聚硅氧烷转化SiOC陶瓷微观结构的演变与改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于聚硅氧烷转化SiOC陶瓷的广阔应用前景,近年来对SiOC陶瓷的研究热度不断升温。SiOC陶瓷可以看作是一种SiO2无定形网络中二价氧被四价碳部分取代的产物。这种改变可以增加其热稳定性和机械性能,使其适合用作高温结构材料。由于SiOC陶瓷需要在高温环境中工作,因此有必要揭示其组成、结构和性能在不同环境中的演变规律,从而对SiOC陶瓷的应用提供技术支持。然后基于对SiOC陶瓷结构演变规律的认识,有的放矢地对SiOC陶瓷结构进行改性设计,从而最终满足更高的使用要求,拓宽应用范围。
     研究了硅树脂转化SiOC陶瓷在各种高温环境中结构与组成的演变行为。尤其是SiOC陶瓷微观结构随温度的变化规律。结果发现在常压惰性环境中,当温度升高到1000℃时,硅树脂基本完成无机化,生成富碳的SiOC陶瓷。其组成为Si:35.96wt%,O:26.87 wt %,C:34.85 wt %。在惰性环境中,在1000-1500℃温度区间, SiOC陶瓷中发生了Si-C键和Si-O键的重排反应,重排反应导致了SiOxC4-x(3≥x≥2)单元分解生成SiO4和SiC4单元。在键重排反应过程中SiOC陶瓷的体积和质量均无明显变化。当温度高于1450℃,SiOC陶瓷中的SiO2和自由碳之间的碳热还原反应激活,生成β-SiC和α-SiC混合结晶。碳热还原反应导致了明显的质量损失和体积收缩。当温度达到1700℃时,碳热还原反应基本反应完全。此时样品为SiC和自由碳所组成的一种疏松多孔材料。
     较低的环境压力将会降低SiOC陶瓷中的SiO2与自由碳之间的碳热还原反应激活温度,并且加速键重排反应的进行。在低压环境中(10Pa),SiOC陶瓷中Si-C键和Si-O键的重排反应的完成温度降低至1400℃。SiOC陶瓷中的碳热还原反应激活温度降低至1250℃,碳热还原反应完成温度降低至1500℃。
     环境中氧元素的存在将会导致SiOC陶瓷中氧化反应的发生,并且影响键重排反应。当温度大于1000℃时,SiOC陶瓷的表面和开孔的孔壁上发生了SiOxC1-0.5x网络的氧化和自由碳的氧化。随着温度的升高,氧化反应加剧,并在样品表明形成一层致密的SiO2。在1000-1400℃温度区间,SiOC陶瓷中发生了Si-C键和Si-O键的重排反应,重排反应由于氧的存在,导致了SiO_xC_(4-x)(3≥x≥2)单元分解只生成SiO4单元。
     在研究SiOC陶瓷基体结构演变的基础上,表征了C_f/SiOC复合材料在高温环境中的性能与结构随温度的演变规律,揭示SiOC陶瓷基体结构与组成的演变行与C_f/SiOC复合材料力学性能的演变规律之间的关系。结果表明无论是在惰性常压环境还是在低压环境中,C_f/SiOC复合材料的力学性能受基体中的的分解反应所控制。当SiOC陶瓷基体中只发生键重排反应时, C_f/SiOC复合材料的力学性能基本保持不变。而一旦基体中的碳热还原反应激活后,基体将会变得疏松多孔,难以有效传递载荷。同时纤维也会与基体发生反应,造成纤维损伤。最终使得C_f/SiOC复合材料强度和弹性模量快速下降。因此要提高C_f/SiOC复合材料的高温稳定性,就必须提高基体中的碳热还原反应温度。
     以提高SiOC陶瓷的碳热还原反应温度为目的,在SiOC陶瓷中引入异质元素Al,形成SiAlOC陶瓷。并且对SiAlOC陶瓷在各种高温环境中结构与组成的演变行为进行表征。结果表明通过溶胶-凝胶法可以对硅树脂进行改性,得到SiAlOC先驱体。这种先驱体中主要包含七种Si单元和两种Al单元。随着温度的升高,Si-OH键之间的缩合以及Si-O键,Si-C键和Si-H键之间的重排反应均有可能发生,导致生成含H和C的挥发性气体(如CH4和H2)。当温度升高到1000℃时,SiAlOC先驱体完成无机化生成SiAlOC陶瓷。其组成为Si:31.26wt%,Al:15.53 wt %,O:46.89 wt %,C:6.32 wt %。在整个无机化过程中,先驱体中的Si单元只有Q4和T单元保留了下来,同时还发生了AlO6向AlO4单元的转化。
     在低压环境中1000℃到1300℃之间,Al-O键,Si-O键和Si-C键发生重排反应。Al-O自身发生重排反应,导致AlO4单元重排生成AlO6单元;Si-O键和Si-C键之间发生重排反应,导致SiO3C单元分解生成SiO4和SiC4单元;Si-O键和Al-O键之间发生重排反应,引起Q4(nAl)(1≤n≤4)四个基团的相对含量变化。当温度升高到1300℃,SiO3C单元分解完全。当温度升高到1400℃时,样品中生成大量的Q4(nAl) (1≤n≤4)单元,同时形成莫来石结晶。当温度超过1500℃时,样品中莫来石与自由碳之间发生碳热还原反应,生成Al2O3。此反应在1600℃时结束。
     SiAlOC陶瓷的碳热还原反应温度激活温度随环境压力的升高而升高。在常压惰性环境中,样品中莫来石与自由碳之间的碳热还原反应温度可以提高到1600℃以上。但是环境压力Al-O键,Si-O键和Si-C键之间的重排反应以及莫来石的结晶行为均无明显影响。环境中氧元素的存在将会导致SiAlOC陶瓷中氧化反应的发生,当温度超过1200℃时,在SiAlOC陶瓷样品的表面和开孔的孔壁上发生了氧化反应。随着温度的升高,氧化反应加剧,并在样品表面形成一层厚度随温度升高而增加的白色混有无定形SiO2的莫来石晶体。
     采用改性先驱体制备了C_f/SiAlOC复合材料,并表征了C_f/SiAlOC复合材料在高温环境中性能与结构随温度的演变规律。结果表明无论是惰性环境还是低压环境中,C_f/SiAlOC复合材料的力学性能受基体中的分解反应以及基体与纤维之间的反应所控制。SiAlOC基体中所发生Si-O,Si-C和Al-O之间的重排反应以及莫来石的结晶均对C_f/SiAlOC复合材料的力学性能没有明显影响。而一旦基体中莫来石与自由碳之间的碳热还原反应激活,或者基体与碳纤维之间的反应激活后,复合材料的力学性能便会快速降低。相比于C/SiOC体系,无论是在惰性环境还是低压环境中,C/SiAlOC体系都具有更好的高温稳定性,是一种适宜的高温结构材料体系。
Due to the wide range of possible applications, an increased attention has been paid to silicon oxycarbide(SiOC) ceramics. Those ceramics can be considered as anionic modification of silica network in which two divalent O atoms are partially replaced by one tetravalent C atom. This modification is expected to improve the thermal and mechanical properties suitable for applications at high temperatures. Because some applications concern high temperature utilization, in order to offer technologies for applications of the SiOC ceramics, there is a strong need to understand their high temperature behavior completely in various environments. Subsequently, based on the structural evolutions of SiOC ceramics, the structure of SiOC ceramics have been modified with the aim of a further improvement of their high temperature stability.
