汽轮机叶片材料1Cr13钢电火花线切割表面质量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢具有高硬度、耐高温以及耐腐蚀性等优良特性,广泛应用于化工设备、管道、汽轮机叶片、医用器械等诸多领域。尤其是马氏体不锈钢以及半马氏体不锈钢在汽轮机叶片领域发挥着超强的实用价值。由于叶片形状较为复杂且叶片材料硬度较大,用传统的机械加工,成本会比较大,另一方面由于电火花线切割具有“以柔克刚、精密微细、仿型逼真”的加工特点,所以电火花线切割加工叶片也行正在逐步受到人们的重视,并呈现进一步扩大的趋势。青岛捷能汽轮机集团叶片分厂对叶型的加工采用的正是高速走丝线切割加工,而在加工过程中叶片表面粗糙度以及电加工产生的裂纹等表面质量问题对叶片的使用寿命产生了很大影响,时常会使叶片在使用过程中产生开裂或者叶片装配精度不够。基于此,捷能集团叶片分厂与青岛科技大学采取校企联合方式,对高速走丝线切割加工叶片材料表面质量问题展开了深入研究和探讨。
     本文通过电火花线切割加工1Cr13钢正交试验,分析了个电参数对加工表面粗糙度的影响,并且对数据进行了方差和显著性分析,最后得到了一组最优的粗糙度电参数组合。从而为企业进一步研究汽轮机叶片材料的电加工表面粗糙度工艺提供了参考。
     电极丝对汽轮机叶片加工表面质量的影响主要体现在:电极丝的直径大小、走丝速度、变频进给速度、张力、换向次数、垂直度以及走丝机构的传动精度。下面根据这些具体因素,对高速走丝线切割加工汽轮机叶片的表面质量进行了分析。并结合生产实际,介绍了如何合理的选用电极丝的各参数。
     本文利用带有能谱的扫描电子显微镜对变质层的成分变化进行了分析;利用X射线衍射实验分析了变质层加工前后化合物的变化情况;又用变质层在高温电阻炉分布长加热情况下,分析得到了其变化规律大致符合1Cr13钢的低温加高温回火规律的结论;接着对变质层的形貌进行了扫描电镜分析,以及对凝固层、再回火层、再淬火区进行了金相分析;对1Cr13钢变质层的硬度、耐磨性两个机械性能指标进行了研究;对线切割加工的白亮层的厚度变化规律进行了总结;分析了表面变质层显微裂纹的形成;最后对线切割加工1Cr13钢变质层的改善方法进行了归纳。
     根据X射线衍射测定电火花线切割变质层残余应力的基本原理及方法,以及在此基础上分析研究了汽轮机叶片材料1Cr13钢电火花线切割加工表面残余拉应力随各电参数的变化规律。并研究出变质层表面的残余拉应力并不是影响零件开裂的因素。
Martensite stainless steel owns lots of good features, for example: hardness, high temperature, corrosion and so on. In view of these advantages, Martensite stainless steel and semi-martensitic stainless steel were used more and more in chemical equipment, pipeline, turbine blade and medical devices. Especially, in the field of turbine blade, it`s merit is very outstanding. Because the shape of blade is rather complex,stainless steel`s hardness is very high, the cost of traditional machining process is very big, and WEDM owons the feature, as follows:“dealt with gently, precision fine, profiling realistic”, processing turbine blade with WEDM is being paid attention more and more. Blade Factory of Qing Dao Jie Neng Group uses methold of WEDM to product turbine blade. In this process, the life of blade is affected by surface quality——surface roughness, crack and so on. These factors usually make the blade crack and reduce the assembiy precision. Basing on these problems, enterprise coalition was taked Blade Factory of Qing Dao Jie Neng Group and Qing Dao University of Science and Technology. This paper analyzes the surface quality of turbine blade 1Cr13 by WEDM.
     Basing on making orthogonal experiment in machining 1Cr13 by WEDM, the influence of main electrical parameters on maching surface roughness, variance and saliency was analyzed. Finally,the best optimal electrical parameters combination was got. It provides some reference for roughness research of processing turbine blade with WEDM.
     The factor of influencing surface quality of the electrode wire is an imprtant factor of influencing surface quality of WEDM. Diameter size, takeup speed, frequency conversion feeding speed, tension, reversing times, uprightness of electrode wire and driving accuracy wire-walkingwere analyzed for the influence of electrode wire on machining surface roughness in high-speed wire cutting process. The methods of choosing and using each parameter of electrode wire was introduced.
     Basing on the scanning electron microscope with energy spectrum, the chemical composition of 1Cr13 was analyzed; Basing on X-ray diffraction experiments, the compounds of metamorphic layer was analyzed; Under the condition of putting the test sample in the high temperature resistance furnance, the law of metamorphic layer in accordance with tempering of 1Cr13 was found; With the help of SEM and metallurgical microscope, the morphology of metamorphic layer, solidified layer, tempering layer, and quenching layer were analyzed; The law of white layer`s thickness was generalized; the micro crack of metamorphic layer was analyzed with the help of SEM; finally, the process of the WEDMed blade material- 1Cr13 was improved and generalized.
