非路面式桥梁动态称重理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于重载车辆的大量推出以及超载现象的普遍存在,使得近年来因车辆荷载导致的桥梁安全事故屡屡发生。对高速车辆荷载的动态称重问题一直以来倍受关注,它在治理车辆超载,公路、桥梁等基础设施管养与健康安全评估等方面都具有非常重要的意义。本文主要针对一种较新的动态称重方法:非路面式桥梁动态称重(B-WIM)进行研究,以车辆过桥时产生的桥梁动力响应为对象,从影响线测定、车轴信息检测、车辆动态称重等角度研究B-WIM的基本理论,采用理论、数值模拟和实验的方法,研究车辆荷载的动态称重问题。
     论文的主要工作及结论包括:
     1.从时变性角度对车桥整体系统进行划分,通过分开建模、局部耦合的思路建立了汽车-桥梁耦合系统模型,编写Matlab计算程序对建立的汽车-桥梁耦合振动方程进行迭代求解,并根据迭代结果计算汽车过桥时桥梁动应变响应。数值计算结果表明,这样处理,提高了计算效率,有利于模拟车辆各车轴上桥、出桥的行为。
     2.提出了非路面式桥梁动态称重理论与优化算法,从桥梁影响线测定、车轴信息检测和车辆动态称重等角度推导了非路面式B-WIM算法,采用梯度法对初始B-WIM结果进行多参数局部优化研究,并结合车-桥耦合振动算例进行了验证。研究表明,以桥梁动应变响应为研究对象,采用影响线拟合的方法对车辆荷载进行动态称重研究,需要的系统参数少,可行性强,B-WIM系统以现存桥梁为“秤”,增加了敏感单元长度,对车载信息测试记录时间长,获取的数据信息量大,具有足够测试精度,较路面式动态称重方法优势明显。同时,局部优化研究能减小偶然因素产生的误差,尤其是减小速度识别误差所造成的影响,进一步提高结果精度,满足工程应用要求。
     3.提出了车轴信息识别的小波变换方法,结合小波变换时频局部化特性,将小波用于B-WIM中车轴信息识别环节,通过对模糊信号提取特定尺度下小波系数曲线,凸显与车轴对应的峰值点,有效解决联轴及短轴距车辆的车轴信息识别问题,并用数值模拟和实桥试验结果验证了所提出的方法。数值和试验结果表明,充分利用小波变换时频局部化特性,提取特定尺度下小波变换系数进行车轴信息识别,减小了干扰信号的影响,能够识别双联轴、三联轴等相对小轴距车轴信息,弥补了传统局部峰值法在平顶峰处连续判断等方面的不足,利于扩展B-WIM的适用范围。
     4.针对车辆激振频率存在不确定性,提出了车轴信息自动识别算法,旨在解决激振频率初始值确定和消除桥梁振动的干扰两个B-WIM中的关键问题。通过自动搜索寻找合适的初始激振频率,再以此迭代计算得到精确激振频率值和相应尺度系数,对该尺度系数下两动应变信号小波系数曲线进行互相关分析,取互相关函数最大值时两曲线状态作乘法运算,能消除小波系数曲线中的虚假峰值点,去除有色噪声的干扰,实现对车轴信息自动识别。整个过程仅需输入两不同断面测点信号就可实现对车轴信息的自动识别,不需要人为判断与取舍。
     5.研究了B-WIM对不同类型桥梁的适用性,并分析了桥梁尺寸、测点位置、测试噪音等因素对B-WIM的影响。结果表明:正交异性板桥、框架桥、T型梁桥、板桥都可较好的用作B-WIM研究,其适用范围涉及了我国高速公路及铁路桥梁大部分类型,具备广阔的应用前景。
     6.制定了B-WIM系统测试精度的评定标准、精度测试基本流程和精度等级统计计算方法。通过评定B-WIM系统,测试其能达到的精度等级水平,来衡量B-WIM系统是否具备实际工程应用价值,可为确定其用途提供重要参考依据。
Since a large number of heavy vehicles have emerged and the phenomenon of overloading has become increasingly severe, the bridge safety incidents caused by traffic loads have happened frequently in recent years. The weigh-in-motion problem of high-speed vehicle loads that has been attracting much attention is of far-reaching significance in managing overloaded vehicles, administrating and maintaining the infrastructures such as highway and bridge, etc, as well as assessing the bridge health and safety conditions. This paper mainly focuses on a new weigh-in-motion method:non-pavement bridge weigh-in-metion (B-WIM) and takes the dynamic response of bridges generated by passing vehicles as the object and studies the fundamental theory of B-WIM from the point of influence line measurement, axle information detection and vehicle weighing-in-motion. By employing the methods of theory, numerical simulation and test, the weigh-in-motion problem of vehicle loads is investigated. Furthermore, the main work and some conclusions are drawn as follows:
     1. Based on the idea of modeling separately and coupling partly, the vehicle-bridge coupled system is modeled and the vehicle-bridge coupled vibration function is solved iteratively by using the Matlab program. According to the iterative results, the dynamic strain responses of the bridge are calculated when the vehicles passing which shows that this method can improve the efficiency of calculation and simulate each axle's behavior of arriving and leaving the bridge effectively.
