空间热循环下承载铝合金焊接接头损伤机理与数值模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器的壳体、舱体通常采用铝合金焊接结构。由于空间环境的复杂性加之焊接接头本身所固有的组织不均匀性、几何不连续性,以及焊接残余应力的存在,使得接头部位往往成为焊接结构中最薄弱的部位。实践经验告诉我们,焊接结构的破坏大多都是从焊接接头中起源的。因此,对处于特定空间环境下承载焊接接头的损伤失效行为研究具有十分重要的意义。
     在地面常规条件下的有关焊接结构失效行为的研究方法和理论已经趋向成熟,但在空间特殊环境中并非完全适用。航天器焊接结构部件与地面结构相比,不但所处的环境不同,而且其破坏与失效的机理也有其特殊性。作者以航天器壳体用铝合金焊接接头为研究对象,从材料细观损伤入手,分析了近地空间热循环条件下承载焊接接头的特殊的损伤与失效机理;采用对比实验研究与解析计算相结合的方法,研究了热循环条件下接头材料细观损伤规律;并在此基础上,用跨尺度的研究方法揭示了细观损伤演化与宏观本构响应之间的定量关系。
     空间热循环是造成航天器故障的重要环境因素之一,长期的热循环作用会造成材料宏观性能的劣化。模拟空间热循环试验结果表明,长时间的热循环会导致承载焊接接头内部第二相粒子与基体材料脱开,进而形成微孔洞,微孔洞在应力场的作用下不断演化是造成材料宏观性能劣化的重要因素。作者从焊接冶金学角度对接头中第二相粒子的成因进行了分析,分析表明,TIG焊接热过程会在接头区域、尤其是在焊接热影响区中生成较多第二相粒子。温度的上下波动导致第二相粒子与基体之间产生热错配应力,热错配应力与外加载荷的联合作用会造成材料局部的塑性流。在热循环过程中塑性流的不断累积最终造成第二相粒子与基体脱粘,形成微孔洞。微孔洞的形成与演化会导致接头承载面积的减小,最终对接头宏观性能产生影响。
     孔洞型细观损伤是韧性材料在受载破坏和长期蠕变条件下的一种重要的损伤现象。迄今,已有几种理论模型可以描述微孔洞在材料内部的形成以及演化规律,但在热循环条件下孔洞损伤规律尚未见报道。作者通过研究细观尺度上的代表性体积单元在热循环作用下的行为响应,得出了热循环下细观尺度上的热应力、应变的解析解。以细观孔洞形核规律为切入点,对Gurson孔洞形核方程进行有效修正,引入热错配应力的影响,着力建立一套热循环辅助诱发孔洞形核机制。借助于Gurson孔洞型细观损伤理论,将细观层次上的“损伤”与宏观本构响应联系在一起,为热循环条件下损伤的定量计算奠定了理论基础。
     模型参数的选择与确定是影响模型计算精确度的一个重要因素。为将建立的损伤模型应用到热循环条件下焊接接头的损伤计算,还需特别考虑一些因焊接接头本身所固有的特性带来的初始条件和参数测定问题,包括焊接残余应力场、区域机械性能以及区域细观损伤参数的测定。
     作者采用实验测定与数值计算相结合的方法对构件中焊接残余应力场进行了测定与计算,并分析了其在受载过程的变化及对构件形变的影响。结果表明,即使在外载小于构件屈服极限的情况下,焊接残余应力的存在也会导致焊缝及近缝区产生塑性变形,造成附加损伤。
     采用物理模拟与数值模拟相结合的方法,对焊接接头各区域力学性能以及细观损伤参数分别进行了测定与计算,为损伤模型的应用提供了前提条件。采用中点积分算法,编写用户子程序对建立的材料本构模型“数值化”,子程序可与有限元软件完美结合,并对焊接接头试样和航天器壳体焊接结构在空间热循环条件下的细观损伤演化及宏观响应进行模拟计算。
     综上,本论文提供了有关空间热循环条件下承载铝合金焊接接头细观损伤与失效机制的新的实验发现,建立了热循环辅助孔洞形核机制,对热循环条件下材料体的宏观性能演化及尺寸不稳定效应进行了理论解析与定量计算。研究成果有助于丰富和发展孔洞型细观损伤理论,亦对航天器设计有所裨益。
Aluminum alloy welded structures have been widely used to construct the shell module of space vehicles. In some conditions, the welded joints often become the weakest part of the whole welded construction due to their inhomogeneties microstructure, discontinuous geometry as well as the welding residual stress. The experience tell us that the failure of welded structures always initiates from the welded joints. So, it is very important to study the damage and failure behaviors of the joints under special space conditions.
