陶粒混合骨料混凝土结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合骨料混凝土是指以轻骨料代替部分普通粗、细骨料,体积密度主要介于1950kg/m3~2200kg/m3之间、强度介于40MPa~80MPa之间的中高强度混凝土。它既能改善轻骨料混凝土的缺点,即提高弹性模量,减小徐变,又能发挥轻骨料混凝土的优势,减轻自重,因此,在现代结构工程,特别是大承载、大跨度、高预应力混凝土工程中将具有很好的经济、技术意义。本文通过系统研究陶粒的掺入对混凝土拌合物性能、早期开裂性能、力学性能、耐久性能以及内部显微结构的影响规律,揭示了混合骨料混凝土组成、结构与性能之间的相互关系,为合理配制混合骨料混凝土提供了理论依据。
     本文进行的主要工作及取得的研究成果有:
     采用SEM、XRD、EDXA、显微硬度及孔结构分析等微观结构测试手段,研究了陶粒的掺入对混凝土内部显微结构的影响。研究表明:与普通骨料相比,轻骨料与水泥石的硬度及弹性模量均更为接近,故在普通混凝土中掺入部分轻骨料可使混凝土内部结构更趋于均匀,骨料与砂浆间的弹性更为协调。同时陶粒的吸返水能力不同,其对附近水泥水化程度和水泥石结构的影响也不同,且影响程度随水灰比和龄期的改变而有所差异。吸水率越大的陶粒其细化附近水泥石孔结构的能力越强,特别是100nm~1000nm的大孔含量显著减少;在吸水率2.6%的页岩陶粒附近的显微硬度试验结果中仍可看到类似普通骨料的界面薄弱区。当水灰比高时,未预湿陶粒对附近水泥石的致密作用显著;当水灰比较低时,饱和预湿陶粒的自养护作用同样使得骨料附近水泥石结构致密,且随龄期增长愈加明显。并在此基础上提出了“界面影响因子”的概念及计算公式,从而在一定程度上为研究多因素改变的骨料对界面结构的影响提供了一个定量综合的相对比较方法。
     通过研究陶粒对混合骨料混凝土拌合物性能及早期开裂性能的影响规律可以发现,陶粒在混凝土内部的吸水作用虽然会使拌合物的流动性有所降低,但对浆体粘度的增大有利于提高混凝土匀质性,当同时复掺粉煤灰、引气剂和减水剂时,可配制出坍落度为210mm,而分层度仅为3.3%的施工性能良好的混合骨料混凝土;陶粒在混凝土内部的返水作用则可改善混凝土早期抗开裂性能,且陶粒掺量越多、预湿程度越高,“界面影响因子”越大,改善效果越显著。
     重点研究了与结构工程联系比较紧密的混凝土力学性能和耐久性能。研究表明:在满足工程要求的强度与弹性模量范围内适当地掺入部分轻骨料可以提高混凝土的比强度。本研究条件下,当水灰比为0.32时,陶粒掺量以不超过50%为宜;当水灰比为0.49时,陶粒掺量以不超过25%为宜。并在不同掺量陶粒对混凝土应力-应变关系影响的研究基础上,提出了混合骨料混凝土本构方程。此外颗粒强度较高的陶粒对提高混凝土抗压强度及弹性模量均有利,而吸水率较高的陶粒不但可以改善轻骨料与水泥石的界面粘结性能,从而提高混凝土的劈拉强度,且对混凝土后期的强度增长有积极作用。预湿程度高的陶粒配制的混凝土早期强度较低,但对提高混凝土后期强度增长率有利。
     陶粒的掺入对混凝土抗冻性及高水灰比混凝土的抗渗性有利,且陶粒掺量越多,“界面影响因子”越大,对耐久性能的改善越明显,此外陶粒对低水灰比混凝土抗冻性的改善作用还随龄期的增长而愈加显著。但陶粒的掺入会使得低水灰比混凝土的抗渗性有所降低,特别是早期抗渗性降低明显,故此条件下陶粒掺量不宜高于50%。配制水灰比较高的混合骨料混凝土选用低吸水率陶粒可获得较好的抗渗及抗冻性能;当配制低水灰比混凝土时则宜选择吸水率适中的陶粒。并且在满足混凝土施工性能的前提下,选择未预湿的干陶粒对提高混凝土抗渗及抗冻性能均有利。
     在综合分析骨料组成、结构与混凝土各种性能之间关系的基础上,提出了混合骨料混凝土的骨料选配原则,并对其进行了试验验证,发现骨料的优选可大大改善混凝土的内部结构与性能。
Combined aggregate concrete is one kind of moderate or high strength concrete, which is prepared by replacing part of normal weight aggregate with lightweight aggregate, and its density is between 1950kg/m3 to 2200kg/m3, its strength is between 40MPa to 80MPa. It can increase the elastic modulus and decrease the creep of lightweight aggregate concrete, as well as lighten the dead load of structure, so the application of combined aggregate concrete in modern construction, especially the heavy load-bearing, long span and high prestressed structure can bring good economic and technical meaning. In this paper, based on the study of the effect of ceramsite on the workability, mechanical property, early shrinkage cracking, durability and microstructure of concrete, the relationship among the composition, structure and performance of combined aggregate concrete is discovered, and the theoretical basis can be provided for preparing combined aggregate concrete.