     The structure and composition evolutions of SiOC ceramics in various environments have been investigated. It is found that carbon rich SiOC ceramics were obtained through pyrolysis in inert atmosphere at 1000℃of silicon resin. Its composition are Si:35.96wt%, O:26.87 wt % and C:34.85 wt %. In inert environment, SiOC ceramics undergo a redistribution of Si-O bonds and Si-C bonds leading to the formation of SiC4 and SiO4 units at temperature from 1000 to 1500℃. The weight and volume of SiOC ceramics are almost constant during redistribution reactions. At temperature above 1450℃, carbothermal reduction is active leading to the formation ofβ-SiC andα-SiC. In same temperature range, the weight loss and volume shrinkage are obvious. At 1700℃, carbothermal reduction is almost finished, and the samples are porous materials which consist of SiC and free carobn.
     A lower pressure will shift the start of carbothermal reduction to lower temperatures, and promotes the distribution reactions. In reduced pressure environment (10Pa), carbothermal reduction was active at 1250℃, and finished at 1500℃. Distribution reactions finished at 1400℃. The presence of oxygen in environment will induce the oxidation of SiOC ceramics, and affect the redistribution reactions. At temperature above 1000℃, Oxidations of SiOxC1-0.5x network and free carbon take place at the surface and the wall of open pores of SiOC samples. On increasing temperature, a dense coating of SiO2 formed at the surface of SiOC samples. At temperature above 1000℃, redistribution reactions are active. Because of the presence oxygen, only SiO4 unit can be observed during the decomposition of SiOxC4-x(3≥x≥2)units.
     C_f/SiOC composites were obtained through PIP process. Their high temperature behavior in inert and reduced pressure environment was investigated, and the relationship between the structure and composition evolution of SiOC ceramics matrix and mechanical property evolution of C_f/SiOC composites were revealed. It was found that the decomposition behavior of SiOC ceramics matrix play a crucial role on the mechanical property of C_f/SiOC composites. When the redistribution reactions are active in matrix, the mechanical property of C_f/SiOC composites are almost constant. Once the carbothermal reduction is active in matrix, the mechanical property of C_f/SiOC composites decrease rapidly due to the loose matrix and the reaction between fiber and matrix. Thus, to improve the high temperature stability of C_f/SiOC composites, shifting the start of carbothermal reduction to high temperature is necessary.
     Aluminum has been introduced into the structure SiOC ceramics with the aim of shift the start of carbothermal reduction to higher temperatures. The structure and composition evolutions of SiAlOC ceramics have been investigated. It was found an Al-doped SiAlOC polymer can be obtained through sol-gel process. There are at least seven different Si and two different Al units in SiAlOC polymer. On increasing temperature, condensation reactions of Si-OH group and the cleavage of Si-O, Si-C, Si-H bonds may occur, leading to the evolution of C and H containing volatile species. The conversion of the polymer into an inorganic network is achieved at 1000℃, and the composition of SiAlOC ceramics are Si:31.26wt%, Al: 15.53wt%, O:46.89wt % and C:6.32 wt %. In the mineralization process from polymer to glass, two different Si units remained at the inorganic network and the transition from AlO6 to AlO4 occurred.