     The theory and methodology are driving to a maturity state concerning the evaluation of performance and failure behaviors in the welded structures under normal conditions. However, it does not always hold true in the aerospace conditions. The differences not only lie in the service conditions but also the particularities in the failure mechanisms. Taking the aluminum alloy welded joints as the object of the study, the author investigated the special damage and failure mechanisms in welded joint under load and thermal cycling conditions. Based on that, the quantitative relations between meso-damage revolution and constitutive behaviors were also investigated by the trans-scale approach.
     Thermal cycling is one of the important factor which causes the failure of the space vehicles. The materials performance may degrade after longtime thermal cycling. The results of the simulated thermal cycling tests show that the longtime thermal cycling may cause debonding between the second particle and the matrix of the welded joint, therefore nucleating void. The void evolutes under the stresses field and it is the key factor which causes the degradation of macro performance. The formation of the particles in the welded joint was analyzed from the welding metallurgy point of view. Results show that the TIG welding process may introduce many particles in the joint area especially in the HAZ. The thermal mismatch stress may be caused between the particles and the matrix under temperature variation conditions. The local plastic flow may be formed under the combining thermal mismatch stress and external loads. The accumulated plastic deformation causes the interface debonding between the particles and matrix. The nucleation and evolution of the voids decrease the load-carrying ability of the joints.
     The void-damage is a typical damage phenomenon for the failure of ductile metals and longtime creep. So far, several models have been established to describe the evolution rules of the voids in materials, but the rules under thermal cycling conditions has not been documented. Based on the analysis of constitutive response of a respective volume element (RVE) under combining thermal cycling and external loads, the author deduce the in-closed form results of the local stress and strain. By studying the void nucleation rule, the Gurson model was modified to introduce the effect of thermal cycling and tried to describe the thermal cycling assisted void nucleation mechanism. With the help of Gurson’s void-damage theory, the relationship between the damage in meso-scale and the response of macro behaviors was bridged. That is the theoretical foundation for the quantitative calculation of the damage under thermal cycling conditions.
     The determination of the model parameters is an important factor which affects the simulation accuracy. In order to apply the damage model established for calculation the damage in welded joints, additional issues should be considered. The issues that correlating closely to the welded joint itself include the determination of the welding residual stress field, local mechanical constants and the damage parameters.
     The determination of the welding residual stress was carried out by both experimental and numerical calculation methods. Its evolution under service and its effects on the deformation were also investigated. Results show that the plastic deformation and additional damage may occur in the joint area even the external loading no higher than its yield limit.
     The local mechanical constants and damage parameters of the welded joint were determined using physical and numerical simulation methods. It provides the preconditions for the applications of the damage model. The constitutive model established was implemented into the finite element code by means of mid-integration algorithm through users’subroutines. The subroutines can be used to simulate the meso-damage evolution and the macro constitutive behaviors of the welded joint specimens and the welded structures of the space vehicle. The simulation results fit well with the experimental data.
     In summary, the new experimental findings were presented regarding the meso-damage and failure mechanisms of aluminum alloy welded joint under combined thermal cycling and external loads conditions. The thermal cycling assisted void nucleating model was established. Theoretical calculation and numerical simulation of meso-damage evolution, macro performance degradation and its dimensional instability were carried out successfully. The achievements of this work are helpful for developing and expanding the theory of meso-damage and also of great benefit to the design of space vehicles.
