用户名: 密码: 验证码:
飞轮电池储能关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞轮电池是一种新型机电能量转换与储存装置,具有大储能量、高功率、无污染、高效率、适用广、无噪声、长寿命等优点,有着广阔的应用前景。它主要由高速飞轮转子、磁浮轴承系统、电动/发电机等组成,是一种典型的机电磁一体化产品。其研究涉及到机械、材料、电工、热工、计算机等多学科的交叉,国内外目前大都在研究原型装置,对设计理论与方法尚未进行系统深入的研究,本论文则对飞轮电池储能涉及的两大关键技术——飞轮转子设计与磁浮轴承及其相关技术进行了系统的理论分析与仿真研究。
     第一章阐述了课题的研究背景与意义,分析了飞轮电池的储能原理及其关键技术,综述了国内外的研究现状及其应用前景,提出了本论文研究的主要内容。
     第二章对飞轮电池储能能力及其影响因素进行了分析,对不同材料飞轮的储能能力进行了比较和分析。在分析了飞轮转子各种应力分析方法优缺点的基础上,对不同材料不同结构的飞轮转子的应力分布作了定量分析和比较。推导了复合材料飞轮的应力计算公式,并对飞轮转子应力分布的影响因素进行了分析研究,提出了飞轮转子结构参数的设计方法。
     第三章对永磁轴承的稳定性进行了分析,提出了改善稳定性的方法,推导了永磁轴承磁力与刚度计算公式,对各种构型永磁轴承的性质进行了分析研究。提出了采用有限元法分析永磁轴承力学特性的分析方法,并就轴承结构参数对轴承力学特性的影响进行了研究。
     第四章对电磁轴承的基本理论进行了研究。在磁路分析的基础上,推导了磁力、磁通密度和电感的计算公式。并对电磁轴承的两种电磁结构——无永磁偏置与有永磁偏置电磁铁的电磁力计算方法进行了研究,提出了一种引入修正系数的磁路计算方法,并对基于PD和PID控制的电磁轴承力学特性进行了研究。
     第五章在分析了各种磁轴承系统拓扑结构的基础上,提出了一种新型的由径向永磁轴承与轴向电磁轴承组成的单轴主动控制的飞轮电池磁轴承系统结构。对磁轴承系统的结构配置、结构参数计算、轴承悬浮特性等方面进行了详细分析与讨论,并建立了系统动力学模型。
     第六章在上述理论研究的基础上,提出了飞轮电池较为系统的设计过程和方法,并通过对一种新型飞轮电池装置主体结构全面的设计分析与仿真研究,包括金属飞轮与复合材料飞轮的设计、永磁轴承与电磁轴承的结构计算、控制系统设计以及电机选择、充放电控制等,验证了其设计方法的可行性。
     第七章对全文的研究工作进行了总结,给出了主要的研究成果和结论,并分析了本论文的主要创新点,提出了有待进一步深入研究的问题。
     飞轮电池是一种应用前景广阔的新型绿色动力电池,论文对其储能关键技术的研究,既有很大的理论和技术难度,又有重大的工业应用价值。
Flywheel battery is a novel energy storage device which can realize energy conversion between mechanical energy and electric energy. It has many advantages including high energy storage,high power,no pollution,high storage efficiency,wide application,noise free,long cycle life,and so on. Flywheel battery is a typically electromechanical and electromagnetical product with some main parts:high speed flywheel,magnetic bearing system,motor/generator,etc. The study of flywheel battery concerns the intercross of many disciplines,such as mechanism,material,electronic engineering,heat engineering,computer,and so on. In this dissertation,two main key techniques,the high speed flywheel rotor and the magnetic bearing,are investigated deeply and systematically.
    The main contents of this dissertation are as following:
    In Chapter 1,the background,source,purpose and significance of the subject are introduced. The principle and key techniques of energy storage for the flywheel battery are analyzed. The international research situation and application prospects of flywheel battery are also presented. Based on this,the author brings up the main studying contents of this dissertation.
