SPIE, 1993,1896:296-312
    [91] Jacobs J and Berger H.Large-area photoconductive x-ray pickup-tube performance, EIec.Eng,1956,75:158-161
    [92] Luhta R and Rowlands J A. Feasibility of a large area x-ray sensitive vidicon for medical fluoroscopy. Med.Phys, 1997, 24(5) : 609-620,621-631
    [93] Zhao W and Rowlands J A , A large area solid-state detector for radiology using amorphous selenium, Proc.SPIE, 1992,1651:134-143
    [94] Zhao W and Rowlands J A, Digital radiology using self-scanned readout of amorphous selenium, Proc.SPIE, 1993,1896:114-120
    
    
    [95] Zhao W and Rowlands J A, X-ray imaging using amorphous selenium: Feasibility of a flat panel self-scanned detector for digital radiology, Med.Phys, 1995,22:1595-2604
    [96] Zhao W, Law J, Waechter D, Huang Z, and Rowlands J A. Digital radiology using active matrix readout of amorphous selenium: Detectors with high voltage protection. Med.Phys, 1998,25:539-549
    [97] Donovan J L.Xeroradiographic properties of amorphous selenium.J.Appl. Phys, 1970, 41(5) : 2109-2114
    [98] Borasi G. and Cubeddu R. Some remarks on selenium plate for xeroradiography.J.Appl. Phys, 1977,48(3) : 1375
    [99] Donovan J L.X-ray sensitivity of selenium.J.Appl.Phys,1979,50(10) :6500-6504
    [100] Rowlands J A.DeCrescenzo G and Araj A. X-ray imaging using amorphous selenium: Determination of x-ray sensitivity by pulse height spectroscopy.Med.Phys,1992, 19(4) : 1065-1069
    [101] Fahrig R.Rowlands J A and Yaffe M J. X-ray imaging with amorphous selenium:detective quantum efficiency of photoconductive receptors for digital mammography.Med.Phys, 1995,22(2) : 153-160
    [102] Que W. and Rowlands J A. X-ray imaging amorphous selenium :Inherent spatial resolution. Med.Phys. 1995,22(4) : 365-374
    [103] Kasap S O, Aiyah V, Polischuk B and Baillie A. X-ray sesitivity of a-Se for x-ray imaging with electrostatic readout. J.Appl.Phys,1998,83(6) :2879-2887
    [104] Mah D, Rowlands J A, Rawlinson J A. Sensitivity of amorphous selenium to x-rays from 40 kVp to 18 MV: Measurements and implications for portal imaging.Med.Phys, 1998, 25(4) : 444-456
    [105] Blevis 1 M.Hunt D C and Rowlands J A. Measurement of x-ray photogeneration in amorphous selenium.J.Appl.Phys,1999,85(11) :7958-7963
    [106] Blevis 1 M.Hunt D C and Rowlands J A. X-ray imaging using amorphous selenium: Determination of Swank factor by pulse height spectroscopy. Med.Phys, 1998,25:638-641
    [107] Mah D, Rawlinson J A,Rowlands J A. Detective quantum efficiency of amorphous selenium detector to megavoltage radiation. Phys.Med.Biol, 1999,44: 1369-1384
    [108] Estrada A C.Cicuttin A.Fratnik F.Muttihac R.Colavita A.Readout electronics in large detector matrix for soft x-ray in medical applications. Nucl.Instr. and Meth, 1997, A392:210~213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700