     In reduced pressure environment, Al-O, Si-O, and Si-C bonds redistribution reactions are active from 1000 to 1300℃. Al-O bond redistribution will lead to the conversion from AlO4 to AlO6 units. Bonds redistribution between Si-O and Si-C bonds will lead to the consumption of SiO3C unit. Bonds redistribution between Si-O and Al-O bonds will lead to the contents change of Q4(nAl)(1≤n≤4)units. At 1300℃, the consumption of SiO3C unit finished. At 1400℃, the contents of Q4(nAl)(1≤n≤4)units increased rapidly, and the crystallization of mullite occur. Once the temperature is above 1500℃, the carbothermal reduction between mullite and free carbon is active leading to the formation of Al2O3, and the reaction finished at 1600℃.
     A higher pressure will shift the start of carbothermal reduction to higher temperatures. In flowing Ar atmosphere(101KPa), the carbothermal reduction between mullite and free carbon is not active at temperature below 1600℃. However, environment pressure has fewer effects on the Al-O, Si-O, and Si-C bonds redistribution reactions and the crystallization of mullite. The presence of oxygen in environment will induce the oxidation of SiAlOC ceramics. At temperature above 1200℃, Oxidation of free carbon takes place at the surface and the wall of open pores of SiAlOC samples. On increasing temperature, a white coating consists of mullite and amorphous SiO2 formed at the surface, and the thickness increased with increasing temperatures.
     C_f/SiAlOC composites were obtained through PIP process, and their high temperature behavior in inert and reduced pressure environment was investigated. It was found that the decomposition of matrix and the reaction between fiber and matrix play crucial roles on the mechanical property of C_f/SiAlOC composites. Al-O, Si-O, and Si-C bonds redistribution reactions are active in matrix or the crystallization of mullite occur, the mechanical property of C_f/SiAlOC composites are almost constant. Once the carbothermal reduction or the reaction between fiber and matrix are active in matrix, the mechanical property of C_f/SiAlOC composites decrease rapidly. Compared with the C/SiOC system, C/SiAlOC system shows improved thermal stability both in inert and reduced pressure environment. Thus C/SiAlOC system is a suitable high temperature structure material system.
引文
[1] C. Pantano, A. Singh, H. Zhang. Silicon oxycarbide glasses[J]. J. Sol-Gel Sci. Tech. 1999; 14: 7-25
    [2] T. Takahashi, H. Munstedt, M. modesti, P. Colombo, Oxidation resistant ceramic foam from a silicone preceramic polymer/polyurethane blend[J]. J. Eur. Ceram. Soc. 2001; 21: 2821-2828
    [3] M.Huger, S. Souchard, C. Gault, Oxidation of nicalon SiC fibres[J]. J. Mater. Sci. Lett 1993; 12: 414-416
    [4] M. Harris, T. Chaudhary, L. Drzal, R. M. Laine, Silicon Oxycarbide coatings on graphite fibers: Chemistry, processing, and oxidation resistance[J]. Mater. Sci. Eng. A. 1995; 195: 223-236
    [5] Y. Wang, H. Li, L. Zhang, L. Cheng, Oxidation behavior of polymer derived SiCO powders[J]. Ceram. Inter. 2009; 35: 1129-1132
    [6] A. Scarmi, G.D. Soraru, R. Raj. The role of carbon in unexpected visco(an)elastic behavior of amorphous silicon oxycarbide above 1273K[J]. J. Non-Cryst. Solids.2005; 351: 2238-2243
    [7] R.Ellis. Method of making electrically conducting glass and articles made therefrom[P]. U.S.Pat. 2,556,616, June 1951
    [8] R.Elmer H.Meissner. Increase of annealing point of 96% SiO2 glass on incorporation of ccarbon[J]. J. Am. Ceram. Soc. 1976; 59(5): 206-209
    [9] R.Pampuch, W.S.Ptak, S.Jonas, J.Stoch. The nature of Si-O-C phase(s) formed during oxidation of SiC[J]. in Proceedings of the 9th International Symposium on Reactivity of Solids, Cracow,Poland, Sept. 1980, Vol.2 (Elsevier,New Yord,1980),pp.674-677.
