黄土高原植被建设的生态水文效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原是世界上水土流失最严重的地区之一,生态环境非常脆弱,是黄河泥沙来源的主要区域,恢复该区植被生态并促进可持续发展,减轻黄河下游泥沙水患灾害,已成为该地区亟待解决的首要问题。恢复与建设黄土高原植被,对于改善区域生态环境、振兴区域经济和实现经济社会可持续发展都具有重要意义。
     本文以黄土高原为背景,以延安城区周围区域以及黄土高原砒砂岩典型地区内蒙古准格尔旗西召沟流域东一支沟等为典型研究区域,采取定位观测与野外调查及室内试验分析相结合的方法,对黄土高原几种植被类型的土壤水分特征、沙棘柔性坝的土壤水库调节效应、沙棘柔性坝的生态水文效应等进行了分析讨论;对植被过滤带对非点源污染物的净化效果进行了试验研究;对沙棘柔性坝的三种流速测量方法进行了优劣比较、对沙棘柔性坝的设计参数进行了分析与讨论;最后,根据环境经济学的有关理论与方法,结合陕西省彬县黄土高原水土保持世界银行贷款二期项目,对小流域水土保持项目的生态效益进行了定量计算,并评价了生态效益在国民经济评价中的贡献。论文取得的主要研究成果与进展如下:
     (1)自然植被由低级阶段向高级阶段演替过程中土壤水分逐步降低,在退耕初期和草本群落(茵陈蒿群落和草本群落),土壤含水量差异不大,处于较高水平,到了演替的中期,即灌丛阶段,土壤水分有了明显的变化,在灌丛的初期(杠柳灌丛)土壤含水量仍然较高,但是到了灌丛后期(胡榛子灌丛)则土壤含水量已经接近或达到了乔木林的水平。植被由低级阶段向高级阶段演替过程是“土壤水库”的耗水过程。
     (2)沙棘柔性坝经过淤积可形成深度较厚的沟道土壤水库,沙棘柔性坝土壤水库对砒砂岩沟道土壤水分的调节有着巨大的潜力,可为当地植被的生长与恢复改善供水条件。
     (3)植被生长调查结果显示:①植被过滤带对地表径流的延滞效应及过滤效果与草本群落的发育状况有密切关系,沙棘不宜作为植被过滤带的主要物种与草本植被混种;②沙棘是一种优良的水土保持植物且在陕西地区长势良好,宜将其种植在草地过滤带和受纳水体之间,可达到稳固河岸和进一步增加地表径流入渗的目的。
     (4)径流小区模拟试验结果表明:植被过滤带主要通过物理作用并能有效过滤地表径流中的悬浮固体、氮磷营养物质和COD等四种污染物,对四种污染负荷的平均削减率达到了70%以上;植被的密度、高度和刚度对过滤带的净化效果影响显著,草本群落发达的草地过滤带具有较好的过滤效果。
     (5)应用PIV法、浮标法和染色剂示踪法三种测速方法分别测量了沙棘“柔性坝”内水流的流速,在实验的基础上进行了理论分析和对比。染色剂示踪法的实验结果与PIV法相近,浮标法由于人为因素影响其结果与PIV法相差较大,显得更为粗糙一些;在实验的准确性、可操作性和效果等方面,PIV法要比染色剂示踪法及浮标法更具有实用性。
     (6)小流域内沙棘“柔性坝”的布设受降雨、下垫面条件、地形等自然条件的影响较大,本文从工程水文学的基本理论出发,提出了从流域设计暴雨洪水及沟道形状共同确定沙棘“柔性坝”种植参数的概化设计思路,并从理论上对沙棘柔性坝的种植参数进行了讨论。
     (7)运用环境经济学的理论与方法,采用影子价格等方法对植被保持和改良土壤、涵养水源、固碳供氧及维持景观效益等进行定量分析计算,在此基础上,把生态效益纳入到水土保持项目的国民经济评价中,科学地评价了水土保持工程建设成果和投资效益,得出水土保持措施具有显著的生态效益。
Loess plateau is one of the most severe zones of soil and water loss in the world, and its eco-environment is very weak, and it is the main sediment source area into the Yellow river. So, the main problem to the Loess plateau is the recovery of its vegetation ecology, the promotion of the sustainable development, and the decrease of the water and sediment disasters in the lower Yellow river. The recovery and building of the plant in the Loess plateau has an important and valuable sense for improving area eco-environment, promoting area economy and realizing the sustainable development of economy and society.
     In this paper, the Loess plateau is as the background, based on the typical study areas including Yan'an city's entourage and the east-one gully branched as the xi-zhao gully in the zhun-ge-er county, Inner Mongolia, one of the typical soft rock regions in the Loess plateau, the soil moisture property of the main plant type in the Loess plateau, the adjustment effects of the sea-buckthorn flexible dam on soil reservoir, and the sea-buckthorn flexible dam's eco-hydrology effects were analyzed by the method of combine of locating observation and field survey and indoor test analysis. Next, the purification effects of the vegetation fitter strip on non-point source pollutions were studied by the test. The merits and shortcomings of the three measuring water flow velocity through the sea-buckthorn flexible dam were compared, and the design parameters of the sea-buckthorn flexible dam were analyzed and discussed. Finally, the ecology benefits of small valley soil and water conservation projects were quantitatively calculated, and the contribution of ecology benefits to national economic evaluation was evaluated by the concerned theory and method of environment-economy subject and combining the two-stage world bank loan on Loess plateau soil and water conservation in bin county in shaanxi province. Achieved main study results and advances in this paper are as follows:
     (1) The soil water was gradually reduced in the succession course of the national plant from low stage to high stage, the soil water difference was not high and was at a high level at first returning farmland and herb community (Artemisia capillaries thumb and herb community) stage. In the middle succession stage, namely boscage stage, the soil water had an obvious variation, and the soil water was yet at a high level at first boscage stage, but the soil water had approached or attained it of arbor forest in the last boscage stage(corylus bosk). The plant succession course of from low stage to high stage was the consuming soil water stage of soil reservoir.