     The main research work and compliments of this paper is:
     The influence of ceramsite on the microstructure of concrete was investigated using SEM, XRD, EDXA, microhardness measurement and pore structure analysis. The results show that, the addition of ceramsite into concrete can reduce the difference of microhardness and elastic modulus between aggregate and mortar, the internal structure of concrete seem to be more homogeneously. The ceramsite with different water absorption and releasing capacity has different influence on the hydration degree and structure of the adjacent cement paste, and the influence degree varies with the change of water-to-cement ratio and curing age. The ceramsite with high water absorption has strong effect on the refinement of the adjacent cement paste, especially the volume content of macropores within the range of 100nm~1000nm reduces sharply; however a weak interfacial zone can be observed surrounding ceramsite YH with a 1-hour water absorption of 2.6%, which is similar to that around normal weight aggregate. For concrete with a higher water-to-cement ratio, the dry ceramsite has strong effect on the densification of the adjacent cement paste. For concrete with a lower water-to-cement ratio, the ceramsite with high pre- wetting degree can also improve the structure of the cement paste around aggregate, and the improve effect becomes apparently with increasing the curing age. The concept and calculation formula of“interface influence factor”is put forward based on the interfacial structure research, and hence a quantitative and comprehensive comparison method for study the influence of aggregate on the interfacial structure can be provided.
     Through the study of the effect of ceramsite on the workability and early shrinkage cracking of combined aggregate concrete, it is found that, although the water absorption character of ceramsite can reduce the fluidity of fresh concrete, the increase of paste viscosity is advantageous to improve the concrete homogeneity. By mixing fly ash, air entraining admixture and water reducing admixture into concrete simultaneously, the combined aggregate concrete with a slump of 210mm and a segregation degree of 3.3% is prepared. The water releasing effect of ceramsite can improve the concrete early anti-shrinkage cracking, and the more content and higher pre-wetting degree of ceramsite, the higher the“interface influence factor”and the more obvious the improvement.
     The mechanical property and durability of concrete which is closely related to the requirement of structure engineering are investigated systematically. The results show that, in the engineering required range of the concrete strength and elastic modulus, mixing proper content of ceramsite into concrete can increase the specific strength of concrete. Under this study condition, for concrete with a water-to-cement ratio of 0.32, the ceramsite content is better no more than 50%, whereas the ceramsite content is better no more than 25% for concrete with a water-to-cement ratio of 0.49. The constitutive equations of combined aggregate concrete were put forward based on the study of the stress-strain relationship of concrete prepared with different ceramsite content. The ceramsite with higher particle strength has positive effect both on the concrete compressive strength and elastic modulus; the ceramsite with higher water absorption not only can increase the concrete splitting strength, but also has positive effect on the increase of concrete strength in long term; the ceramsite with high pre-wetting degree is negative to the early strength of concrete, but is advantageous to the later growth rate of concrete strength.