     2. The theory and optimized algorithm of the non-pavement bridge weigh-in-motion are proposed. The non-pavement B-WIM algorithm is derived from the determination of bridge influence line, detecting the information of axles and vehicle weigh-in-motion. The gradient method for multi-parameter partially optimized is introduced to investigate the initial B-WIM results. By compared with the results of the vehicle-bridge coupled vibration example, the results in this paper are verified. The investigation illustrates that less system parameters are needed and has a better feasibility by taking the bridge dynamic strain response as the object of research and using the influence line fitting method to research the weigh-in-motion of vehicle loads. The B-WIM system takes the existed bridge as a steelyard, increases the length of the sensitive elements, records a long time range of the vehicle information test, obtains more data and has enough precision and obvious advantages over the pavement weigh-in-motion. Meanwhile, the partially optimized research can reduce the deviation resulted from the accidental factors, especially reduce the influence caused by the deviation of velocity identification, improve the precision of the results and meet the requirements of engineering applications.
     3. The wavelet transform method for axle information identification is put forward. Taking into account the time-frequency localization characteristic of the wavelet transform, the wavelet is used for the axle information identification process of the B-WIM. By extracting wavelet coefficient curve under specified scale from fuzzy signal, the peak points corresponded to the axles are highlighted, especially to axles with short distance. The numerical and test results show that by using the time-frequency localization characteristic of the wavelet transform, extracting wavelet coefficients under specified scales to identify axle information, can reduce the influence of interference signals, identify axle information of double shaft, triple shaft and relatively small wheelbase, and remedy the deficiency of traditional partial peak-picking method about the continuous judgment at the flat peak. Expand the application range of B-WIM.
     4. Considering the uncertainty of vehicle exciting frequency, the automatic identification algorithm for axle information is proposed. Solving two crucial problems in B-WIM, determining the initial value of exciting frequency and eliminating the interference of bridge vibration is the objective. After automatically searching the suitable excitation initial frequency, the precise excitation frequency and corresponding scale coefficient are obtained through the iterative calculation. Taking the two wavelet coefficient curves of special scale for multiplication when the cross-correlation function reaches its maximum, which can filter the interference of colored noise and automatically identify the axle information. The whole procedure only requires signals of two measuring points on different sections rather than artificially judgments.
     5. The applicability of B-WIM upon different kinds of bridges and the influence of factors such as the size of bridges, the position of measuring points and measuring noise were analyzed. The results demonstrate that:bridges with orthotropic plate deck, frame bridges, T-beam bridges and slab bridges can be used for B-WIM researches. It can be used in most types of bridges in highway and railway in China and is considered to have broad application prospects.
     6. Precision assessment standard, procedures, and precision level statistical calculation method of B-WIM system test were developed. The actual engineering application of B-WIM system was evaluated by testing its precision level, and it can provide important reference for applications.
引文
[1]张忠.治理公路超限运输长效机制研究[D].西安:长安大学,2005.
    [2]王凤鸣.高速公路沥青路面早期破损及防护浅析[J].中国公路学会学术论文集,2006,2:113-116.
    [3]李月华.道路超载车辆的动态称重设计[J].科学之友,2008,5(14):.59-60.