    [10] V.A.Lavrenko, S.Jonas, R.Pampuch. Petrographic and X-ray identification of phases formed by oxidation of silicon carbide[J]. Ceram.Inter.1981; 2: 75-76
    [11] A.L.Yurkov, B.I. Polyak. Contact phenomenon and interactions in the system SiC-SiO2-RxOy in condensed matter[J]. J. Mater. Sci. 1996; 31(10): 2729-2733
    [12] J.Lipowitz, H.A.Freeman, R.T.Chen, E.R.Prack. Composition and structure of ceramic fiber prepared from polymer precursors[J].Adv.Ceram.Mater, 1987; 2(2): 121-128
    [13]胡海峰.陶瓷先驱体的分子设计与合成及其在CMCs制备中的应用[D],长沙:国防科学技术大学博士论文, 1998
    [14] M. Birot, J. P. Pillot, J. Dunogues. Comprehensive Chemistry of Polycarbosilanes, Polysilazanes, and Polycarbosilane as Precursors of Ceramics[J]. Chem. Rev., 1995; 95: 1443-1477
    [15] M. Allahverdi, W.R. Cannon, S. C.Danforth. Processing and properties ofBlackglasTM-NextelTM 312 (BN) composites incorporating fillers[J]. J. Am. Ceram. Soc. 2000; 83(12): 2929-2937
    [16] P. Glogar, E. Rudnayová. Mechanical and fracture properties of NextelTM-ex-polysiloxane matrix composites[J]. J. Mater. Sci. Lett. 2002; 21: 831-835
    [17] S. Rangarajan, R. Belardinelli, P. B. Aswath. Processing, physical and thermal properties of BlackglasTM matrix composites reinforced with NextelTM fabric[J]. J. Mater. Sci. 1999; 34(3): 515-533
    [18] M.Harris, T.M.Chaudhry, L.T.Drzal, R.M.Laine. Silicon oxycarbide coatings on graphite fibers: chemistry, processing, and oxidation resistance[J]. Mater.Sci. Engin. A. 1995; 195: 223-236
    [19] J. D. Torrey, R. K. Bordia. Mechanical properties of polymer-derived ceramic composite coatings on steel[J]. J. Eur. Ceram. Soc. 2008; 28: 253-257
    [20] R. Gadow, F. Kern, H. Ulutas. Mechanical properties of ceramic matrix composites with siloxane matrix and liquid phase coated carbon fiber reinforcement[J]. J. Eur. Ceram. Soc. 2005; 25: 221-225
    [21] M. Thünemann, O. Beffort, S. Kleiner, U. Vogt. Aluminum matrix composites based on preceramic-polymer-bonded SiC performs[J]. Comp. Sci. Tech. 2007; 67: 2377-2383
    [22] Y. Ma, Q-S. Ma, J. Suo, Z-H. Chen. Low-temperature fabrication and characterization of porous SiC ceramics using silicone resin as binder[J]. Ceram. Inter. 2008; 34: 253-255
    [23] C.H. Henager Jr., Y. Shin, Y. Blum, L.A. Giannuzzi, B.W. Kempshall, S.M. Schwarz. Coatings and joining for SiC and SiC-composites for nuclear energy systems[J]. J. Nucl. Mater. 2007; 367-370: 1139-1143
    [24] R. Harshe, C. Balan, R. Riedel. Amorphous Si(Al)OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications[J]. J. Eur. Ceram. Soc. 2004; 24: 3471-3482
    [25] G. D. Sorarù, Y. Zhang, M. Ferrari, L.Zampedri, R. R. Gon?alves. Novel Er-doped SiC/SiO2 nanocomposites: Synthesis via polymer pyrolysis and their optical characterization[J]. J. Eur. Ceram. Soc. 2004; 25: 277-281
    [26] N. Suyal, T. Krajewski, M. Mennig. Microstructural and dielectric characterization of sol-gel derived silicon oxycarbide glass sheets[J] J. Sol-Gel Sci. Tech. 1999; 14: 113-123
    [27] H. Konno, T. Morishita, C. Wan, T. Kasashima, H. Habazaki, M. Inagaki. Si-C-O glass-like compound/exfoliated graphite composites for negative electrode of lithium ion battery[J]. Carbon, 2007; 45: 477-483
    [28] P. Colombo. Engineering porosity in polymer-derived ceramics[J]. J. Eur. Ceram. Soc. 2008; 28: 1389-1395
    [29] J-H. Eom, Y-W. Kim, I-H. Song, H-D. Kim. Microstructure and propertiesof porous silicon carbide ceramics fabricated by carbothermal reduction and subsequent sintering process[J]. Mater. Sci. Eng. A. 2007; 464: 129-134
    [30] L .Bois, J. Maquet, F. Babonneau, Structural characterization of sol-gel derived oxycarbide galsses. 2. Study of the thermal stability of the silicon oxycarbide phase[J]. Chem. Mater. 1995; 7: 975-981
    [31] N. Suyal, T. Krajewski, M. Mennig. Sol-gel synthesis and microstructural characterization of silicon oxycarbide glass with high fracture strength and high modulus[J]. J. Sol-Gel Sci. Tech.1998; 13: 995-999
    [32] F. K. Chi. Carbon-containing monolithic glasses via the sol-gel process. Ceram. Eng. Sci. Proc.1983; 4: 704-717
    [33]原效坤,李树杰张听用作结构陶瓷连接剂的有机硅树脂[J].材料工程,2006;增刊: 503-505
    [34] J. Brus, F. Kolar, V. Machovic, J. Svitilova. Structure of silicon oxycarbide glasses derived form poly(methylsiloxane) and poly[methyl(phenyl)siloxane] precursors[J]. J. Non-Cryst. Solids. 2001; 289: 62-74