     The addition of ceramsite into concrete is advantageous to the concrete frost-resistance and the impermeability of concrete with a higher water-to-cement ratio, and the more the ceramsite content, the higher the“interface influence factor”and the more obvious the improvement. Furthermore, the improve effect of ceramsite on the frost-resistance of concrete with a lower water-to-cement ratio becomes more significant in the long term. However, the impermeability of concrete with a lower water-to-cement ratio has some decrease due to the addition of ceramsite, especially in early age, so under this condition the ceramsite content is better no more than 50%. In order to obtain good impermeability and frost-resistance performance of concrete, the ceramsite with low water absorption should be chosen for preparing combined aggregate concrete with a higher water-to-cement ratio, whereas the ceramsite with moderate water absorption should be chosen for that with a lower water-to-cement ratio. And in the premise of meeting concrete workability, the dry ceramsite can be chosen to improve the concrete impermeability and frost-resistance.
     The relationship among aggregate composition, concrete microstructure and performance is analyzed comprehensively, and the aggregate required for preparing combined aggregate concrete is put forward, furthermore, the proof test is carried out, and the selective preference of aggregate on the improvement of the structure and performance of combined aggregate concrete is testified.
引文
1杨德福.高强混凝土的配合比及其脆性和耐久性的研究.混凝土. 1996, (2): 28~32
    2吴中伟,廉慧珍.高性能混凝土.中国铁道出版社, 1999:8~19
    3吴中伟.绿色高性能混凝土—混凝土的发展方向.混凝土与水泥制品, 1998, (1):3~6
    4 T. Lars, T. M. Torpors, H. Einar. Use of Lightweight Aggregate Concrete Gives a Cheaper Bridge. Edited by Steiner Helland, Ivar Holand and Sverre Smeplass. Proceedings 2nd International Symposium on Structural Lightweight Concrete, Kristiansand, 2000, Norway: 416~422
    5雍本.特种混凝土设计与施工.中国建筑工业出版社, 1993:45~48
    6邓景文,张荫济.从国外轻骨料和轻骨料混凝土的发展看我国发展的思考.第六届全国轻骨料及轻骨料混凝土学术讨论会论文集.西安, 2000:187~191
    7范锦忠,王根元,李南生.我国轻骨料及其制品的现状及发展方略.第六届全国轻骨料及轻骨料混凝土学术讨论会论文集.西安, 2000:12~15
    8朱聘儒,邓景纹,高永孚.轻骨料混凝土工程实例简述.苏州科技学院学报. 2003, 16(1):53-57
    9 J. M. Gao, W. Sun, K. Morino. Mechnical Properties of Steel Fiber Reinforced High-strength Lightweight Concrete. Cement and Concrete Composites. 1997, 19(1):307~313
    10 G. C. Hoff, R. Elimov. The Effect of Air-entrainment on a Pumped High-Strength Concrete Used in a Severe Marine Environment. ACI. Materials Journal. 1997, 170(1):65~92
    11 H. Al-Khaiat, M. N. Haque. Strength and Durability of Lightweight and Normal Weight Concrete. ASCE Materials Journal. 1999, 11(3):231~235
    12 M. N. Haque, H. Al-Khaiat. Strength and Durability of Lightweight Concrete in Hot Marine Exposure Conditions. Materials Structure. 1999, 32(7): 533~538
    13 O. A. Kayali, M. N. Haque. Status of SLWC in Australia as the New Millennium Dawns. Concrete in Australia. 2000, 25(4):22~25
    14丁庆军,张勇,王发洲.泵送高强轻集料混凝土的研究.武汉理工大学学报. 2001, 23(9):4~6
    15胡曙光,丁庆军,王发洲.轻集料的吸水率与预处理时间对混凝土工作性的影响.华中科技大学学报. 2002, 19(2):1~4
    16钱觉时,卢浩,张智强.陶粒憎水处理对新拌陶粒混凝土工作性能的影响.混凝土与水泥制品. 2001, (2):12~14
    17徐洪,徐银芳.轻集料泵送混凝土试验研究.武汉大学学报. 2004, 37(2): 33~36
    18丁庆军,张勇,王发洲.大流动性轻集料混凝土的研究.武汉理工大学学报. 2004, 26(3):30~32
    19宋培晶,刘小龙,丁建彤等.不同轻骨料吸水特性及其对混凝土性能的影响.混凝土. 2001, (6):49~52.