    [4]李万恒.浅谈超载运输对公路桥梁的危害[J].公路交通科技,2004,21(4):131-133.
    [5]路成章,王文龙.超载运输对社会的危害[J].公路交通科技,2004,21(5):149-154.
    [6]贡云兰.公路超限超载运输的运输危害及控制[J].华东公路,2006,160(4):20-22.
    [7]K Borras. Traffic technology international 2000[M].2000:234-237.
    [8]B Jacob, V F La Beaumelle. Improving truck safety:Potential of weigh-in-motion technology [J]. IATSS Research,2010,34(1):9-15.
    [9]蔡德新,龙福密.弯板式称重传感器基本结构、性能及安装[J].技术交流,2010,39(2):47-49.
    [10]蔡锦达,张金东,孙福佳,等.压电电缆应用于高速公路超速超载监测的研究.仪器仪表与检测技术[J],2009,28(10):92-95.
    [11]李晓宝,简水珍,捧恢湘.压电石英称重传感器在公路动态称重中的应用[J].公路与汽运,2012,3(149):92-94.
    [12]郭兰英,梁波,董安国.汽车动态称重的新方法[J].长安大学学报,2009,29(2):98-101.
    [13]蒋杏国.基于压电电缆的车辆动态称重系统设计[D].南京:南京理工大学,2011.
    [14]D Labry, V Dolcemascolo, B Jacob. MS-WIM arrays design optimization[C]. B Jacob. Post-proceedings of the 4th International Conference on WIM. Taipei, Taiwan:National Taiwan University,2005:1-12.
    [15]OECD. Dynamic Interaction between vehicle and infrastructure experiment[R]. OECD, Paris,1998.
    [16]D Labry, V Dolcemascolo, B Jacob. MS-WIM arrays design optimization[C]. B Jacob. Post-proceedings of the 4th International Conference on WIM. Taipei, Taiwan:National Taiwan University,2005:1-12.
    [17]B Jacob, M Bouteldja, D Stanczyk. Installation and experimentation of MS-WIM systems with three strip sensor technologies[C]. Post-proceedings of the 5th International Conference on WIM, Paris, France:2008.
    [18]张文斌.公路车辆动态荷载测量及车型分类技术的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [19]张文斌,王祁.一种新颖的多传感器行驶车辆分类系统[J].天津大学学报,2008,41(2):194-198.
    [20]E J Obrien, A Znidaric, T Ojio. Bridge weigh-in-motion:latest developments and applications worldwide [C]//B Jacob, E J,Obrien A Oconnor. Proceedings of the International Conference on Heavy Vehicles. Paris: Wiley-ISTE,2008:25-38.
    [21]F Moses. Weigh-in-motion system using instrumented bridges[J]. Transportation Engineering Journal,1979,105(3):233-249.
    [22]F Moses, M Ghosn. Instrumentation for weighing trucks-in-motion for highway bridge loads [R]. Cleveland:Case Western Reserve University, 1983.
    [23]R J Peters. A System to Obtain Vehicle Axle Weights[C]. ARRB, Proceedings 12th Australian Road Research Board Conference. Hobart: Road Research Board,1984:10-18.
    [24]R J Peters. An Unmanned and Undetectable Highway Speed Vehicle Weighing System [C]. ARRB, Proceedings of the 13th Australian Road Research Board Conference. Adelaide:Australian Road Research Board, 1986:70-83.
    [25]P Mcnulty. Testing of an Irish bridge weigh-in-motion system [D]. Ireland: University College Dublin,1999.
    [26]E J Obrien, A Znidaric, A T Dempsey. Comparison of two independently developed bridge weigh-in-motion systems[J]. Journal of Vehicle Design, 1999,6(1/4):147-161.
    [27]A Znidaric, I Lavric, J Kalin. The next Generation of Bridge Weigh-in-Motion Systems[C]. Jacob B, McCall B, Obrien E J. Proceedings of Third International Conference on Weigh-In-Motion System. Orlando, Florida:Iowa State University,2002:231-239.
    [28]WAVE. Weight-in-motion of axles and vehicles for Europe[R]. Paris:LCPC, 2001.