    [35] N.Suyal, T. Krajewski, M. Mennig. Sol-Gel synthesis and microstructural characterization of silicon oxycarbide glass sheets with high fracture strength and high modulus[J]. J. Sol-Gel Sci. Tech.1998; 13: 995-999
    [36] G. M. Renlund, S. Prochazka, R. H. Doremus, Silicon oxycarbide galsses: Part ?. Preparation and chemistry, PartⅡ. Structure and properties[J]. J. Mater. Res. 1991; 6(12): 2716-2734
    [37] P. N.Adler. Overview of ARPA low-cost ceramic composites (LC3) program[C]. 41st International SAMPE Symposium, March 24-28, 1996: pp524-531
    [38] Colombo C, Riedel R, Soraru GD, Kleebe H-J. Polymer derived ceramics: From nano-structure to applications[M]. DEStech Publications, Inc; 2010
    [39] L. Bois, J. Maquet, F. Babonneau. Structural characterization of sol-gel derived oxycarbide galsses.1. Study of the pyrolysis process[J]. Chem. Mater. 1994; 6: 796-802
    [40] H.Zhang, C.G.Pantano. Synthesis and characterization of silicon oxycarbide galsses[J]. J. Am. Ceram. Soc. 1990; 73(4): 958-963
    [41] D.A.White, S.M.Oleff, R.D.Boyer, P.A.Budinger,J.R.Fox. Preparation of silicon carbide from organosilicon gels:Ⅰ,Synthesis and characterization of precursor gels[J]. Adv.Ceram.Mater. 1987; 2(1): 45-52
    [42] D.A.White, S.M.Oleff, R.D.Boyer, P.A.Budinger,J.R.Fox. Preparation of silicon carbide from organosilicon gels:Ⅱ,gel pyrolysis and SiC characterization[J]. Adv.Ceram.Mater.1987; 2(1): 53-5952
    [43] A.K.Singh, C.G.Pantano. The role of Si-H functionality in oxycarbide glasses synthesis[J]. Cat.Res.Soc.SymP.Proc. 1992; 271: 795-800()
    [44] G.A.Danko, R.Silberglitt, P.Colombo, E.Pippel, J.Woltersdorf. Comparison of microwave hybrid and conventional heating of preceramic polymers to form silicon carbide and silicon oxycarbide ceramics[J]. J. Am. Ceram. Soc. 2000; 83(7): 1617-1625
    [45] J. C. Pivin, P. Colombo, G. D.Sorarù. Comparison of ion irradiation effects in silicon-based preceramic thin films[J]. J. Am. Ceram. Soc. 2000; 83(4): 713-720
    [46] J. C. Pivin, P. Colombo. Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes Part II Hardness and thermochemical stability[J]. J. Mater. Sci. 1997; 32: 6175-6182
    [47] P.Lespade, A.Marchand, M.couzi, F.Cruege. Characterization of carbonaceous materials by Raman microspectroscopy[J]. Carbon, 1984,23(4/5):375-385
    [48] K.Knight, W.White. Characterization of diamond films by Raman Spectroscopy[J]. J.Mater.Res, 1989; 4(2): 385-393
    [49] A. Saha,D.L. Williamson,H.-J. Kleebe, R. Raj. Characterization of nanodomains in polymer-derived SiCN ceramics employing multiple techniques[J]. J. Am. Ceram. Soc. 2005;88 (1): 232-234
    [50] K. Ota, G. Pezzotti, Internal friction analysis of structural relaxation in Si-O-C glass[J]. J. Non-Cryst. Solids. 2003; 318: 248-253
    [51] A. Scarmi, G.D. Sorarù, R. Raj. The role of carbon in unexpected visco(an)elastic behavior of amorphous silicon oxycarbide above 1273K[J]. J. Non-Cryst. Solids. 2005; 351: 2238-2243
    [52] A. Saha, R. Raj, D. L.Williamson. A model for the nanodomains in polymer-derived SiCO[J]. J. Am. Ceram. Soc. 2006; 89(7): 2188-2195
    [53] R. Pe?a-Alonso, G. D. Sorarù, R. Raj. Preparation of ultrathin-walled carbon-based nanoporous structures by etching pseudo-amorphous silicon oxycarbide ceramics[J]. J. Am. Ceram. Soc. 2006; 89(8): 2473-2480
    [54] A. Saha, R.Raj. Crystallization maps for SiCO amorphous ceramics[J]. J. Am. Ceram. Soc. 2007; 90(2): 578-583
    [55] T. Varga, A. Navrotsky, J. L. Moats, R. M. Morco, F. Poli, K. Mülle, A. Saha, R. Raj. Thermodynamically stable SixOyCz polymer-like amorphous ceramics[J]. J. Am. Ceram. Soc. 2007; 90(10): 3213-3219
    [56] D. Ahn, F. Poli, K. Mülle, R. Raj. Energetics of SixOyCz polymer-derived ceramics prepared under varying conditions[J]. J. Am. Ceram. Soc. 2008; 91(9): 2969-2974
    [57] Peter Kroll. Modeling and simulation of amorphous silicon oxycarbide[J]. J. Mater. Chem. 2003; 13(7): 1657-1668
    [58] P. Kroll. Modeling the free carbon phase in amorphous silicon oxycarbide[J]. J. Non-Cryst. Solids. 2005; 351: 1121-1126
    [59] J. Latournerie, P. Dempsey, D. H. Bahloul, J. P. Bonnet. Silicon oxycarbide glasses: Part ?-Thermochemical stability[J]. J. Am. Ceram. Soc. 2006; 89(5):1485-1491.