    20丁庆军,邹定华,王发洲,胡曙光.次轻混凝土匀质性影响因素研究.混凝土. 2005, (8):57~61
    21 H. J. Chen, T. Yen, C. T. Ko. Influences of Properties and Gradation of Lightweight Aggregate on the Strength of Lightweight Aggregate Concrete. International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, 1995, Norway:472~480
    22 T. A. Hammer, S. Smeplass. The Influence of Lightweight Aggregate Properties on Material Properties of the Concrete. International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, 1995, Norway:517~532
    23 F. O. Slate, A. H. Nilson, S. Martinez. Mechanical Properties of High-strength Lightweight Concrete. ACI Journal. 1986, 88(4):606~613
    24 H. J. Chen, T. Yen, T. P. Lia, Y. L. Huang. Determination of the Dividing Strength and its Relation to the Concrete Strength in Lightweight Aggregate Concrete. Cement and Concrete Composites. 1999, 21(1):29~37
    25 R. Wasserman, A. Bentur. Interfacial Interactions in Lightweight Aggregate Concretes and their Influence on the Concrete Strength. Cement and Concrete Composites. 1996, 18(1):67~76
    26 R. Wasserman, A. Bentur. Effect of Lightweight Fly Ash Aggregate Microstructure on the Strength of Concretes. Cement and Concrete Research. 1997, 27(4):525~537
    27 H. Al-Khaiat, M. N. Haque. Effect of Initial Curing on Early Strength and Physical Properties of a Lightweight Concrete. Cement and Concrete Research. 1998, 28(6):859~866
    28 T. Y. Lo, H. Z. Cui, Z. G. Li. Influence of Aggregate Pre-wetting and Fly Ash on Mechanical Properties of Lightweight Concrete. Waste Management. 2004, 24(4): 333~338
    29 A. H. Thomas, P. R. John. Specified Density Concrete-A Transition. Edited by Steiner Helland, Ivar Holand and Sverre Smeplass. Proceedings 2nd International Symposium on Structural Lightweight Aggregate Concrete, Kristiansand, 2000, Norway:37~46
    30袁杰,张宝生,葛勇,郑秀华.混合骨料混凝土的力学性能研究.混凝土. 2004, (11):42~44
    31祁景玉,张国欣,冯奇,杨玉颖. MA型轻混凝土的力学性能.建筑技术. 2003, (10):755~757.
    32田耀刚.高强次轻混凝土的研究.武汉理工大学材料科学与工程系硕士学位论文. 2005:23~26
    33计亦奇,刘巽伯,池建业.复合骨料对高强高性能混凝土自收缩的影响.第六届全国轻集料及轻集料混凝土学术讨论会论文集.天津, 2000:297~302
    34宋培晶,丁建彤,郭玉顺.高强轻骨料混凝土的收缩及其影响因素的研究.建筑材料学报. 2004, (2):138~144
    35高小建,巴恒静,祁景玉.混凝土水灰质量比与其早期收缩关系的研究.同济大学学报. 2004, (1):67~71
    36安明喆,覃维祖,朱金铨.高性能混凝土自收缩的试验研究.山东建材学院学报. 1998, (12):24~29
    37孙大明,何兵,吴芳,喻骁.粗骨料对轻骨料混凝土塑性收缩裂缝的影响.重庆建筑大学学报. 2004, (4):88~91
    38张涛,覃维祖.混凝土早期变形与开裂敏感性评价.建筑技术. 2005, (4):296~300
    39蒋亚清,许仲梓,吴建林等.高性能混凝土中饱水轻集料的微养护作用及其机理.混凝土与水泥制品, 2003, (5):13~15
    40 A. Bentur, S. Igarashi, K. Kovler. Prevention of Autogenous Shrinkage in High-strength Concrete by Internal Curing Using Wet LightweightAggregates. Cement and Concrete Research. 2001, 31(11):1587~1591
    41 K. Kovler, A. Souslikov, A. Bentur. Pre-soaked Lightweight Aggregates as Additives for Internal Curing of High-strength Concretes. Cement and Concrete Research. 2004, 26(2):131~138