     Basing on the principle and method of residnal stress determination by X-ray, the residual stress of WEDMed turbine blade material- 1Cr13 was revealed. Finally, the factor of causing cracking is not residual stress.
引文
[1]汪玉林主编.汽轮机设备运行及事故处理[M].北京:化学工业出版社,2005:1-2;42-44.
    [2]愈国泰.汽轮机设备及运行[M].北京:中国水利电力出版社,1989:6-14.
    [3]戴起勋主编.金属材料学[M].北京:化学工业出版社,2005:141-142.
    [4]单岩,夏天.数控线切割加工[M].北京:机械工业出版社, 2004:56-57.
    [5]陈禹明,大型汽轮机制造需要什么样的数控机床[J].金属加工,2003(4):28-30.
    [6]孙杨.汽轮机叶片加工新技术分析[J].中小企业管理与科技,2008(2):84-85.
    [7]肖刚,王春复.现代汽轮机叶片型面制造技术[J].热力透平,2003(4):269-271.
    [8]张国新.汽轮机叶片模锻成型工艺[J].模具技术,2004(6):26-30.
    [9] N.rebelo, etal simulation of material in closed-die forging by model Technique and Rigid-plastic FEM[J].industrial forging process. 1982: 237-246.
    [10] D.Y.Yang,N.K.Lee and J.H.Yoom.A Three-dimensional simulation of Isothermal turbine Blade Forging by the Rigid-viscoplastic FEM[J].Journal of Materials Engineering and Performance, 1993(2): 119-124.
    [11]夏天,数控线切割加工技术[M].北京:机械工业出版社,2004:64-65.
    [12]刘晋春,赵家齐,赵万生,特种加工(第4版)[M],北京:机械工业出版社,2004.7-9.
    [13] B. Lauwers, J. P. Kruth. A Computer Aided Planning System for Electrical Discharge Machining.Proc. of ISEM-XI. 1995(4):261-277.
    [14] Beherens, M. P. Witzak. Integrating Fuzzy Technology in EDM Process Control. Switzerland. Proc.of ISEM-11.1995(4):287-294.
    [15]赵万生,刘晋春.电火花加工技术[M].哈尔滨:哈尔滨工业大学出版社,2000:51-52.
    [16] Jerzy Kozak,Kamlakar P. Rajurkar, Niraj Chandarana, Machining of low electrical conductive materials by wire electrical discharge machining(WEDM), Journal of Materials Processing Technology , 2004:149, P266~271.
    [17] K.H. Ho, S.T. Newman, S. Rahimifard, R.D. Allen, State of the art in wire electrical discharge machining (WEDM), International Journal of Machine Tools & Manufacture , 2004, 44:P1247~1259.
    [18]张学仁,刘晋春主编.数控电火花线切割加工机床[M].哈尔滨:哈尔滨工业大学出版社,2002:32-33.
    [19]曹凤国.电火花加工技术[M].北京:化学工业出版社,2005.10-13;19-21;131-136;180-181;224-231.
    [20]周旭光.特种加工技术[M].西安:西安电子科技大学出版社,2004:26-28.
    [21]周大农.电火花线切割加工技术的现状和发展[J].机械工人,2003(6):17-18.
    [22] Hosftede,A. H. M. ter, Orlowsja, M. E. Rajapakse. J. Verification Problems Conceptual Workflow Specifications[J]. Data & Knowledge Engineering 1998, 24:235-256.
    [23]李明辉.电火花线切割技术的研究现状及发展趋势[J].模具技术,2003(1):51-53.
    [24]赵永民.汽轮机设备及运行[M].北京:中国水利电力出版社,1983:38-40.
    [25]蔡颐年.蒸汽轮机[M].西安:西安交通大学出版社,1988:41-42.
    [26] Nihat Tosun Can Cogun, Gul Tosun, A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method, Journal of Materials Processing Technology, 2004, 152,:316-322.
    [27]庄楚强,吴亚森.应用数理统计基础(第二版)[M],广州:华南理工大学出版社,2004:16-128.
    [28]朱曾,工程陶瓷AL2O3-TiC电火花线切割加工的试验研究[J],电加工,1995,3:33-37.
    [29]庄楚强,何春雄.应用数理统计基础[M],广州:华南理工大学出版社,2006:78-81.
    [30]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社,2005:75-76;183-185.
    [31]鲍中美.线切割加工工艺中主要电参数对加工质量影响的分析及合理选择[J].机床与液压, 2007, 4: 100- 101.
    [32]李云雁.实验设计与数据处理[M].北京:化学工业出版社,2005:68-69.
    [33]于寅.高等工程数学[M].武汉:华中理工大学出版社,1995:44-48.
    [34]张辽远.现代加工技术[M].北京:机械工业出版社,2002:22-24.
    [35]龙华,刘瑞已,任成高.电极丝对线切割机床加工工艺性能影响的研究[J].机电产品开发与创新,2006,11(6):178-179.
    [36]刘瑞己.电极丝及丝速和条纹对线切割的影响[J].湖南工业职业技术学院学报,2004(4):105-106.