    [60] J.Parmentier, G.D.Soraru,F.Babonneau.Influence of microstructure on the high temperature behaviour of gel-derived SiOC glasses[J]. J. Eur. Ceram. Soc. 2001; 21: 817-824.
    [61] J. Brus, F. Kolai, V. Machovic, J. Svítilova. Structure of silicon oxycarbide glasses derived from poly(methylsiloxane) and poly[methyl(phenyl)siloxane] precursors[J]. J. Non-Cryst. Solids. 2001; 289: 62-74
    [62] C. Turquat, H. J. Kleebe, G. Gregori, S. Walter, G. D. Soraru. Transmission electron microscopy and electron energy-loss spectroscopy study of nonstoichiometric silicon-carbon-oxygen glasses[J]. J. Am. Ceram. Soc.2001; 84(10): 2189-2196.
    [63] H. J. Kleebe, C. Urquat, G. D. Soraru. Phase separation in an SiCO glass studied by transmission electron microscopy and electron energy-loss spectroscopy[J]. J. Am. Ceram. Soc.2001; 84(5): 1073-1080.
    [64] E. Breval, M. Hammond, C.G. Pantano. Nanostructural characterization of silicon oxycarbide glasses and glass-ceramics[J]. J. Am. Ceram. Soc. 1994; 77(11): 3012-3018
    [65] L. Bois, J. Maquet, F. Babonneau. Structural characterization of sol-gel derived oxycarbide galsses.2. Study of the thermal stability of the silicon oxycarbide phase[J]. Chem. Mater. 1995; 7: 975-981
    [66] H. Brequel, J. Parmentier, S. Walter, R. Badheka, G. Trimmel, S. Masse, J. Latournerie, P. Dempsey, C. Turquat, A. Desmartin-Chomel, L. Le Neindre-Prum, U.A. Jayasooriya, D. Hourlier, H.-J. Kleebe, G. D. Soraru, S. Enzo, F. Babonneau, Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses[J]. Chem. Mater. 2004; 16: 2585-2598
    [67] G. D. Sorarù, D. Suttor. High temperature stability of Sol-Gel-derived SiOC glasses[J]. J. Sol-Gel Sci. Tech. 1999; 14: 69-74
    [68] SorarùGD, Q Liu, Interrante LV, Apple T. Role of precursor molecular structure on the microstructure and high temperature stalility of silicon oxycarbide glasses derived from methylene-bridged plycarbosilanes[J]. Chem. Mater. 1998; 10: 4047-4054
    [69] J. Parmentier, G. D. Soraru , F. Babonneau. Influence of the microstructure on the high temperature behavior of gel-derived SiOC glasses[J]. J. Eur. Ceram. Soc. 2001; 21: 817-824
    [70] G.S. Bibbo, P.M. Benson, C.G. Pantano. Effect of carbon monoxide partial pressure on the high-temperature decomposition of Nicalon fibre[J]. J. Mater. Sci. 1991; 26: 5075
    [71] S.Walter, G.D.Sorarù, H.Bréquel, S.Enzo. Microstructural and mechanical characterization of sol-gel-derived Si-O-C glasses[J]. J. Eur. Ceram. Soc. 2002; 22: 2389-2400
    [72] D.Yigal, D. Blum, B. Macqueen, H-J.Kleebe. Synthesis and characterization of carbon-enriched silicon oxycarbides[J]. J. Eur. Ceram. Soc. 2005;25: 143-149
    [73] G. M.Renlund, S.Prochazka, R.H.Doremus. Silicon oxycabide glasses: PartⅡ. Structure and properties[J]. J. Mater. Res. 1991; 6(12): 2723-2734
    [74] H. -J. Kleebe, C. Urquat, G. D. Soraru. Phase separation in an SiCO glass studied by transmission electron microscopy and electron energy-loss spectroscopy[J]. J. Am. Ceram. Soc. 2001, 84(5): 1073?1080
    [75] C. Wan, G. Guo, Q. Zhang. SiOC ceramic nanotubes of ultrahigh surface area[J]. Mater. Lett. 2008; 62: 2776-2778
    [76] S. Yajima, Y. Hasegawa, J. Hayashi. Synthesis of continuous silicon carbide fiber with high tensile strength and high Young’s modulus. Part I Synthesis of polycarbosilane as precursor[J]. J. Mater. Sci. 1978, 13: 2569-2576.
    [77] Y. Hasegawa, K. Okamura. Synthesis of continuous silicon carbide fiber. Part IV the structure of polycarbosilane as precursor[J]. J. Mater. Sci. 1986, 21: 321-328.
    [78] K. Okamura. Ceramic fibers from polymer precursors[J]. Composites, 1987, 18(2): 107-120.
    [79] J. Lipowitz, J. A. Rabe, G. A. Zank. Polycrystalline SiC fiber from organosilicon polymers[J]. Ceram. Eng. Sci. Proc. 1991; 12(9-10): 1819-1831.