    42 P. Schwesinger, G. Sickert. Reducing Shrinkage in HPC by Internal Curing by Using Pre-soaked LWA. Proceedings of International Workshop on Control of Cracking in Early-age Concrete, Tohoku University, 2000, Japan: 64~70
    43 S. Zhutovsky, K. Kovler, A. Bentur. Science of Lightweight Aggregates for Internal Curing of High Strength Concrete to Eliminate Autogenous Shrinkage. Materials and Structures. 2002, 35(3):97~101
    44 D. P. Bentz, K. A. Snyder. Protected Paste Volume in Concrete-Extension to Internal Curing Using Saturated Lightweight Fine Aggregate. Cement and Concrete Research. 1999, 29(11):1863~1867
    45 K. Kohno, T. Okamoto, Y. Isikawa, et al. Effect of Artificial Lightweight Aggregate on Autogeneous Shrinkage of Concrete. Cement and Concrete Research. 1999, 29(4):611~614
    46 D. Cusson, T. Hoogeveen. Internal Curing of High-performance Concrete with Pre-soaked Fine Lightweight Aggregate for Prevention of Autogeneous Shrinkage Cracking. Cement and Concrete Research. 2008, 38(6):727~734
    47 N. Yazdani, M. Bergin, G. Majtaba. Effect of Pumping on Properties of Bridge Concrete. Journal of Materials in Civil Engineering. 2000, 12(3):212~219
    48 Y. Asai, S. Kanie, M. Sakai, H. Seeki. Study on the Characteristics of High-strength Lightweight Concrete for Icy Waters. Proceedings of the 4th International Offshore and Polar Engineering Conference, Osaca, 1994, Japan:363~368
    49 M. Smadi, S. Mohammad, E. Migdady. Properties of High Strength Tuff Lightweight Aggregate Concrete. Cement and Concrete Composites. 1991, 13(2):129~135
    50 P. R. John, L. Clarke. Structural Lightweight Aggregate Concrete. Chapman and Hall, 1993
    51王发洲,胡曙光,丁庆军.高强轻集料混凝土的抗渗性能研究.新型高性能混凝土耐久性的研究与工程应用.中国建材出版社, 2004:499~503
    52郑秀华.陶粒吸水返水特性及其对轻集料混凝土结构与性能的影响.哈尔滨工业大学材料科学与工程系博士学位论文. 2005:66~67 25~32
    53吴沙和.粗集料的级配对普通混凝土耐久性的影响.商品混凝土. 2005, (1):32~34
    54王修田,钱春香,游有鲲.含气量对混凝土抗冻性能与抗渗性能的影响.混凝土与水泥制品. 2004, (6):16~18
    55朱春生,刘巽伯.粉煤灰陶粒混凝土的抗渗性.第四届全国轻集料及轻集料混凝土学术讨论会论文集.山东, 1994:117~122
    56 K. S. Chia, M. H. Zhang. Water Permeability and Chloride Penetrability of High Strength Lightweight Aggregate Concrete. Cement and Concrete Research. 2002, 32(4):639~645
    57 M. H. Zhang, O. E. Gj?rv. Permeability of High-Strength Lightweight Concrete. ACI. Materials Journal. 1991, 88(5):463~469
    58孙德强,丁建彤,郭玉顺.普通混凝土与采用不同陶粒的轻质混凝土的水渗性和氯离子渗透性比较.混凝土. 2005, (2):36~38
    59赵顺增,刘立,杨亚晋.高性能轻集料混凝土的耐久性试验研究.新型高性能混凝土耐久性的研究与工程应用.中国建材出版社, 2004:484~488
    60蒋明,谭克峰,范付忠.高性能轻集料混凝土的力学性能及耐久性的研究.西南工学院学报. 2002, 17(2):31~33
    61唐世海,刘巽伯.粉煤灰陶粒混凝土抗冻性.第四届全国轻集料及轻集料混凝土学术讨论会论文集.山东, 1994:123~128
    62郭玉顺,木村薰等.高强高耐久性轻集料混凝土的性能.混凝土. 2002, (10):8~14
    63 K. Fujii, M. Kakizake, H. Edahiro; Mixture Proportions of High-strength and High Fluidity Light Weight Concrete. ACI Journal. 1998, 179(25):150~179
    64 X. F. Gao, Y. T. Lo, C. M. Tam. Investigation of Micro-cracks and Microstructure of High Performance Lightweight Aggregate. Concrete Building and Environment. 2002, 37(5):485~489