     (2) The sea-buckthorn flexible dam could formed deeper gully soil reservoir through alluvium, and the soil reservoir formed by the sea-buckthorn flexible dam had a big adjustment potential to gully soil water in the soft rock region, and that could provide and improve supply water condition for local plant grow and recovery.
     (3) Plant growth survey results showed that:①the retarding and filtering effects of the VFS to surface runoff were closely concerned about the growth of herb community; and the sea-buckthorn was not fit as main species of VFS and it and herb community could not jointly be plant.②the sea-buckthorn is a kind of excellent plant for soil and water conservation and its growth is very good in shaanxi province, and it was suitably plant in the area between herb VFS and water body for receiving sewage, this can help stable riverbank and further improve the runoff filtering performance.
     (4) Small district runoff simulation test results showed that:the VFS could effectively filter the SS(suspended solid), N(nitrogen), P(phosphor), and COD in runoff, and the average reducing rate of it to the four kinds pollution load was over 70%; the density, height and rigidity of plant had a marked effect for the purity performance of VFS, and grass filter strip formed by developed herb community had a better filtering effect.
     (5) By the three methods of PIV technique, buoy and dyed-tracer, water flow velocity in the sea-buckthorn flexible dam was respectively measured, and test data were theoretical analyzed and compared based on test results. The test results observed by dyed-traced was close to that observed by PIV, test results observed by buoy were different from that observed by PIV, and the buoy method was rougher result for man-made factors. PIV technique was more practical than dyed-tracer and buoy techniques in test veracity, practices arid effects.
     (6) In small watershed, the sea-buckthorn flexible dam's design was subject to rainfall, underlying surface, terrain and natural conditions etc. The primary design idea was suggested that the sea-buckthorn flexible dam plant parameters were make from watershed design rainstorm and flood together with gully form, and the plant parameters of sea-buckthorn flexible dam were valuably discussed from theory based on the basic theory of project hydrology.
     (7) Employed environment-economy theory and methods, by the shadow price method, it was quantitatively calculated and analyzed for vegetation conserving and improving soil and water, fixing carbon and supplying oxygen and maintaining landscaping effect. On the basis, ecology benefit was brought into national economic evaluation of soil and water conservation projects. The construction productions and invest benefits of soil and water conservation projects were evaluated and it was obtained that soil and water conservation had very significant ecological benefits.
引文
[1]杨京平,卢剑波编,生态恢复工程技术[M],北京:化学工业出版社,2002.
    [2]吴发启,等.中国西部生态环境建设[J].水土保持研究,2000,3(1):2-5.
    [3]彭珂珊.中国水土流失问题的初探[J].北京联合大学学报(自然科学版),2004,18(1):20-26.
    [4]焦居仁,郭索彦.做好跨世纪的水土保持工作[J].中国水土保持,998,(5):10-13.
    [5]廖鸿.水土流失成为头号环境问题[J].中国减灾,2005,(1):1-2.
    [6]武强,董东林.试论生态水文学主要问题及研究方法[J].水文地质工程地质,2001,(2).
    [7]王国梁,刘国彬,等.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报,2002,(1).
    [8]Zalewski M.2000. Ecohydrology-the scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecological Engineering,16:1-8.
    [9]Rodriguez-Iturbe I.2000. Ecohydrology:a hydrologic perspective of climate-soil-vegetation dynamics. Water Resources Research,36:3-9.
    [10]Bobba, A.G., et al.2000. Application of environmental models to different hydrological systems. Ecological Modelling,125,15-49.
    [11]严登华,何岩,等.生态水文学研究进展[J].地理科学,2001,(5).
    [12]王根绪,钱鞠,等.生态水文科学研究的现状与展望[J].地球科学进展,2001,(3).
    [13]Ingram H.A.P. Eco-hydrology of Scottish peatlands[J]. Transactions of the Royal Society of Edinburgh. Earth Science,1987,78(4):287-296.
    [14]Bragg O M, Brown J M B, Ingram H A P. Modelling the ecohydrological consequence of peat extraction from a Scottish raised mire[A]. In:Nachtnebel H P, Kovar K. Hydrological basis of ecologically sound management of soil and groundwater. [C]. IAHS AISH Publication,1991.13-2.
    [15]Jansen Andre J M, Mass Cess.Ecohydrological processes in almost flat wetlands[A]. In:Kuo Chin Y.Engineering hydrology. [C]. New York:American Society of Civil Engineers,1993.150-155.