    [80] R. Harshe, C. Balan, R. Riedel. Amorphous Si(Al)OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications[J]. J. Eur. Ceram. Soc. 2004; 24: 3471-3482
    [81] R. Pe?a-Alonso, L. Téllez, A. Tamayo, F. Rubio, J. Rubio, J.L. Oteo. Silicon-titanium oxycarbide glasses as bimodal porous inorganic membranes[J]. J. Eur. Ceram. Soc. 2007; 27: 969-973
    [82] M.A. Schiavon, C. Gervais, F. Babonneau, G. D. Soraru. Crystallization behavior of novel silicon boron oxycarbide glasses[J]. J. Am. Ceram. Soc. 2004; 87(2): 203-208
    [83] F. Kolá?, V. Machovi?, J. Svílová. Cobalt-containing silicon oxycarbide glasses derived from poly[methyl(phenyl)]siloxane and cobalt phthalate[J]. J. Non-Cryst. Solids. 2006; 352: 2892-2896
    [84] M. Scheffler, P. Greil, A. Berger, E. Pippel, J. Woltersdorf. Nickel-catalyzed in situ formation of carbon nanotubes and turbostratic carbon in polymer-derived ceramics[J]. Meter. Chem. Phy. 2004, 84: 131-139
    [85] M. G. Segatelli, A. T. N. Pires, I. V. P. Yoshida. Synthesis and structural characterization of carbon-rich SiCxOy derived from a Ni-containing hybrid polymer[J]. J. Eur. Ceram. Soc. 2008, 28: 2247-2257
    [86] T. Erny, M. Seibold, O.Jarchow, P. Greil. Microstructure development of oxycarbide composites during active-filler-controlled polymer pyrolysis[J]. J. Am.Ceram. Soc. 1993; 76(1): 207-213
    [87] S. H. Yu, R. E. Riman, S.C. Danforth, R. Y. Leung. Pyrolysis of titanium-metal-filled polysiloxane preceramic polymers: effect of atmosphere on pyrolysis product chemistry[J]. J. Am. Ceram. Soc. 1995; 78(7): 1818-1824
    [88] H. D. Akka?, M. L. ?ve?o?lu, M. Tano?lu. Silicon oxycarbide-based composites produced from pyrolysis of polysiloxanes with active Ti filler[J]. J. Eur. Ceram. Soc. 2006; 26: 3441-3449
    [89] B.-S. Kim, D. J. Kim. Ti-based ceramic composites derived from polymer pyrolysis[J]. J. Eur. Ceram. Soc. 2007; 27: 837-841
    [90] M. A. Schiavon, I. V. P. Yoshida. Ceramic matrix composites derived from CrSi2-filled silicone polycyclic network[J]. J. Mater. Sci. 2004; 39: 4507-4514
    [91] P. Greil. Active-filler-controlled pyrolysis of preceramic polymers[J]. J. Am. Ceram. Soc. 1995; 78(4): 835-848
    [92] A. Kaindl, W. Lehner, P. Greil, D. J. Kim. Polymer-filler derived Mo2C ceramics[J]. Mater. Sci. Eng. A. 1999; 260: 101-107
    [93] O. Dernovsek, J. C. Bressiani, A. H. A. Bressiani, W. Acchar, P. Greil. Reaction bonded niobium carbide ceramics from polymer-filler mixtures[J]. J. Mater. Sci. 2000; 35: 2201-2207
    [94] Q. Wei, E. Pippel, J. Woltersdorf, M. Scheffler, P. Greil. Interfacial SiC formation in polysiloxane-derived Si-O-C ceramics[J]. Meter. Chem. Phy. 2002; 73: 281-289
    [95] M. Scheffler, E. Pippel, J. Woltersdorf, P. Greil. In situ formation of SiC-Si2ON2 micro-composite materials from preceramic polymers[J]. Meter. Chem. Phy. 2003; 80: 565-572
    [96] E. Bernardo, P. Colombo, E. Pippel, J. Woltersdorf. Novel mullite synthesis based on alumina nanoparticles and a preceramic polymer[J]. J. Am. Ceram. Soc. 2006; 89(5): 1577-1583
    [97]马青松.聚硅氧烷先驱体转化制备陶瓷基复合材料研究[D].长沙:国防科学技术大学博士论文,2003
    [98]仇沱,马眷荣.工程陶瓷弯曲强度试验方法[M].北京:中国建筑材料科学研究院, 1986.
    [99] GB75-70-03,高温结构陶瓷平面应变断裂性试验方法[S]..
    [100]王英华.X光衍射技术基础(第二版)[M].北京:原子能出版社,1993.
    [101] GB 4333.1-84,硅铁化学分析方法[S].