    [37]张忠伟.线切割加工中电极丝的选用[J].交通科技与经济. 2007(2):74-75.
    [38]金海明,吴李鹏.影响线切割加工质量的原因及解决办法[J].模具制造,2006(9):54-56.
    [39]沈武群.电极丝对快走速线切割加工工艺性能的研究[J].科技创新导报,2007,33:159-160.
    [40]罗学科,李跃中.数控电加工机床[M].北京:化学工业出版社,2003:51-53.
    [41] Wilfried Konig, Fritz Klocke, Rainer Lenzen. The Electrical Machining Processing-What Demands will They Face in the Future? International Journal of Electrical Machining[J].1996(1): 3-8.
    [42] F. Kaldos. An Expert System for the Computer Aided Planning of EDM Sinking Technology. EDM Technology[J].1993(1): 137-143.
    [43]赵万生.先进电火花加工技术[M].北京:国防工业出版社,2003:22-23.
    [44]楚振斌.电加工技术[M].北京:北京技术交流展,第三期.
    [45]陆世英.不锈钢[M].北京:原子能出版社,1995(9):5-8.
    [46]陆世英.不锈钢腐蚀与防护手册[M],第二册,北京:机械工业出版社,1990:190-203;9-12.
    [47]陈德和.不锈钢及其热处理[M].北京:机械工业出版社,1973(10).:20-22.
    [48]陈德和.不锈钢的性能与组织[M].北京:机械工业出版社,1977(10).:35-38.
    [49] Lula R A. stainless steel[M]. ASM. Ohio. 1986:78-79.
    [50] Donald Peckner. Bemstein I M Hand book of stainless steels[M], New York,1977:98-99.
    [51]肖纪美.不锈钢的金属学问题[M].北京:机械工业出版社,2006(8).:66-68.
    [52]薛懿德.金属学[M].北京:冶金工业部出版社.1997(3):140-142.
    [53]丁厚福,王立人.工程材料[M].武汉:武汉理工大学出版社,2001(8):118-120.
    [54]李海生.化学成分对1Cr13钢中铁素体含量的影响[J].特种技术.2006(4):24-25.
    [55] Koji Sato. Improve The Toughness of Ultrahigh Strength Steel [M].USA. 2002::65-67.
    [56]魏宝明.金属腐蚀理论及应用,南京化工学院等合编[M].北京:化学工业出版社. 2004(9).:72-73.
    [57]王成国,丁洪太,侯绪荣.材料分析测试方法[M].上海交通大学出版社,1994(11):44-46.
    [58]祈景玉.现代分析测试技术[M].北京:同济大学出版社,2005(9):75-79.
    [59]李茅坪.高速钢电火花线切割加工白亮层的研究[J].电加工与模具,2004(3):36-37.
    [60]马礼敦.近代X射线多晶体衍射—实验技术与数据分析[M].北京:化学工业出版社,2004(9):32-34.
    [61] Farrow G, Preston D. Measurement of Crystallinity Alrawn Polythy lene Tereph Thalate Fibres by X-Ray Diffraction [J]. J Appl Phys, 1960(8):358.
    [62] Frank H, Scotiw. A new Approach to the Determination of Crystallinity of Polymers by X-Ray D: Hraction [J]. J Appl Cryst, 1973(6):225.
    [63]范雄.金属X射线衍射学[M].北京:机械工业出版社,1998.:22-24.
    [64]林承全,胡绍平,杨辉.模具线切割加工中表面变质层的研究[J].装备制造技术. 2008(4):22-23.
    [65]郭涛,王笃诚.关于电火花线切割变质层的研究[J].电工艺技术. 2004(2): 40-45.
    [66]张定栓.X射线应力测定基本知识,第一讲,残余应力的基本概念[J].理化检测—物理分册,2007(4):211-212.
    [67]Macherauch E, Wohlfahrt H, Wolfstieg U. Zurzweckm?βigen definition von eigenspannungen [J].H?rterei-Techn. Mitt, 1973, 28:210-211.
    [68] FaningerG. Spannungsermittlung. 3. Thermisch bed-ingte eigenspannungen[J]. H?rterei-Techn. Mitt., 1976, 31(1/2):48.
    [69]吕克茂.残余应力测定的基本知识,第四讲,X射线应力测定方法(一)[J].理化检验—物理分册,2007(7):349-350.
    [70]张定栓,何家文.材料中残余应力的X射线衍射分析与作用[M] .西安:西安交通大学出版社,1999:178-181.
    [71]陈玉安,周上祺.残余应力X射线测定方法的研究现状[J].无损检测. 2001(1):19-20.
    [72] Barrett CS, Massalski TB. Structure of Metal[M].3rd edn, New York: Mc Graw-Hill, 1996:55-59.
    [73] Noyan 1C, Cohen JB. Residual Suess Measurement by Diffraction and Interpretation[M]. New York: springer verlag, 1987: 43-44.
    [74]骆志高.陶瓷材料电加工表面质量的研究[J].机械工程学报.2000(1):75-77.
    [75] Koning W. EoM-Future steps towards the maching of caramics. Anuals of the CIRP 1988, vol. 3721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700