    [29]WAVE. Weight-in-motion of axles and vehicles for Europe[R]. Dublin: University College Dublin,2001.
    [30]T Ojio, K Yamada, M Wakao, etal. Bridge Weigh-in-Motion using reaction force and analysis of traffic load characteristics [J]. Journal of Structural Engineering,2003,49(2),743-753.
    [31]M Quilligan. Bridge weigh-in-motion development of a 2-D multi-vehicle algorithm[D]. Sweden:Royal Institute of Technology,2003.
    [32]E J Obrien, N J Kealy. Development of a novel bridge weigh-in-motion system[C]. B Jacob, E J Obrien, A Oconnor, etal. Proceedings of the International Conference on Heavy Vehicles. Queensland:Wiley,1998: 222-235.
    [33]E J Obrien, P Rattigan, A Gonzalea, et al. Characteristic dynamic traffic load effects in bridges[J]. Engineering Structures,2009,31(7):1607-1612.
    [34]E J Obrien, A Gonzalea, A Znidaric, etal. Testing of a bridge weigh-in-motion system in cold environmental conditions[C]. Jacob B, McCall B, Obrien E J. Proceedings of the 3rd Conference on Weigh-in-Motion. Florida:Iowa State University,2002:69-78.
    [35]P Mcnulty, E J Obrien. Testing of bridge weigh-in-motion system in sub-arctic climate [J]. Journal of Testing and Evaluation,2003,31(6):1-10.
    [36]E J Obrien, M Quilligan, R Karoumi. Calculating an Influence Line from Direct Measurements [J]. Proceedings of the ICE-Bridge Engineering,2006, 159(1):31-34.
    [37]C Rowley, A Gonzalez, E J Obrien, et al. Comparison of conventional and regularized bridge WIM algorithms[C]. Jacob B, OBrien E J, OConnor A, etal. Proceedings of the International Conference on Heavy Vehicles. Paris: Wiley-ISTE,2008:221-230.
    [38]E J Obrien, C Rowley, A Gonzalez, etal. A regularized solution to the bridge-WIM equations [J]. International Journal Heavy Vehicle Systems. 2009,16(3):310-327.
    [39]A Gonzalez, C Rowley, E J Obrien. A general solution to the identification of moving vehicle forces on a bridge [J]. International Journal for Numerical Methods in Engineering,2008,75(3):335-354.
    [40]C Rowley, E J Obrien, A Gonzalez,et al. Experimental testing of a moving force identification bridge weigh-in-motion algorithm[J]. Experimental Mechanics,2009,49(5):743-746.
    [41]R Karoumi, J Wiberg, A Liljencrantz. Monitoring traffic loads and dynamic effects using an instrumented railway bridge[J]. Engineering Structures, 2005,27(12):1813-1819.
    [42]A Liljencrantz, R Karoumi, P Olofsson. Implementation of bridge weigh-in-motion for railway traffic[J]. Computers and Structures,2007, 85(1-2):80-88.
    [43]A Liljencrantz, R Karoumi. Twim:A MATLAB toolbox for real-time evaluation and monitoring of traffic loads on railway bridges [J]. Structure and Infrastructure Engineering.2009,5(5):407-417.
    [44]王宁波.列车-轨道-桥梁时变系统竖向振动分析[D].长沙:中南大学,2009.
    [45]谭冬莲.基于影响线理论应用监测信息反演桥上车辆荷载[J].力学与实践,2008,30(2):62-66.
    [46]陈惟珍,王志平,徐俊.一种用于钢桁架桥的B-WIM方法[J].桥梁建设,2009,(4):72-75.
    [47]耿少波,石雪飞,阮欣.基于桥梁结构的动态称重系统算法研究[J].石家庄铁道大学学报,2011,24(4):40-44.
    [48]王宁波,任伟新,李苗.基于影响线的桥梁移动荷载识别[J].振动与冲击,2013,32(3):129-133.
    [49]王宁波,任伟新,万华平.基于动应变的桥梁动态称重及其优化算法[J].振动与冲击,2013,32(4):116-120.