    [102]何永佳,胡曙光. Si固体核磁共振技术在水泥化学研究中的应用[J].材料科学与工程学报, 2007; 25(1): 147-153
    [103]奚新国,许仲梓.固体核磁共振在水泥混凝土材料研究中的应用[J].江苏建材,2003; 1: 19-20
    [104] F. Babonneau, G. D. Soraru, K. J. Thorne, J. D. Mackenzie, Chemical characterization of Si-Al-C-O precursor and its pyrolysis[J] J. Am. Ceram. Soc. 1991; 74: 1725-1728
    [105] A. C. Ferrari, J. Robertson (谭平恒,李峰,成会明译).碳材料的拉曼光谱—从纳米管到金刚石[M].北京:化学工业出版社,2007
    [106] F. Tuinstra, J. L. Koenig, Raman spectrum of graphite[J], J. Chem. Phys. 1970; 53: 1126-1130
    [107] T. Jawahari, A. Road, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon. 1995; 33 : 1561-1565.
    [108] S. Karlin, Ph. Colomban, Raman study of the chemical and thermal degradation of as-received and sol–gel embedded Nicalon and Hi-Nicalon SiC fibers used in ceramic matrix composites[J], J. Raman Spectrosc. 1997; 28: 219-228.
    [109] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon[J], Phys. Rev. B 2000; 61(20): 14095-14107.
    [110] A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon and nanodiamond[J], Philos. Trans. R. Soc. Lond. A 2004; 362: 2477-2512.
    [111] Y. Ma, S. Wang, Z.-H. Chen, Raman spectroscopy studies of the high-temperature evolution of the free carbon phase in polycarbosilane derived SiC ceramics[J], Ceram. Inter. 2010; 36: 2455-2459
    [112]段力群.硅树脂转化制备粉体SiOC微/介孔陶瓷研究[D].国防科学技术大学工学硕士论文.长沙.2010
    [113] S. Karlin, P. Colomban. Raman study of the chemical and thermal degradation of as-received and sol–gel embedded Nicalon and Hi-Nicalon SiC fibers used in ceramic matrix composites [J]. J Raman Spectrosc. 1997; 28: 219-228.
    [114] H.–P. Martin, R. Ecke, E. Muller, Synthesis of nanocrystalline silicon carbide powder by carbotheremal reduction[J]. J. Eur. Ceram. Soc. 1998; 18:1737-1742.
    [115]梁英教,车萌昌.无机物热力学数据手册[M].辽宁:东北大学出版社,1993.
    [116] A.R.Bunsell, A. Piant, A review of the development of three generations of small diameter silicon carbide fibres[J]. J. Mater. Sci. 2006; 41: 823-839
    [117] R. P. Alonso, G. Mariotto, C. Gervais, F. Babonneau, G. D.Soraru, New insights on the high-temperature nanostructure evolution of SiOC and B-doped SiBOC polymer-derived glasses[J]. Chem. Mater. 2007; 19: 5694-5702
    [118] G. Chollon, Oxidation behaviour of ceramic fibres from the Si-C-N-O system and related sub-systems[J]. J. Eur. Ceram. Soc. 2000; 20: 1959-1974
    [119]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究[D].长沙:国防科大博士学位论文,2003
    [120] H. Schneider, S. Komarneni. Mullite[M]. WILEY-VCH Verlag Gmbh & Co.KGaA, Weinheim.2005
    [121]马北越,于景坤,朱强. La2O3对锆英石合成SiC-ZrO_2复合材料的影响[J].东北大学学报,2009; 30: 563-566
    [122] J. Brus, J. Dybal. Copolymerization of tetraethoxysilane and dimethyl(diethoxy)silane studied by 29Si NMR and ab initio calculations of 29Si NMR chemical shifts[J]. Polymer. 1999; 40: 6933-6945
    [123] D. J. T. Hill, C. M. L. Preston, A. K. Whittaker. NMR study of the gamma radiolysis of poly(dimethyl Siloxane) under vacuum at 303K[J]. Polymer, 2002; 43: 1051-1059
    [124] S. Matsuya, A. Stamboulis, R. G. Hill, R. V. Law. Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy[J]. J. Non-Cryst. Solids. 2007; 353: 237-243
    [125] I. Jaymes, A. Douy, D. Massiot, J-P. Coutures. Evolution of the Si environment in mullite solid solution by 29Si MAS-NMR spectroscopy[J]. J. Non-Cryst. Solids. 1996; 204: 125-134
    [126] J. Brus, F. Kolar, V. Machovic, J. Svitilova. Structure of silocon oxycarbide glasses derived from poly(methysliloxane) and poly[methyl(phenyl)siloxane] precursors[J]. J. Non-Cryst. Solids. 2001; 289: 62-74
    [127] L. H. Merwin, A. Sebald, H. Rager, H. Schneider. 29Si and 27AlMAS NMR spectroscopy of mullite[J]. Phys. Chem. Minerals. 1991; 18: 47-52
    [128] I. Jaymes, A. Douy, D. Massiot, J-P. Coutures. Evolution of the Si environment in mullite solid solution by 29Si MAS-NMR spectroscopy[J]. J. Non-Cryst. Solids. 1996; 204: 152-143
    [129] P. R. Bodart, J. Parmentier, R. K. Harris, D. P. Thompson. Aluminium environments in mullite and an amorphous sol–gel precursor examined by 27Al triple-quantum MAS NMR[J]. J. Phy. Chem. Solids. 1999; 60: 223-228
    [130] H. Schneider, J. Schreuer, B. Hildmann. Structure and properties of mullite- a review[J]. J. Eur. Ceram. Soc. 2008; 28: 329-344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700