    65 D. Joz, N. Wiedzka. Scaling Resistance of High Performance Concretes Containing a Small Portion of Pre-wetted Lightweight Fine Aggregate. Cement and Concrete Composites. 2005, 27(6):709~715
    66 M. H. Zhang, O. E. Gj?rv. Penetration of Cement Paste into LightweightAggregate. Cement and Concrete Research. 1991, 22(1):47~55
    67 S. L. Sarkar, S. Chandra, L. Berntsson. Interdependence of Microstructure and Strength of Structural Lightweight Aggregate Concrete. Cement and Concrete Composites. 1992, 14(3):239~248
    68 A. Bentur. Microstructure Interfacial Effects and Micromechanics of Cementitious Composites. Advances in Cementitious Materials. 1991, 16(5): 523~550
    69 M. H. Zhang, O. E. Gjorv. Microstructure of the Interfacial Zone between Lightweight Aggregate and Cement Paste. Cement and Concrete Research. 1990, 20(7):610~618
    70 Y. Lo, X. F. Gao, A. P. Jeary, Microstructure of Prewetted Aggregate on Lightweight Concrete. Building and Environment. 1999, 34(5):759~764
    71 T. A. Hammerv, S. Smeplass. The Influence of Lightweight Aggregate Properties on Material Properties of the Concrete. CEB/FIP International Symposium on Structure Lightweight Aggregate Concrete, Sandefjord, 2000, Norway:517~532
    72 M. H. Zhang, O. E. Gj?rv. Pozzolanic Reactivity of Lightweight Aggregates. Cement and Concrete Research. 1990, 20(8):884~890
    73 R. N. Swamy, G. N. Lambert. Mix Design and Properties of Concrete Made with PFA Coarse Aggregate and Sand. International Journal of Composites and Lightweight Concrete. 1983:263~274
    74胡曙光,王发洲,丁庆军.轻骨料与水泥石的界面结构.硅酸盐学报. 2005, (6):713~717
    75陈立军,王永平,尹新生,张丹.混凝土孔径尺寸对其抗渗性的影响.硅酸盐学报. 2005, (4):500~505
    76 S. Weber, H. W. Reinhardt. A New Generation of High Performance Concrete: Concrete with Autogenous Curing. Advanced Cement Based Materials. 1997, 6(2):59~68
    77张德思,成秀珍.硬化混凝土气孔参数的研究.西北工业大学学报. 2002, (1):10~13
    78陈树人,柳梭哲,王久良.混凝土孔结构对冰点的影响.低温建筑技术. 2000, (1):9~10
    79杨晶杰,孙兆雄,葛毅雄,于玲.引气混凝土的抗冻性和气泡结构的关系研究.土工基础. 2005, (2):76~78
    80段纪成,赵霄龙.高性能混凝土冻融耐久性与孔结构变化的关系.湖北工学院学报. 2004, 19(2):14~17
    81肖纪美.材料的应用与发展.宇航出版社, 1987:7~8
    82 P. O. Slate, R. F. Mathews. Volume Changes on Settling Curing of Cement Paste and Concrete from Zero to Seven Days. Journal of the ACI proceedings. 1967, 64(1):34~39
    83重庆建筑工程学院.混凝土学.中国建筑工业出版社, 1981:
    84杨庆生.复合材料细观结构力学与设计.中国铁道出版社, 1999:75~78
    85 A. Bentur, M. Goldman, M. Cohen. The Contribution of the Transition Zone to the Strength of High Quality Silica Fume Concretes. Materials Research Society Symp. Proc.. 1988, 114:97~103
    86 K. Mitsui, Z. Li, D. A. Lange, S. P. Shah. Relationship between Microstructure and Mechanical Properties of the Paste-aggregate Interface. ACI Materials Journal. 1994, 91(1):30~39
    87胡曙光,王发洲,丁庆军.轻骨料与水泥石的界面结构.硅酸盐学报. 2005, (6):713~717
    88冯乃谦.实用混凝土大全.科学出版社, 2001:239~242
    89徐定华,徐敏.混凝土材料学概论.中国标准出版社, 2002:158~180
    90 P. K. Metha著.混凝土的结构、性能与材料.祝永年,沈威,陈志源译.同济大学出版社, 1991:57~68