    [50]J Kalin, A Znidaric, I Lavric. Practical implementation of nothing on the road bridge WIM system. Slovenian National Building and Civil Engineering Institute. Available:htt://www.mne.psu.edu/ifrtt/Conference. Proceedings/ISHVWD_ 9_2006/docs/pdfs/session% 207/s7-4% 20115. pdf; Accessed 10 April,2010.
    [51]Z G Xiao, K Yamada, J Inoue, et al. Measurement of truck axle weight by instrumenting longitudinal ribs of orthotropic bridge[J]. Journal of bridge engineering,2006,11(5):526-532.
    [52]M Bouteldja, B Jacob, V Dolcemascolo. Test of a B-WIM system on integral and steel orthotropic deck bridges in France [C]. Jacob B, OBrien E J, OConnor A, et al. Proceedings of the International Conference on Heavy Vehicles. Paris:Wiley-ISTE,2008:19-22.
    [53]C J Wall, R E Christenson, A M H Mcdonnell, et al. A Non-Intrusive Bridge Weigh-in-Motion System for a Single Span Steel Girder Bridge Using Only Strain Measurements [R]. Rocky Hill:Connecticut Department of Transportation,2009.
    [54]B Bakht, A Mufti, L G Jaeger. Bridge weighing-in-motion systems and their use in SHM of bridges [C].4th International Conference on Structural Health Monitoring of Intelligent Infrastructure. Zurich, Switzerland:2009.
    [55]H Zhao, N Uddin. Algorithm to identify axle weights for an innovative B-WIM system-Part I [C]. Amin, Okui, Bhuiyan. Advances in Bridge Engineering-II, Dhaka, Bangladesh:2010:527-536.
    [56]H Zhao, N Uddin. Algorithm to identify axle weights for an innovative B-WIM system-Part II [C]. Amin, Okui, Bhuiyan. Advances in Bridge Engineering-II, Dhaka, Bangladesh:2010:537-546.
    [57]H Zhao. Bridge weigh-in-motion for bridge safety and maintenance [D]. Alabama:University of Alabama at Birmingham,2010.
    [58]J Brown. Bridge weigh-in-motion deployment opportunities in Alabama [D]. Alabama:University of Alabama,2011.
    [59]S Matui, A El-hakim. Estimation of axle loads of vehicle by crack opening of RC slab [J]. Journal of Structural Engineering,1989,35 A:407-418.
    [60]Y Wang, W L Qu. Moving train loads identification on a continuous steel truss girder by using dynamic displacement influence line method [J]. International Journal of Steel Structural,2011,11(2):109-115.
    [61]A Znidaric, I Lavric, J Kalin, et al. SiWIM bridge weigh-in-motion manual [S].
    [62]I Lavric, A Znidaric, J Kalin. Improving bridge-WIM results with better road evenness and advanced compensations[C]. Jacob B, OBrien E J, OConnor A, et al. Proceedings of the International Conference on Heavy Vehicles. Paris, France:Wiley-ISTE,2008:231-240.
    [63]P Chatterjee, E J, Obrien Y Li, et al. Wavelet domain analysis for identification of vehicle axles from bridge measurements [J]. Computers and Structures,2006,84(28):1792-1801.
    [64]S H Akayanagi, E Sasaki, C Theeraphong, et al. Analysis of axle position information from strain history data with long influence lines [J]. Journal of Structural Engineering,2008,54A:582-589.
    [65]B Lechner, M Lieschnegg, O Mariani, et al. A wavelet-based bridge weigh-in-motion system [J]. International Journal on Smart Sensing and Intelligent Systems,2010,3(4):573-591.
    [66]王宁波,任伟新,贺文宇.基于小波变换的桥上移动车辆车轴识别[J].振动工程学报,2013,26(4):539-544.
    [67]Y Kobayashi, C Miki. A Tanabe. Long term monitoring of traffic loads by automatic real-time weigh-in-motion[J], Journal of Structural Mechanics and Earthquake Engineering,2004,69 (773):99-111.
    [68]A Znidaric, I Lavric, J Kalin. Measurements of bridge dynamics with a bridge weigh-in-motion system[C]. Jacob B, OBrien E J, OConnor A,et al. Proceedings of the International Conference on Heavy Vehicles. Paris, France:Wiley-ISTE,2008:388-397.