    [16]Kemp J L, Harper D M, Crosa G A.the habitat scale ecohydraulics of river[J], Ecol Eng.2000, 16:17-29.
    [17]Biawas S P, Boruah S. Fisheries ecology of the northeastern Himalayas with special reference to the Brahmaputra River[J]. Ecol Eng.,2000,16:39-50.
    [18]Dubnyak S, Timchenko V. The ecological role of hydrolodynamic process in the Dnieper Reservoirs[J]. Ecol Eng.,2000,16:167-174.
    [19]Holzbecher E, Nutzmann G Influence of subsurface watershed on eutrophication lake stechlin case study [J]. Ecol Eng,2000,16:175-180.
    [20]Wagner I, Zalewski M. Effects of hydrological patterns of tributations on biotic processes in a lowland reservoir consequence for restoration[J]. Ecol Eng.,2000,16:70-90.
    [21]Brinkman W L F, Magnuszewski A, Zober S.The structure and function of the vistula River floodplain near Plock, Poland[J]. Ecol Eng.,2000,16:181-188.
    [22]Fashchevsky B. A methodical approach to estimation of ecological and free flow[J]. Ecol Eng.,2000, 16:181-188.
    [23]Tatrai K, Korponai M J, Paulovits G. The role of the Kis-Balaton water protection system in the control of water quality of lake Balaton[J]. Ecol Eng.,2000,16:73-78.
    [24]Timchenko V, Oksiyukm O, Gore J. A model for ecosystem state and water quality management in the Dnieper River mouth zone[J]. Ecol Eng.,2000,16:119-125.
    [25]Van E K R, Witte J P M, Runhaar H et al. Ecological effects of water management in the Netherlands the model DEMNAT[J]. Ecol Eng.,2000,16:127-141-78.
    [26]李怀恩,张亚平,蔡明,等.植被过滤带的定量计算方法[J].生态学杂志,2006,25(1):108-112.
    [27]R.C.Schultz,et al.Design and placement of a multi-species riparian buffer strip system[J]. Agroforestry Systems,1995,29:201-226.
    [28]Kovacic DA, Osborne LL and Dickson BC (1991) Buffer strips and nonpoint pollution. Illinois Natural History Survey Reports, Feb 1991, No 304.
    [29]Wilson LG.Sediment removal from flood water by grass filtration[J].Transactions of ASAE, 1967,10(1):35-37.
    [30]Naiman RJ,Decampa H.The ecology of interface:Riparian zones [J]. Ann.Rev.Ecol.Syst.1997, 28:621-658.
    [31]Kye-Han Lee,Thomas M,Richard C.,et al.Multispecies riparian buffers trap sediment and nutrients during rainfall simulations[J]. Journal of Environmental Quality,2000,29:1200-1205.
    [32]Marie CORS,Bernard TYCHON.Effects of grassed buffer strip management on potential denitrification in a Belgian agricultural watershed [A] Michael Bruen.Proceedings of the 7th international specialized conference on diffuse pollution and basin management and 36th scientific meeting of the estuarine and coastal sciences association[C].Dublin:University College Dublin,2003:21-25.
    [33]George E.Pataki, Erin M.Crotty. New York State stormwater management design manual [M].Albany:New York State department of environment conservation,2003:5-7.
    [34]CODE393,National resources conservation service conservation practice standard:Filter Strip [S].
    [35]Lowrance RR. Groundwater nitrate and denitrification in a coastal riparian forest [J].Journal of Environmental Quality,1992,21:401-405.
    [36]R.C.Schultz, J.P.Collettil, T.M. Isenhapt,et al.Design and placement of multi-species riparian buffer strip system[J].Agroforestry Systems,1995,29:201-226.
    [37]Dillaha T.A., R.B. Reneau, S.Mostaghimi,et al.Vegetative filter strips for agricultural nonpoint source pollution control [J].Transactions of ASAE,1989,32 (2):491-496.
    [38]Persons J.E., R.B. Daniels, J.W. Gilliam, et al.The effect of vegetation filter strips on sediment and nutrient removal from agricultural runoff[A]A.B. Bottcher, K.L.Campbell, W.D.Graham. Proc. of the Environmentally Sound Agriculture Conferrence [C].Orlando,1991:16-18.
    [39]Margaret Smith, Stewart Melvin, Richard Pope,et al. Vegetative filter strips for improved surface water quality [R]. Ames:Iowa state university,1992.
    [40]Daniels RB, Gilliam JW. Sediment and chemical load reduction by grass and riparian filters [J].Soil Science Society ofAmerica Journal,1996,60:246-251.
    [41]EPA-841-B-05-004, National Management Measures Guidance to Control Nonpoint Source Pollution from Urban Areas[s].
    [42]Simpkins WW, W ineland TR, Andress RJ,et al.Hydrogeological constraints on riparian buffers for reduction of diffuse pollution:Examples from the BearCreek Watershed in Iowa, USA [J]. Water Science and Technology,2002,45:61-68.
    [43]Vidon P, HillAR. Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology [J].Biogeochemistry,2004,71:259-283.
    [44]Flanagan D.C., Forster G.R.,Neibling W.H.,et al.Simplified equations for filter strip design [J]. Transactions of ASAE,1989:32(6):2001-2007.
    [45]Munoz-Carpena R., Parsons J.E.,Gilliam J.W..Modeling hydrology and sediment transport in vegetative filter strips [J]. Journal of Hydrology,1999,214:111-129.