引文
1马燕合.关于新材料科技发展的思考.材料导报. 2001,15(1): 1~2
    2湛永钟,张国定.低地球轨道环境对材料的影响.宇航材料工艺. 2003,33(1): 1~5
    3 A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller. Recent Development in Aluminium Alloys for Aerospace Applications. Materials Science and Engineering A. 2000, 280(1): 102~107
    4 Holt, Richard T. Recent Developments in Aluminum Technology for Aerospace Applications. Canadian Aeronautics and Space Journal. 1989, 35 (3): 128~137
    5 D. B. Mitton, A. Squillace, A. D. Fenzo, C. Padovani, T. Monetta, G. Giorleo, P. Cozzolino, F. Bellucci. An Overview of the Critical Technological Issues Relevant to the Joining of Light Alloys for Aerospace Applications. Corrosion Reviews. 2007, 25(3-4): 449~459
    6 N. Yamamoto, R. Murai, H. Yoshinari. Reliability Based Defect Assessment Methodology for Welded Joints with Respected to Brittle Fracture. Journal of the Society of Materials Science. 2007, 56(6): 544~549
    7 T. Nykanen, X. Li, T. Bjork, G. Marquis. A Parametric Fracture Mechanics Study of Welded Joints with Toe Cracks and Lack of Penetration. Engineering Fracture Mechanics. 2005, 72(10): 1580~1609
    8 D. Rubio, F. Galvez, D. C. Franco, V. Sanchez-Galvez. Fracture strength of welded aluminium joints in commercial road vehicles. Engineering Failure Analysis. 2006, 13(2): 260~270
    9 T. Watanabe, H. Hongo, M. Yamazaki. Mechanical Properties and Fracture Type of Dissimilar Welded Joint at Elevated Temperatures. Journal of the Iron and Steel Institute of Japan. 2007, 93(8): 552~557
    10 N. Gubeljak. Determination of Lower Bound Fracture Toughness of a High Strength Low Alloy Steel Welded Joint. Science and Technology of Welding and Joining. 2005, 10(2): 252~258
    11 Z. Zhu, H. Jing, J. Ge. Effects of Strength Mis-matching on the Fracture Behavior of Nuclear Pressure Steel A508-III Welded Joint. Materials Scienceand Engineering A-Structural Materials Properties Microstructure and Processing. 2005, 390(12): 113~117
    12 T. Bjork, S. Heinila, G. Marquis. Assessment of Subzero Fracture of Welded Tubular K-Joint. Journal of Structural Engineering-ASCE. 2008, 134(2): 181~188
    13张彦华.焊接力学与结构完整性原理.北京航空航天大学出版社,2008: 18~55
    14张宝昌.焊接结构安全评定技术.机械工业出版社,1990: 22~78
    15中国机械工程学会焊接学会.焊接手册(焊接结构)第三卷.第3版.机械工业出版社,2008
    16 I. Vishniakas. Reliability Estimation of the Ferritic Steels Welded Joints. Mechanika. 2006, 62(6): 68~72
    17 N. Gubeljak, J. Vojvodic-Tuma, J. Predan, Z. Tisma. Reliability of Fatigue Bahaviour of Weld Metal. Key Engineering Materials. 2007, 348: 9~12
    18 A. Carvalho, J. Rebello, R. Silva, L. Sagrilo. Reliability of the Manual and Automatic Ultrasonic Technique in the Detection of Pipe Weld Defects. Insight: Non-Destructive Testing and Condition Monitoring. 2006, 48(11): 649~654
    19 I. Milne, R. A. Ainsworth, A. R. Dowling and A. T. Stewart. Assessment of the Integrity of Structures Containing Defects. International Journal of Pressure Vessels and Piping. 1988, 32(1-4): 3~104
    20谷曼.焊接结构的失效及断口分析.皖西学院学报. 2007, 23(5): 98~100
    21 P. G. Babaevsky, N. A. Kozlov, I. V. Churilo. Influence of Simulated and Natural Space Environment Factors on Dielectric Properties of Epoxyamine Polymers and Polymer-based Composite Materials. Cosmic Research. 2005, 43(1): 25~33
    22黄本诚,马有礼.航天器空间环境试验技术.国防工业出版社, 2002: 39~98
    23张宗美.航天故障手册.宇航出版社,1994: 2~12
    24 Joo-Hyun Han, Chun-Gon Kim. Low Earth Orbit Space Environment Simulation and Its Effects on Graphite/Epoxy Composites. Composite Structures. 2006, 72(2): 218~226
    25 Mark Russell-Stevens, Richard Todd, Maria Papakyriacou. The Effect ofThermal Cycling on the Properties of a Carbon Fibre Reinforced Magnesium Composite. Materials Science and Engineering A. 2005, 397: 249~256
    26张丽新,王承民,徐洲.真空热循环与质子辐照顺次作用对甲基硅橡胶性能的影响.合成橡胶工业. 2005, 28(5): 356~359.