    [69]T Ojio, K Yamada. Environmental noise measurement in combination with BWIM[C]. Jacob B, OBrien E J, OConnor A, et al. Proceedings of the International Conference on Heavy Vehicles. Paris, France:Wiley-ISTE, 2008:77-85.
    [70]www.siwim.com.
    [71]COST323. European Specification on Weigh-In-Motion of Road Vehicles[R]. Paris:LCPC,1999.
    [72]E Sasaki, A Tanabe, C Miki, et al. Attempts to develop portable weigh-in-motion for field measurements in developing countries [J]. Doboku Gakkai Ronbunshuu F,2009,65(4):495-500.
    [73]Y Kobayashi, C Miki, E Sasaki. Development of weigh-in-motion system utilizing FBG sensor [J]. Journal of Applied Mechanics,2003,6:1099-1016.
    [74]K Suzuki, E Sasaki, C Miki, et al. Weight analysis system for low-speed vehicles with automatic vehicle identification function of traffic situations [J]. Journal of Applied Mechanics,2008,11:997-1004.
    [75]T Ojio, K Yamada, Y Saito, et al. Strain checker:Stethoscope for bridge engineers[C]. Proceedings of IABMAS 6.2006.
    [76]X Q zhu, S S Law. Orthogonal function in moving loads identification on a multi-span bridge [J]. Journal of Sound and Vibration,2001,245(2): 329-345.
    [77]X Q Zhu, S S Law. Identification of moving interaction forces with incomplete velocity information [J]. Mechanical Systems and Signal Processing,2003,17(6):1349-1366.
    [78]X Q zhu, S S Law. Dynamic axle and wheel loads identification:laboratory studies [J]. Journal of Sound and Vibration,2003,268(5):855-879.
    [79]S S Law, J Q Bu, X Q Zhu, et al. Vehicle axle loads identification using finite element method [J]. Engineering Structures,2004,26(8):1143-1153.
    [80]X Q Zhu, S S Law. Bridge dynamic responses due to road surface roughness and braking of vehicle [J]. Journal of Sound and Vibration,2005,282(3): 805-830.
    [81]L Yu, T H T Chan. Identification of multi-axle vehicle loads on bridges [J]. Journal of Vibration and Acoustics,2004,126(1):17-26.
    [82]D B Ashebo, T H T Chan. Moving Axle Load From Multi-Span Continuous Bridge Laboratory Study [J]. Journal of Vibration and Acoustics,2006, 128(4):521-526.
    [83]L Yu, T H T Chan, D Xu. Moving force identification practice and review[C]. E J OBrien, B Jacob, A Gonzalez, et al. Proceedings of 4th international conference on Weigh-in-Motion. Taiwan:National Taiwan University,2005:118-127.
    [84]L Deng. System identification of bridge and vehicle based on their coupled vibration [D]. Louisiana:Louisiana State University,2009.
    [85]L Deng, C S Cai. Identification of dynamic vehicular axle loads:theory and simulations [J]. Journal of Vibration and Control,2010,16(14):2167-2194.
    [86]L Deng, C S Cai. Identification of dynamic vehicular axle loads: Demonstration by a field study [J]. Journal of Vibration and Control,2011, 17(2):183-195.
    [87]李忠献,陈锋.简支梁桥与多跨连续梁桥上移动荷载的识别与参数分析[J].工程力学,2006,23(12):91-99.
    [88]李忠献,陈锋,王波.基于BP神经网络的桥上移动荷载分阶段识别方法[J].工程力学,2008,25(9):85-92.
    [89]T Plinkaew. Identification of vehicle axle loads from bridge responses using updated static component technique [J]. Engineering Structures,2006, 28(11):1599-1608,
    [90]T Deesomsuk, T Pinkaew. Effectiveness of Vehicle Weight Estimation from Bridge Weigh-in-Motion[J]. Advances in Civil Engineering,2009:1-13.
    [91]林梅,肖盛燮.桥梁车辆振动分析理论评述[J].重庆交通学院学报,1998,17(3):1-8.
    [92]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2003.
    [93]宋一凡.公路桥梁动力学[M].北京:人民交通出版社,2006.
    [94]李小珍,张黎明,张洁.公路桥梁与车辆耦合振动研究现状与发展趋势[J].工程力学,2008,25(3):230-240.