    91 S. Zhutovsky, K. Kovler, A. Bentur. Influence of Cement Paste Matrix Properties on Autogenous Curing of High-performance Concrete. Cement and Concrete Composites. 2004, 26(5):499~507
    92刘巽伯.轻集料强度和强度标号.房材与应用. 1999, (1):6~10
    93宋绍铭,田倩.陶粒吸水性能的讨论. 2002全国轻骨料及轻骨料混凝土生产、应用、技术研讨会论文集.西安, 2002:6~10
    94 P. Bentz, K. A. Snyder. Protected Paste Volume in Concrete: Extension to Internal Curing Using Saturated Lightweight Fine Aggregate. Cement and Concrete Research. 1999, 29(11):1863~1867
    95 C. Hua, P. Acker, A. Ehracher. Analyses and Models of the Autogeneous Shrinkage of Hardening Cement Paste. Cement and Concrete Research. 1995, 25(7):1457~1468
    96 A. Elsharief, M. D. Coben, J. Olek. Influence of Lightweight Aggregate on the Microstructure and Durability of Motar. Cement and Concrete Research. 2005, 35(7):1368~1376
    97 S. Diamond. The Microstructure of Cement Paste in Concrete. Proceedings of the 8th International Conference on the Chemistry of Cement, Rio de Janeiro, 1986, Brazil:122~147
    98 D. Breton, G. Ballivy, J. Grandet. Contribution to the Formation Mechanism of the Transition Zone between Rock-cement Paste. Cement and Concrete Research. 1993, 23(2):335~346
    99 K. Wu, B. Chen, Y. Wu, et al. Effect of Coarse Aggregate Type on Mechanical Properties of High-perform ance Concrete. Cement and Concrete Research. 2001, 31(10):1421~1425
    100 G. Giaccio, R. Zerbino. Failure Mechanism of Concrete Combined Effects of Coarse Aggregates and Strength Level. Advanced Cement Based Materials. 1998, 7(2):41~48
    101 K. O. Kjellsen, O. H. Wallevik, L. Fjallberg. Microstructure and Microchemistry of the Paste-aggregate Interfacial Transition Zone of High Performance Concrete. Advances in Cement Research. 1998, 10(1):33~40
    102 Y. L. Tommy, H. Z. Cui. Spectrum Analysis of the Interfacial Zone of Lightweight Aggregate Concrete. Materials Letters. 2004, 58(25):3089~3095
    103 Neville, M. Adam. Aggregate Bond and Modulus of Elasticity of Concrete. ACI Materials Journal. 1997, 94(1):71~74
    104 M. Husem. The Effect of Bond Strengths between Lightweight and Ordinary Aggregate-motar, Aggregate-cement Paste on the Mechanical Properties of Concrete. Materials Science and Engineering. 2003, 363(1):152~158
    105 T. C. Hansen. Thermal and Electrical Conductivity and Modulus of Elasticity of Two-phase Composite Materials. RILEM BALL, 1966, 31(8):353~356
    106刘巽伯,李平江,计亦奇.陶粒有效弹性模量及其预估.混凝土, 2005, (3):35~38
    107孙南屏.混凝土体积稳定性的若干问题.混凝土. 2001, (11):61~69
    108王启宏.材料流变学.中国建筑工业出版社, 1984:39~51
    109 M. F. Petrou, K. A. Harries. Unique Experimental Method for Monitoring Aggregate Settlement in Concrete. Cement and Concrete Research. 2000,30(12):809~816
    110钱觉时.粉煤灰特性与粉煤灰混凝土.科学出版社, 2002:45~50
    111张竞男,胡晓波.粉煤灰对水泥浆体流变性能影响的研究.浙江建筑. 2005, (22):88~90
    112王甲春,潘文浩等.粉煤灰对新拌混凝土流变参数的影响.沈阳建筑工程学院学报. 2004, (3):200~203
    113吴杨.混凝土裂缝的分析及预防.中国建材, 2002:19~25
    114王铁梦.建筑物的裂缝控制.建筑工业出版社, 1998:38~42
    115杨杨,陈飞云,佐藤良一.高强混凝土早龄期的强度发展及其评价.混凝土与水泥制品. 2004, (3):1~4.