    27 Yu Gao, Song He, Dezhuang Yang, Yong Liu, Zhijun Li. Effect of Vacuum Thermo-cycling on Physical Properties of Unidirectional M40J/AG-80 Composites. Composites Part B. 2005, 36(4): 351~358
    28 Gary Pippin. Space Environments and Induced Damage Mechanisms in Materials. Progress in Organic Coatings. 2003, 47(3): 424~431
    29 H.G. Pippin, S.L.B. Woll. On-orbit and Ground Testing of Space Environment Interactions with Materials. Progress in organic coatings. 2003, 47(3): 458~468
    30 Kwang-Bok Shin, Cun-Gon Kim. Prediction of Failure Thermal Cycles in Graphite/Epoxy Composite Materials under Simulated Low Earth Orbit Environments. Composites Part B. 2000, 31(3): 223~235
    31刘雪松.航天工业几种铝合金及其焊接结构的尺寸不稳定性.哈尔滨工业大学博士论文. 2002: 57~59
    32 Abdelal Gasser Farouk, Nader Abuelfoutouh, Hamdy Ahmed, Atef Ayman. Thermal Fatigue Analysis of Small-satellite Structure. International Journal of Mechanics and Materials in Design. 2006, 3(2): 145~159
    33 J. M. Minguez, J. Vogwell. Fatigue Life of an Aerospace Aluminium Alloy Subjected to Cold Expansion and a Cyclic Temperature Regime. Engineering Failure Analysis. 2006, 13(6): 997~1004
    34 Chuwei Zhou, Wei Yang, Daining Fang. Damage of Short-fiber-reinforced Metal Matrix Composites Considering Cooling and Thermal Cycling. Journal of Engineering Materials and Technology. 2000, 122(2): 203~208
    35 J. A. Nairn. The Strain Energy Release Rate of Composite Microcracking– A Variational Approach. Journal of Composite Materials. 1989, 23(11): 1106~1129
    36 H Fukunaga, T. W. Chou, P. W. M. Peters. Probabilistic Failure Strength Analyses of Graphite/Epoxy Cross-Ply Laminates. Journal of Composite Materials. 1984, 18(4) : 339~356
    37 Hui Mei, Laifei Cheng, Litong Zhang. Damage Mechanisms of C/SiCComposites Subjected to Constant Load and Thermal Cycling in Oxidizing Atmosphere. Scripta Materialia. 2006, 54(2): 163~168
    38李崇俊,马伯信,金志浩.酚醛树脂前驱体C/ C复合材料研究:硼酚醛树脂理化性能分析及固化热解过程研究.新型炭材料. 2001, 16(1): 19~24
    39 G. L Steckel, T. D. Le. Composites Survive Space Exposure. Advanced Materials & Processes. 1991, 140(8): 35~38
    40吴运学,王晓薇,张涛,刘树信.碳化硅/铝复合材料热循环损伤的初步研究.宇航材料工艺. 1992,22(4): 62~66
    41 R. Rolfes, J. Tessmer, K. Rohwer. Models and Tools for Heat Transfer, Thermal Stresses and Stability of Composite Aerospace Structures. DLR-Mitteilung. 2004, 1: 125~153
    42 N. Salih, J. F. Nayfeh. Thermally Induced Displacement in Simply-supported Laminates. International Journal of Structural Stability and Dynamics. 2005, 5(1): 55~73
    43 D. G. Zimcik, B. M. Koike. Design of Thermally Stable Graphite/ Aluminum Tubular Structures for Space Applications. SAMPE Quarterly. 1990, 21(2): 11~16