    [95]K Galiyaperumal, B Imam, T Righiniotis. Advanced dynamic finite element analysis of a skew steel railway bridge. Engineering Structures,2011,33(1): 181-190.
    [96]Y J Dau, Y B Yang. Vibration reduction for cable-stayed bridges traveled by high-speed trains. Finite Elements in Analysis and Design,2004,40(3): 341-359.
    [97]Y L Li, S Z Qiang, H L Liao, et al. Dynamics of wind-rail vehicle-bridge systems. Journal of Wind Engineering and Industrial Aerodynamics,2005, 93(6):483-507.
    [98]任伟新,彭雪林.青洲斜拉桥的基准动力有限元模型.计算力学学报,2007,24(5):609-614.
    [99]曾庆元,填志奇,杨毅,等.桁梁行车空间振动计算的桁段有限元法[J].桥梁建设,1985,4:1-16.
    [100]P Gullers, L Andersson, R Lunden. High-frequency vertical wheel-rail contact forces:field measurements and influence of track irregularities. Wear, 2008,265(9-10):1472-1478.
    [101]朱安文,曲广吉.结构动力模型修正技术的发展.力学进展,2002,32(3):337-348.
    [102]杨建荣.车-桥耦合作用下公路桥梁局部振动研究[D].上海:同济大学,2007.
    [103]ISO 8608. Mechanical vibration-Road surface profiles-reporting of measured data,1995(E).
    [104]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005.
    [105]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社,1999.
    [106]曾庆元,杨平.形成矩阵的“对号入座”法则与桁架空间分析的桁段有限 元法.铁道学报,1986,8(2):48-59.
    [107]PI Kattan,韩来彬(译).Matlab有限元分析与应用[M].北京:清华大学出版社,2004.
    [108]管迪华,范成建.用于不平路面车辆动力学仿真的轮胎模型综述.汽车工程,2004,26(2):162-167.
    [109]殷新锋,蔡春声,刘扬.基于面接触的车桥耦合振动研究[J].振动工程学报,2012,25(3):244-252.
    [110]赵辉.基于LS_DYNA公路桥梁车桥耦合振动响应研究[D].南昌:华东交通大学,2010.
    [111]王宁波,任伟新,肖祥.列车-桥梁耦合振动研究综述[J].力学进展,2012,42(5):634-643.
    [112]杨世文,许小健.MATLAB优化工具箱在结构优化设计中的应用[J].科学技术与工程.2008,8(5):1347-1349.
    [113]A Grace. Optimization toolbox user's guide [M]. The Matlab Works Inc, 2001.
    [114]N L Mulcahy. Bridge response with tractor-trailer vehicle loading [J]. Earthquake Engineering and Structural Dynamics,1983,11(5):649-665.
    [115]AT Dempsey, B Jacob, J Carracilli. The use of instrumented orthotropic bridges for determining vehicle weights, dimensions and parameters[C]. Proceedings of the 5th International Symposium on Heavy Vehicles Weights and Dimensions. Brisbane:Australian Road Research Board,1999:188-209.
    [116]蔡涛,王先培,杜双育,等.基于多尺度小波变换的红外光谱谱峰识别算法.分析化学,2011,39(6):911-914.
    [117]任伟新,韩建刚,孙增寿.小波分析在土木工程结构中的应用[M].北京:中国铁道出版社,2006.
    [118]胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社,2000.
    [119]Y B Yang, C W Lin, J D Yan. Extracting the bridge frequencies from the dynamic response of a passing vehicle[J]. Journal of Sound and Vibration, 2004,272(3-5):471-493.
    [120]JTG B01-2003,公路工程技术标准[S].
    [121]程路.车辆动态称重技术研究[D].杭州:浙江大学,2008.
    [122]B Jacob. Assessment of the accuracy and classification of weigh-in-motion systems:Part Ⅰ-Statistical background [J]. Heavy Vehicle Systems,2000, 7(2):136-152.
    [123]B Jacob, E J O'Brien, W Newton. Assessment of the accuracy and classification of weigh-in-motion systems part Ⅱ-European specification [J]. Heavy Vehicle Systems,2000,7(2):153-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700