    [46]高鹏,于素荣,刘作新.荷兰有关利用植被过滤带控制径流中污染物的研究[J].水土保持科技情报,2002(3):15-20.
    [47]Hill A.E..Nitrate removal in stream riparian zones [J].Journal of Environmental Quality,1996,25:
    743-755.
    [48]Stephanie P. Review of riparian buffer zone effectiveness[R]. New Zealand:Ministry of Agriculture and Forestry,2004:1-31.
    [49]Schoonover J.E., K.W.J. Williard. Ground water nitrate reduction in giant cane and frest riparian buffer zones [J]. Journal of the American Water resources association,2003,39(2):347-354.
    [50]罗晓娟,余勇利.植被缓冲带结构与功能对水质的影响[J].水土保持应用技术,2006(4):1-3.
    [51]Cooper J R, Gilliam JW, Daniels R B, et al. Riparian areas as filters for agricultural sediment[J]. Soil Science Society of America Journal,1987,51:416-420.
    [52]Reed T., CarpenterS.R.. Comparison of P-yield riparian buffer strips and land cover in six agricultural watersheds [J].Ecosystems,2002,5:568-577.
    [53]Abu-Zreig M, Rudra RP, Whiteley HR,et al. Phosphorus removal in vegetated filter strips[J].Journal of Environmental Quality,2003,32:613-619.
    [54]Rhode W A, Asmussen L E, Hauser E W, et al. Trifluralin movement in runoff from a small agricultural watershed [J].Journal of Environmental Quality,1980,9:37-42.
    [55]Hatfield J L, Mickelson SK, Baker J L, et al. Buffer strips:landscape modifications to reduce off-site herbicide movement//Clean Environment-21st Century. Volume Ⅰ:Pesticides. [A]. St. Joseph. Mich..Proceedings of a conference March 5-8,1995. Kansas City,MO.:American Society of Agricultural Engineers[C]. Kansas,1995:85-88.
    [56]Hupp C R, Woodside M D, Yanosky T M. Sediment and trace element trapping in a forested wetland, Chickahominy River, Va[J]. Wetlands,1993,13(2):95-104.
    [57]Barfield B.J., E.W. Tollner, J.C. Hayes.The use of grass filters for sediment control in strip mining drainage,Vol. I:Theoretical studies on artifical media [R].Lexington:University of Kentucky,1978.
    [58]Barfield B.J.,E.W. Tollner,J.C. Hayes.Filtration of sediment by simulated vegetation Ⅰ. Steady-state flow with homogeneous sediment[J].Transactions of ASAE,1979,22(5):540-545.
    [59]Hayes, J. C.. Evaluation of design procedures for vegetal filtration of sediment from flowing water[D]. Lexington:University of Kentucky,1979.
    [60]Hayes, J. C., B. J. Barfield, R. I. Barnhisel. Filtration of sediment by simulated vegetation Ⅱ. Unsteady flow with non-homogeneous sediment [J]. Transactions of ASAE,1979,22(5):1063-1967.
    [61]Hayes, J. C., B. J. Barfield, R. I. Barnhisel. The use of grass filters for sediment control in strip mine drainage. Ⅲ. Empirical verification of procedures using real vegetation[R]. Lexington:University of Kentucky,1982.
    [62]Hayes, J. C., B. J. Barfield and R. I. Barnhisel. Performance of grass filters under laboratory and field conditions[J]. Transactions of ASAE.1984,27(5):1321-1331.
    [63]Tollner, E. W., B. J. Barfield, C. T. Haan, T. Y. Kao. Suspended sediment filtration capacity of simulated vegetation[J]. Transactions of ASAE,1976,19(4):678-682.
    [64]Tollner, E.W., B.J. Barfield, C. Vachirakornwatana, C.T. Haan. Sediment deposition patterns in simulated grass filters [J]. Transactions of ASAE.1977,20(5):940-944.
    [65]Wilson, B.N., B.J. Barfield, I.D. Moore. A Hydrology and Sedimentology Watershed Model, Part I: Modeling Techniques[R].Lexington:University of Kentucky,1981.
    [66]Williams, R.D., Nicks, A.D.. Using CREAMS to simulate filter strip effectiveness in erosion control[J]. Journal of Soil and Water Conservation,1988:43,108-112.
    [67]Nicks, A.D., Williams, R.D., Krider. J.N., et al. Simulation of filter strip effectiveness[A]. A.B. Bottcher, K.L.Campbell, W.D. Graham, Eds..Proc. of the Environmentally Sound Agriculture Conference[C].Orlando:1991.16-18.
    [68]Knisel, W.G.. CREAMS:A field-scale model for chemicals,runoff and erosion from agricultural management systems[R]. Washington DC:US Department of Agriculture, Science and Education Administration,1980.
    [69]Dillaha, T.A., Hayes, J.C.. A procedure for the design of vegetative filter strips[R]. Washington DC: Final Report to USDA Soil Conservation Service,1991.
    [70]Munoz-Carpena, R. and J.E. Parsons. Evaluation of VFSmod:a vegetative filter strips hydrology and sediment[R]. St. Joseph ASAE,1999.