    44 H. H.Давиден?ов,В. A.Лихачев. Hеобратимоефомоизменениеметалловлрициклическомтепловомвоздействии.Москва. 1962: 15~20
    45李霄,李栋才.超载拉伸消除焊接残余应力的计算机模拟.西安石油学院学报. 1993,14(2):46~49
    46 Tso-Liang Teng, Chin-Ping Fung and Peng-Hsiang Chang. Effect of Weld Geometry and Residual Stresses on Fatigue in Butt-welded Joints. International Journals of Pressure Vessels and Piping. 2002, 79: 467~482
    47 Xiaohua Cheng, John W.Fisher, Henry J.Prask etc. Residual Stress Modification by Post-weld Treatment and its Beneficial Effect of Fatigue Strength of Welded Structures. International Journal of Fatigue. 2003, 25(9): 1259~1269
    48 J. Zhang and P. Dong. Residual Stresses in Welded Moment Frames and Implications for Structural Performance. Journal of Structural Engineering. 2000, 308(3): 306~315
    49霍立兴.焊接结构的断裂行为及评定.机械工业出版社, 2000: 149~150
    50陶春虎,杜楠,张卫方.失效分析发展问题的思考.失效分析与预防.2006, 1(1): 1~5
    51余寿文,冯西桥.损伤力学.清华大学出版社, 1997:1~9
    52吴治辉.韧性材料损伤断裂过程的数值模拟.西北工业大学硕士论文. 2003, 11~20
    53 G. Rousselier. Ductile Fracture models and Their Potential in Local Approach of Fracture. Nuclear Engineering Design. 1987, 105: 97~111
    54 Brian Dyson. Use of CDM in Materials Modeling and Component Creep Life Prediction. Journal of Pressure Vessel Technology. 2000, 122(3): 281~296
    55 F. A. McClintock. A Criterion for Ductile Fracture by the Growth of Holes. Journal of Applied Mechanics. 1968, 35: 363~371
    56曾攀.有限元分析及应用.清华大学出版社, 2004:1~5
    57 T. C. Pong. Meso-damage Modelling of Polymer Based Particulate Composites Using Finite Element Technique. A thesis of Ph.D. the Hong Kong Polytechnic University. 2002: 78~125
    58 H. Ismar, F. Schroter, F. Streicher. Finite Element Analysis of Damage Evolution in Al/SiC Composite Laminates under Cyclic Thermomechanical Loadings. International Journal of Solids and Structures. 2001, 38: 127~141
    59 A. Needleman. A Continuum Model for Void Nucleation by Inclusion Debonding. Journal of Applied Mechanics. 1987, 54: 525~531
    60 D. Steglich, A. Pirondi, N. Bonora, W. Brocks. Micromechanical Modelling of Cyclic Plasticity. International Journal of Solids and Structure. 2005, 42: 337~351
    61 J. R. Rice, D. M. Tracey. On the Ductile Enlargement of Voids in Triaxial Stress Fields. Journal of Mechanics, Physical, Solids. 1969, 17: 201~217
    62郑长卿,周利,张克实.金属韧性破坏的细观力学及其应用研究.国防工业出版社, 1995:128~144
    63李晓红.金属材料细观损伤非均匀性研究.西北工业大学博士论文. 2001: 1~20
    64 D. Z. Sun. Development and Application of Micromechanical Material Models for Ductile Fracture and Creep Damage. International Journal of Fracture. 1997, 86(1-2): 75~90
    65张凯,荆洪阳. Gurson-Tvergaard模型的发展及在韧性断裂分析中的应用.压力容器. 2004, 21(9): 37~43
    66 S. H?nle. Micromechanical Modelling of Deformation and Fracture of Graded WC/Co Hard Metals. Ph.D. dissertation, University of Stuttgart, 1998