    116张建仁,王海臣,杨伟军.混凝土早期抗压强度和弹性模量的试验研究.中外公路. 2003, (6):89~92
    117丁庆军,田耀刚,王发洲等.集料对次轻混凝土宏观性能影响的研究.武汉理工大学学报. 2005, 27(5):37~39
    118过镇海.混凝土的强度和变形试验基础和和本构关系.清华大学出版社, 1997:78~85
    119张晓东,王振东.高强混凝土应力-应变关系的试验分析.广东土木与建筑. 1997, (2):34~37
    120 P. T. Wang, S. P. Shah, A. E Naaman. Strain Curves of Normal and Lightweight Concrete in Compression. Journal of the American Concrete Institute. 1978, 75(11):603~611
    121 T. H. Almusallam, S. H. Alsayed. Stress-strain Relationship of Normal, High Strength and Lightweight Concrete. Magazine of Concrete Research. 1995, 47(170):39~44
    122王振宇,丁建彤,郭玉顺.结构轻骨料混凝土的应力-应变全曲线.混凝土, 2005, (3):39~42
    123 G. Pickett. The Effect of Change in Moisture Content on the Creep of Concrete under a Sustained Load. American Concrete Institute Journal. 1942, 13(4):333~335
    124 B. Person. Moisture in Concrete Subjected to Different Kinds of Curing. Materials and Structures. 1997, 30(203):533~544
    125 N. S. Martys, C. F. Ferratis. Capillary Transport in Mortars and Concrete. Cement and Concrete Research. 1997, 27(5):747~760
    126 A. M. Neville著.混凝土的性能.李国泮,马贞勇译.中国建筑工业出版社, 1983:453~454
    127李翠玲,路新瀛,张海霞.确定氯离子在水泥基材料中扩散系数的快速试验方法.工业建筑. 1998, (28):41~43
    128宋宏伟,曹永民等.高性能轻集料混凝土力学性能和抗渗性研究.混凝土, 2003, (1):20~24
    129 S. A. Kelham. Water Absorption Test for Concrete. Magazine of Concrete Research. 1998, 40(143):106~110
    130 W. J. McCarter, H. Ezirim and M. Emerson. Absorption of Water and Chloride into Concrete. Magazine of Concrete Research. 1992,44(158):31~37
    131李金玉,曹建国,徐文雨.混凝土冻融破坏机理的研究.水利学报. 1999, (1):41~49
    132 M. Pigeon, J. Marchand, R. Pleau. Frost Resistant Concrete. Construction and Building Materials. 1996, 10(5):339~348
    133 R. Cantin, M. Pigeon. Deicer Salt Scaling Resistance of Steel-Fiber-resistance Concrete. Cement and Concrete Research. 1996, 26(11): 1639~1648
    134 ACI Committee 201 Guide to Durable Concrete. 1986:23~35
    135 R. K. Dhir, E. A. Byars. PFA Concrete: Chloride Diffusion Rates. Magazine of Concrete Research. 1993, 45(162):1~9
    136徐希昌,吴学礼.粉煤灰混凝土的抗冻性.上海建材学院学报. 1990: 3(4):397~406
    137孙凌,王颖,唐铭东.浅谈外加剂对混凝土抗冻性的改善.黑龙江交通高等专科学校学报. 2000, (9):39~41
    138杨全兵,朱蓓蓉,黄士元.对混凝土引气剂的新认识.低温建筑技术. 1998, (3):33~34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700