    [71]Munoz-Carpena, R. and J.E. Parsons. A normalized design procedure to meet sediment TMDL with vegetable filter strips[A]. A. Saleh, B. Wilson. Watershed Management to Meet Emerging TMDL Environmental Regulations [C]. St. Joseph:ASAE,2002.
    [72]Munoz-Carpena, R., Z. Zajac, Yi-Ming Kuo. Evaluation of water quality models through global sensitivity and uncertainty analyses techniques:application to the vegetative filter strip model VFSMOD-W[J]. Transactions of ASAE,2007:50(5):1719-1732.
    [73]Edwards DR,Danier TC,Moorejr PA.Vegetative filter strip design for grassed areas treated with animal manures [J].Appl.Eng.Agric.,1995,12:31-38.
    [74]DelgadoAN, PeriagoEL, Viqueira FD. Vegetated filter strips for water purification:A review[J]. Bioresource Technology,1995,51:13-22.
    [75]Dabney SM, Moore MT, Locke MA. Integrated management of in-field, edge-of-field, and after-field buffers [J].Journal of the American Water Resources Association,2006,42:15-24.
    [76]Cullen P. Land use and declining water quality [J].Australian Journal of Soil and Water Conservation,1991,4:4-8.
    [77]Blanco-Canqui H, Gantzer CJ, Anderson SH, et al. Grass barrier and vegetative filter strip effectiveness in reducing runoff sediment, nitrogen, and phosphorus loss[J].Soil Science Society of America Journal,2004,68:1670-1678.
    [78]Bedard-Haughn A, Tate KW, Kessel CV. Quantifying the impact of regular cutting on vegetative buffer efficacy for nitrongen-15 sequestration [J].Journal of Environmental Quality,2005,34: 1651-1664
    [79]Lowrance RR, Sheridan JM. Surface runoff water quality in a managed three zone riparian buffer[J].Journal of Environmental Quality,2005,34:1851-1859.
    [80]Qiu Z. A VSA-based strategy for placing conservation buffers in agricultural watersheds[J]. Environmental Management,2003,32:299-311
    [81]Santhi C, Atwood JD, Lewis J,et al. Environmental and Economic Impacts of Reaching and Doubling the USDA Buffer Initiative Program on Water Quality[A]. St. Joseph, Mich:American Society of Agricultural Engineers Meeting Paper,2001, No.01-2068.
    [82]Ribaudo MO, Horan RD, Smith ME. Economics of Water Quality Protection from Nonpoint Sources-Theory and Practice [R]. Washington DC:U. S. Department of Agriculture,1999.
    [83]王青杵,王彩琴,杨丙益.黄土残塬沟壑区植物篱水土保持效益研究[J].中国水土保持,2001,(12):25-26.
    [84]徐峰,蔡强国,吴淑安,等.等高植物篱控制紫色土坡耕地侵蚀的特点[J].土壤学报,2002,39(1):71-80.
    [85]李新平,王兆骞,陈欣,等.红壤坡耕地人工模拟降雨条件下植物篱笆水土保持效应及机理研究[J].水土保持学报,2002,16(2):36-40.
    [86]陈治谏,廖晓勇,刘邵权.坡地植物篱农业技术生态经济效益评价[J].水土保持学报,2003,17(4):125-127.
    [87]邓红兵,王青春,王庆礼,等.河岸植被缓冲带与河岸带管理[J].应用生态学报,2001,12(6):951-954.
    [88]秦明周.美国土地利用的生物环境保护措施-缓冲带[J].水土保持学报,2001,15(1):119-121.
    [89]张建春.河岸带功能及管理[J].水土保持学报,2001,15(6):143-146.
    [90]倪九派,傅涛,卢玉东,等.缓冲带在农业非点源污染防治中的应用[J].环境污染与防治,2002,24(4):229-251.
    [91]李世锋.关于河岸缓冲带拦截泥沙和养分效果的研究[J].水土保持科技情报,2003,(6):41-43.
    [92]诸葛亦斯,刘德富,黄钰铃.生态河流缓冲带构建技术初探[J].水资源与水工程学报,2006,17(2):63-67.
    [93]王良民,王彦辉.植被过滤带的研究和应用进展[J].应用生态学报,2008,19(9):2074-2080.
    [94]毛占坡.黑河流域非点源污染控制规划研究[D].西安:西安理工大学,2000.
    [95]董凤丽.上海市农业面源污染控制的滨岸缓冲带体系初步研究[D].上海:上海师范大学,2004.
    [96]于红丽.不同类型河岸带对溪流氮素输入的截留转化转化效率研究[D].哈尔滨:东北林业大学,2005.
    [97]章明奎,方利平.河岸水稻田缓冲带宽度对排水中氮磷流失的影响[J].水土保持学报,2005,19(4):10-13.
    [98]叶志敏,易璇.滨岸缓冲带削减非点源污染试验研究[J].科技资讯,2006,(28):250-251.
    [99]田自强,韩梅,张雷.西太湖平原河网区恢复与退化湿地生态及水环境功能比较[J].生态学报,2007,27(7):2812-2822.
    [100]张刚,王德建,陈效民.太湖地区稻田缓冲带在减少养分流失中的作用[J].土壤学报,2007,44(5):873-877.
    [101]钱宁,王可钦,阎林德,府仁寿.黄河中游粗泥沙来源区对黄河下游冲淤的影响[C].第一次泥沙国际学术讨论会论文集.1980.3:33-62.