    67 J. R. Brockenborough, S. Suresh, H. A. Wienecke. Deformation of Metal-matrix Composite with Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape. Acta Metallurgica Materialia. 1991, 39(5): 735~752
    68陈少华.在材料研制中的连续介质细观力学有限元建模现状评论.力学进展. 2002, 32(3): 444~466
    69 Tellaeche Reqaraz, J. M. Martinez Esnaola, J. J. Urcola. Numerical Simulation of Plane Strain Compression Tests of a Bimetallic Composite. Key Engineering Matierals. 1997, 127-131: 1215~1222
    70 Somnath Ghosh, Suresh Moorthy. Elastic-plastic Analysis of Arbitrary Heterogeneous Materials with the Voronoi Cell Finite Element Method. Computer Methods in Applied Mechanics and Engineering. 1995, 121: 373~409
    71吴国庭.密封材料空间环境失效分析.中国空间科学技术. 1997, 12(6): 40~44
    72 Zolensky M, Atkinson D, See T et al. Meteoroid and Orbital Debris Record of The Long Duration Exposure Facility’s frame. Journal of Spacecraft. 1991, 28(2): 204~209
    73 Ayala A, Murr L E. Some Observations of Multilayerpenetration by Micrometeoroid Particles in Lowearth Orbit. Scripta Metallurgica et Materialia. 1994, 31(10): 1409~1412
    74 N. H. Tai, H. C. Yu. Effects of Low-energy Impact and Thermal Cycling Loadings on Fatigue Behavior of the Quasi-isotropic Carbon Epoxy Composites. Journal of Polymer Research. 1998, 5(3): 143~151
    75达道安,谈治信.中国航天器真空技术的进展(一).真空与低温. 2001,7(4): 187~193
    76范东亮.空间环境温度对F6铝合金焊接接头性能的影响.哈尔滨工业大学硕士论文. 2003: 16~34
    77 J. M. Hausmann, C. Leyens, W. A. Kaysser. Interaction Between Cyclic Loading and Residual Stresses in Titanium Matrix Composites. Journal of Materials Science. 2004, 39(2): 501~509
    78李成功,傅恒志,于翘.航空航天材料.国防工业出版社, 1994: 19~38
    79安继儒等,中外常用金属材料手册.山西标准化情报研究所, 1984: 11~15
    80中国航空信息中心编.美空军对铝锂合金的研究.航空周刊. 1996, 36: 8~9
    81束德林主编.金属力学性能.第二版.机械工业出版社, 2002: 193~203
    82张义同.热粘弹性理论.天津大学出版社, 2002:52~70
    83 S. M. Pickard, B. Derby. The Deformation of Particle Reinforced Metal Matrix Composites during Temperature Cycling. Acta Metallurgica Et Materialia. 1990, 38(12): 2537~2552
    84拉实柯,拉实柯-阿瓦坎著,席聚奎译.焊接金属学(若干问题).机械工业出版社, 1958: 270~283
    85 A. Needleman. Computational Mechanics at the mesoscale. Acta Materialia. 2000, 48(1): 105~124
    86 M. Olsson, A. E. Giannakopoulos, S. Suresh. Elastoplastic Analysis of Thermal Cycling: Ceramic Particles in Metallic Matrix. Journal of Mechanics, Physical, Solids. 1995, 43(10): 1639~1671
    87 D. Brooksbank, K. W. Andrews. Tessellated Stresses Associated with Some Inclusions in Steel. Journal of Iron and Steel Institute. 1969: 474~483
    88 D. Brooksbank, K. W. Andrews. Stress Fields Around Inclusions and Their Relation to Mechanical Properties. Journal of Iron and Steel Institute. 1972: 246~255