    [102]王笃庆,马永林,耿绥和.晋陕蒙接壤地区砒砂岩分布范围及侵蚀类型区划分[R].黄委会缓德水土保持科学试验站,1994.
    [103]冉大川,柳林旺,赵力仪.黄河中游河口镇至龙门区间水土保持与水沙变化[M].黄河水利出版社.2000.5:12-14.
    [104]钱正英.以开发沙棘资源作为加速黄土高原治理的一个突破口[J].水土保持科技情报.1986,(4):1-2.
    [105]毕慈芬,李桂芬.沙棘在治理砒砂地区水土流失中的特殊功能[J].水利水电快报,1998,19(18):1-3.
    [106]毕慈芬,王富贵,李桂芬.砒砂岩地区沟道植物“柔性坝”拦沙试验[J].泥沙研究,2003,4(2):14-25.
    [107]毕慈芬,乔旺林.沙棘柔性坝在砒砂岩地区沟道治理中的试验[J].沙棘,2003,13(1):28-34.
    [108]毕慈芬.砒砂岩地区沟道植物“柔性坝”拦沙试验[J].中国水土保持,2002,5:18-20.
    [109]拾兵,曹叔尤,付强,李桂芬.密集丛水流的基本方程[J].西南民族学院学报(自然科学版),1999,25(1):1-7
    [110]拾兵,付强,曹叔尤.植物对明渠水流的影响[J].西南民族学院学报,1998,24(4):354-357
    [111]拾兵,曹叔尤,何建宇,毕慈芬,李桂芬.植物因子与明渠推移质输沙率的关系[J].山地研究,1998,16(2):89-93
    [112]拾兵.植物治沙力学机理及河宽动力调整研究:[博士学位论文][D].成都:四川联合大学,1998
    [113]程艳,李森,邱秀云,阿不都外力,周著.河渠种树水流特性试验研究[J].新疆农业大学学报,2003,26(2):59-64
    [114]阎洁,周著,邱秀云,程艳.植物“柔性坝”阻水试验及固沙机理分析[J].新疆农业大学学报,2004,27(3):40-45
    [115]程艳.植物“柔性坝”水流特性的试验研究:[硕士学位论文][D].乌鲁木齐:新疆农业大学,2004
    [116]刘锋,邱秀云,周著,阎洁.植物“柔性坝”在不同底坡下水流特性的试验研究[J].新疆农业大学学报,2005,28(3):53-57
    [117]Guido Runchelmeisfer.植物蓠-适用于发展中国家资源贫乏地区农民.水利部黄委会黄土高原水土保持项目办公室[C].1992.4.
    [118][美]EdwinD.Mckee主编.赵兴邦译.世界沙海的研究[M].宁夏人民出版社,1993.
    [119]董哲仁.河流治理生态工程学的沿革与趋势.水利水电技术[J].2004.2.
    [120]Ree. W. O.,and Palmer. V. J.(1949). Flow of Water in Channels Protected by Vegetative Lining. Tech. Bull.967. U. S. Dept. of Agrculture Soil Conservation Service. Washington.D.C.
    [121]Kouwen.N., Li, R. M.,and Simons. D.B.(1981). Flow Resistance in Vegetated Waterways.Trans. ASCE,24(3),684-698.
    [122]Kouwen.N.(1992).Modern Approach to Design of Grassed Channels. J. Irrig.Drain. Eng.,118(5), 713-743.
    [123]孟春红,夏军.“土壤水库”储水量的研究[J].节水灌溉,2004,(4):8-10.
    [124]靳孟贵,张人权,Ian Simmers等.土壤水资源评价的研究[J].水利学报,1999,8:30-34.
    [125]黄荣珍.不同林地类型土壤水库特性的初步研究:[硕士学位论文][D].福州:福建农林大学,2002.
    [126]郭凤台.土壤水库及其调控[J].华北水利水电学院学报,1996,17(2):72-80
    [127]邓振镛,方德彪,仇化民.甘肃东部旱作区土壤水库贮水力的研究[J].应用气象学报,1996,7(2):169-174
    [128]孙仕军,丁跃元,曹波等.平原井灌区土壤水库调蓄能力分析[J].自然资源学报,2002,17(1):42-47
    [129]李生秀.解决我国西北水资源匮缺发展旱地农业的思考[J].中国科学基金,1999(1):6-8
    [130]史学正,梁音,于东升.“土壤水库”的合理调用与防洪减灾[J].土壤侵蚀与水土保持学报,1999,5(3):6-10
    [131]张生,朱诚.长江流域水土流失及其对洪灾的影响[J].水土保持学报,2001,15(6):9-13
    [132]于东升,史学正.红壤区不同生态模式的“土壤水库”特征及其防洪减灾效能[J].土壤学报,2003,40(5):656-664
    [133]杨荣金,傅伯杰,刘国华等.黄土丘陵沟壑区生态环境建设中的水问题——以延河流域为例[J].环境科学,2004,25(2):37-42
    [134]朱显谟.抢救“土壤水库”实为黄土高原生态环境综合治理与可持续发展的关键——四论黄土高原国土整治28字方略[J].水土保持学报,2000,14(1):1-6.