    89 ABAQUS Analysis User’s Manual. Version 5.8. Hibbitt, Karlsson, Sorensen.
    90 Karim F. Elfishawy. Analytical and Numerical Modeling of the Mechanical Behavior of Metal Matrix Composites. Ph.D. Thesis of The Ohio State University. 1998: 60~65
    91 A.L. Gurson. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I- Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials and Technology. 1977, 99(1): 2~15
    92 V. Tvergaard, A. Needleman. Analysis of the Cup-cone Fracture in a Round Tensile Bar. Acta Metallurgica. 1984, 32: 157~169
    93 A. Needleman, V. Tvergaard. An Analysis of Ductile Rupture Modes at a Crack Tip. Journal of Mechanics, Physical, Solids. 1987, 35: 151~183
    94 D. P. Koistinen. Mechanics of Sheet Metal Forming. Plenum PublishingCorporation, 1978: 237~267
    95 C. C. Chu, A. Needleman. Void Nucleation Effects in Biaxially Stretched Sheet. Journal of Engineering Materials and Technology. 1980, 102: 249~256
    96 S. Hao, W. Brocks. The Gurson-Tvergaard-Needleman Model for Rate and Temperature-dependent Materials with Isotropic and Kinematic Hardening. Computational Mechanics. 1997, 20: 34~40
    97 P. Zwigl, D. C. Dunand. A Non-liner Model for Internal Stress Superplasticity. Acta Materialia. 1997, 45(12): 5285~5294
    98 Z. Zhang. A Practical Micro-mechanical Model-based Local Approach Methodology for the Analysis of Ductile Fracture of Welded T-Joints. Ph. D. Thesis of Lappeenranta University. 1994: 26~30
    99 M. Ortiz, E. P. Popov. Accuracy and Stability of Integration Algorithms for Elastoplatic Constitutive Relations. International Journal of Numerical Methods in Engineering. 1985, 21: 1561~1576
    100 Fionn Dunne, Nik Petrinic. Introduction to Computational Plasticity. Oxford University Press. 2005: 169~170
    101宋天民.焊接残余应力的产生与消除.中国石化出版社, 2005: 5~10
    102 R. V. Preston, H. R. Shercliff, P. J. Withers, S. Smith. Physically-based Constitutive Modeling of Residual Stress Development in Welding of Aluminum Alloy 2024. Acta Materialia. 2004, 52 (17): 4973~4983
    103 S. Fricke, E. Keim, J. Schmidt. Numerical Weld Modeling-a Method for Calculating Weld-induced Residual Stresses. Nuclear Engineering and Design. 2001, 206 (2-3): 139~150
    104 P. H. Chang, T. L. Teng. Numerical and Experimental Investigations on the Residual Stresses of the Butt-welded Joints. Computational Materials Science. 2004, 29 (4): 511~522
    105薛忠明,顾兰,张彦华.激光焊接温度场数值模拟.焊接学报. 2003, 24 (2): 79~82
    106余淑荣,熊进辉,樊丁,陈剑虹. ANSYS在激光焊接温度场数值模拟中的应用.焊接技术. 2006, 35(5): 6~9
    107方洪渊,王霄腾,范成磊,杨建国. LF6铝合金薄板平面内环焊缝焊接应力与变形的数值模拟.焊接学报. 2004, 25(4):73~76
    108 ASM International Handbook Committee. Metals Handbook. 1990, 2: 36~43
    109 (苏)柯舍列夫编.金属材料低温机械性能手册.《低温工程》编辑部出版, 1976: 35~318
    110 M. Springmann, M. Kuna. Identification of Material Parameters of the Gurson-Tvergaard-Needleman Model by Combined Experimental and Numerical Techniques. Computational Materials Science. 2005, 32: 544~552
    111 A. Corigliano, S. mariani, B. Orsatti. Identification of Gurson-Tvergaard Material Model Parameters via Kalman Filtering Technique. I. Theory. International Journal of Fracture. 2000, 104: 349~373
    112 G. B. Broggiato, F. Campana, L. Cortese. Identification of Material Damage Model Parameters: an Inverse Approach Using Digital Image Processing. Meccanica. 2007, 42(1): 9~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700