    [135]何福红,黄明斌,李景保.土壤水库和森林植被对水资源的调节作用[J].土壤与环境,2001,10(1):42-44.
    [136]岳永杰.福建省主要森林水库特性与动态:[硕士学位论文][D].福州:福建农林大学,2003.
    [137]朱显谟.抢救“土壤水库”治理黄土高原生态环境[J].中国科学院院刊,2000(4):293-295.
    [138]Bobba, A.G., et al.2000, Application of environmental models to different hydrological systems. Ecological Modelling 125,15-49.
    [139]穆兴民,徐学选,等编著,黄土高原生态水文研究,中国林业出版社,2001.
    [140]严登华,何岩,等,呼伦湖流域生态水文过程对水环境系统的影响,水土保持通报,2001,(5).
    [141]程大珍,陈民,等,永定河上游人类活动对降雨径流关系的影响,水利水电工程设计,2001,(2).
    [142]张永泽,郑丙辉,小河流域森林的环境水文效应研究,水资源保护,1994.
    [143]Zalewski M.2000. Ecohydrology-the scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecological Engineering 16:1-8.
    [144]Rodriguez-Iturbe Ⅰ.2000. Ecohydrology:a hydrologic perspective of climate-soil-vegetation dynamics. Water Resources Research 36:3-9.
    [145]Bobba, A.G., et al.2000, Application of environmental models to different hydrological systems. Ecological Modelling 125,15-49.
    [146]汤立群,陈国祥.水土保持减水减沙效益计算方法研究[J].河海大学学报,1999,(3).
    [147]吴永红,李倬,等.水土保持坡面措施减水减沙效益计算方法探讨[J].水土保持通报,1998,(1).
    [148]焦菊英,王万中.黄土丘陵区不同降雨条件下水平梯田的减水减沙效益分析[J].土壤侵蚀与水土保持学报,1999,(3).
    [149]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,(5).
    [150]王礼先,张志强.干旱地区森林对流域径流的影响[J].自然资源学报,2001,(5).
    [151]穆宏强,夏军.分布式流域水文生态模型的理论框架[J].长江职工大学学报,2001,(1).
    [152]穆宏强,夏军.水文生态耦合模式的理论框架[J].人民长江,1999.10.
    [153]张志国.晋西黄土丘陵沟壑区水平阶造林减水减沙效益研究[J].中国水土保持,1999(1).
    [154]代亚丽,蔡江碧.植被建设在黄土高原生态环境建设中的地位和作用[J].西北农业大学学报,2000,(6).
    [155]侯庆春,等.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,1999(5):11-14.
    [156]杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1):78-85.
    [157]沃尔特H.世界植被[M].北京:科学出版社,1984.214-217.
    [158]金争平,等.砒砂岩区水土保持与农牧业发展研究[M].郑州:黄河水利出版社,2003.
    [159]张利,张彩英,彭春香.沧州地区土壤水资源研究[J].自然资源学报,1990,5(3):230-235.
    [160]姚贤良.红壤水问题及其管理[J].土壤学报,1996,33(1):12-19.
    [161]福建省土壤普查办公室编.福建土壤[M].福州:福建科学技术出版社,1991.
    [162]熊亚兰,魏朝富.坡面土壤水分特性的空间变异及其水库贮量[J].水土保持学报,2005,19(1):136-140.
    [163]李克煌.论降雨径流的集存[J].水土保持学报,1994,8(1):73-77.
    [164]宋祖祥.土壤学(上)[M].北京:农业出版社,1983.
    [165]王福林,潘铭.黄土丘陵区沙棘造林抗旱指标初探[J].沙棘,1998,11(2):7-9.
    [166]杨具瑞,方铎,毕慈芬,等.砒砂岩区小流域沟冻融风化侵蚀模型研究[J].中国地质灾害与防治学报,2003,14(2):87-93.
    [167]朱金兆,刘建军,朱清科,等.森林凋落物层水文生态功能研究[J].北京林业大学学报,2002,24(5-6):30-34.
    [168]黄满湘,章申,张国梁,等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58(1):147-154.
    [169]屠清瑛,等.巢湖富营养化研究[M].合肥:中国科学技术大学出版社,1990.
    [170]Sharpley A N.The selective erosion of plant nutrients in runoff[J].Soil Sci Soc Am J,1985, 49:1527-1534.
    [171]Mclsaac F G,Hirschi M C,Mitchell JK. Nitrogen and phosphorus in eroded sediment from eorn and soybean tillage system[J].J Environ Qual,1991,20:663-670.
    [172]晏维金,章申,唐以剑.模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报,2000,20(3):332-337.
    [173]丁锁,臧宏伟.农业区磷流失形态的研究[J].水土保持应用技术,2006,(4):3-5.
    [174]李家科,李怀恩.基于暴雨径流过程监测的渭河非点源污染特征及负荷定量研究[J].水土保持通报,2008:28(2):106-111.
    [175]Castleman K.R. Digital Image. Processing[M].Houston:Prentice Hall,1996.
    [176]James C S. Interaction of reed distribution hydraulics and river morphology. Pretoria[J], South Africa Water Research Commission Report,2001,1(1):856.
    [177]郭福水.王汉封.柳朝晖.郑楚光水平槽道内湍流变动的PTV实验研究[J].工程热物理学报.2005.25(4):622-624.
    [178]Palmer V J A method for designing vegetated water ways[J]. Agricultural Engineering. 1986.26(12)516-520.
    [179]Wen Cheng, Yuichi Murai,Fujio Yamamoto. Estimation of the liquid velocity field in two-phase flows using inverse analysis and particle tracking velocimetry [J]. Flow Measurement and Instrumentation.2005,16:303-308.
    [180]王张彬.流体可视化技术在沙棘柔性坝流场测量中的应用研究[D].西安理工大学硕士论文,2008.4.
    [181]康琦,申功忻.全场测速技术进展[J].力学进展.1997,.27(1):106-120.
    [182]Castleman K.R. Digital Image. Processing [M].Houston:Prentice Hall,1996.
    [183]邱秀云,阿不都外力.程艳,等.植物“柔性坝”对水流影响的试验研究[J].水利水电技术,2003,34(9):62-65.
    [184]叶守泽,詹道江.工程水文学[M].北京:中国水利水电出版社,2000.
    [185]水利部黄河水利委员会.砒砂岩地区沙棘植物柔性坝实验技术总结(1995-2006)[R].2006.5.
    [186]赵国际.内蒙古砒砂岩地区水土流失规律研究[J].水土保持研究,2001,8(4):158-160.
    [187]陈家琦,张恭肃.小流域暴雨洪水计算[J].北京:水利水电出版社,1985.
    [188]阎洁,周著,邱秀云.植物坝前上游段推移质泥沙的输移特性[J].新疆农业大学学报,2004,27(4):67-72.
    [189]郭成宇.保健型沙棘花生乳的研制[J].食品科技,2003,2:83-84.
    [190]唐克丽等.中国水土保持[M].北京:科学出版社,2004-528.
    [191]高虹.平凉市水土保持世行贷款二期项目经济财务分析与评价[J].财会研究,2006,8:45-46.
    [192]王还珠.参与式方法在黄土高原水土保持世行贷款项目中的应用意义[J].中国水土保持SWCC,2006,12:36-37.
    [193]冯发林,卢承志,巢礼义等.湘江流域水土保持规划预期效益评价[J].湖南师范大学自然科学学报,2006,29(3):107-110.
    [194]水利部水土保持司.GB T15774-1995水土保持综合治理效益计算方法[S].北京:中国标准出版社,1995
    [195]余新晓,张晓明,武思宏,等.黄土区林草植被与降水对坡面径流和侵蚀产沙的影响[J].山地学报,2006,Vo1.24(1):19-26.
    [196]陈文波,卢建生,肖笃宁.森林景观变化对森林水文功能的影响评估[J].江西农业大学学报,2004,26(4):217-521.
    [197]杨建波,王利.退耕还林生态效益评价方法[J].中国土地科学,2003,17(5):54-58.
    [198]王佑民,翁俊华.林地枯落物的水土保持作用[J].中国水土保持,2002,7:18.
    [199]赵鸿雁,吴钦孝.黄土高原人工油松林林冠截留动态过程研究[J].生态学杂志,2002,21(6):20-23.
    [200]谢春华,关文彬,吴建安,等.贡嘎山暗针叶林生态系统林冠截留特征研究[J].北京林业大学学报,2002,Vo1.24(4):68-71.
    [201]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168-172.
    [202]张洪江,程金花,史玉虎等.三峡库区3种林下枯落物储量及其持水特性[J].水士保持学报,2003,17(3):55-58.
    [203]程根伟,余新晓,赵玉涛,等.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004:243-245.
    [204]Wilson G VHydrology of a forested watershed during storm events [J].Goodevam,1990,Vol.26 (2):352-355.
    [205]Skash M G.Storm runoff-generation in humid headwater catchments[J].Water Res R,1986 (22):1273-1282.
    [206]张志达,李世东,陈英发.林业生态工程与水资源开发利用[J].防护林科技,2000,42(1):31-35.
    [207]黎锁平.水土保持经济学[M].兰州大学出版社,1997:213.
    [208]林而达,李玉娥,郭李萍,等.中国农业土壤固碳潜力与气候变化[M].北京:科学出版社,2005.
    [209]徐慧,彭补拙.国外生物多样性经济价值评估研究进展[J].资源科学,2003,Vo1.25(4):102-109.
    [210]王金叶,车克钧,常宗强,等.祁连山水源涵养林综合效益计量评价[J].西北林学院学报,2001,16(3):55-57.
    [211]罗枢运,孙逊,陈永宗.黄土高原自然条件研究[M].陕西人民出版社发行,1988.
    [212]陕西省黄土高原水土保持世行贷款项目可行性研究报告.陕西省黄土高原水土保持世行贷款项目办公室.1998:22.
    [213]陕西省水土保持局.陕西省黄土高原水土保持二期世行贷款项目可行性研究报告.陕西省黄土高原水土保持世行贷款项目办,2000,12.
    [214]廖国藩,贾幼陵主编.中国草地资源[M].中国科学技术出版社,1996:343-346.
    [215]白志刚,王晓,尚国梅,等.淤地坝建设对改善黄土高原区域环境的影响[J].中国水利,2003,9:23-24.
    [216]陈源泉,高旺盛.基于农业生态服务价值的农业绿色GDP核算——以安塞县为例[J].生态学报,2007,Vol.27(1):250-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700