    In Chapter 2,the energy storage ability of the flywheel battery and its affecting factors are analyzed. The energy storage ability of different material flywheels are compared and analyzed. On the basis of the analysis of all sorts of stress analysis methods,the stress distributions of flywheel rotors with different structures and different materials are analyzed quantitatively and compared. The computation expressions of the stress for composite flywheel are derived. The affecting factors on the stress distribution for the flywheel rotors are analyzed and investigated. And the design method of structure parameters for the flywheel rotor is presented.
    In Chapter 3,the stability of permanent magnet bearings is analyzed. And the modified methods which can improve the stability of the permanent magnet bearings are studied. The computation expressions of the magnetic force and stiffness of the permanent magnet bearings are derived. The characteristics of the magnetic bearings with different structures are studied. The analysis method is presented,which can analyze the mechanical characteristics of permanent bearings by using finite element method. And the influence of the structure parameters on characteristics of the bearings is studied.
    In Chapter 4,the basic theory of magnetic bearings is investigated. Based on the analysis of the magnetic circuit,the computation expressions of the magnetic force,magnetic flux density and inductance are derived. Two calculation methods of the electromagnetic force are studied for two typical configurations of the magnetic bearings. One configuration utilizes the permanent magnet to provide a bias flux and the other configuration has no source of bias flux. Based on the simplified analytical model,an improved analytical model is developed by adding correction factors to the
    
    
    simplified model. The characteristics of the magnetic bearings are studied based on PD and PID control strategies.
    In Chapter 5,based on the analysis of all sorts of topology structures of magnetic bearing systems,one single-axis controlled system structure of hybrid magnetic bearings for flywheel battery is presented,which is made of two radial permanent magnet bearings and one axial magnetic bearing. The computation of the structural parameters and the suspension characteristics of the magnetic bearing system are analyzed and discussed in details. And the system dynamic model is built.
    In Chapter 6,on the basis of the above theory studies,the design process and method of the flywheel battery is presented. The feasibility of the design method is also verified through the designing a small flywheel battery device. The design contents include the design of the flywheel rotor of metal and composite materials respectively,the structure computation of the permanent magnet bearing and magnetic bearing,the control design of the magnetic be
引文
[1] 机械工程手册、电机工程手册编辑委员会编。机械工程手册第5卷,机械设计(二).北京:机械工业出版社,1982.12.
    [2] 中国电工技术学会编.电工高新技术丛书(第3分册),北京:机械工业出版社,2000.4.
    [3] 蒋书运,卫海岗,沈祖培.飞轮储能技术研究的发展现状.太阳能学报,2000,21(4):427~433.
    [4] 于福岳.应用快速旋转飞轮的不停电电源装置.国外电气自动化,1991,12(5):48~54.
    [5] 陈清泉.环境保护和电动车的开发.江苏机械制造与自动化,2000,(1):3~7.
    [6] 李宏志,应用于电动汽车的新型动力电池.世界汽车,1997,(3):25~26
    [7] 颜增品.世界电动汽车用电池技术的发展现状.世界汽车,1997,(10):5~7.
    [8] 宋慧.电动汽车高能电池.世界汽车,1997,(2):24~26.
    [9] 李晓东,王仲范.车用飞轮电池结构设计中的几个关键问题.武汉汽车工业大学学报,1999,21(1):52~55.
    [10] 张力,张恒.复合材料飞轮研究进展.兵器材料科学与工程,2001,24(5):63~65.
    [11] 张建诚,陈志业,杨以涵.飞轮储能技术在电力系统中的应用.电力情报,1997,(3):4~7.
    [12] 邓智泉,孟小利,严仰光.飞轮贮能系统在未来航天器中的应用.南京航空航天大学学报,1999,31(5):539~544.
    [13] 郭培源,鲍曼.飞轮储能技术在风力发电中的应用.新能源,1998,20(4):16~19.
    [14] Weissbach R S, Karady G G, Farmer R G. Dynamic voltage compensation on distribution feeders using flywheel energy storage. IEEE Transactions on Power Delivery, 1999, 14(2): 465~471.
    [15] Bitterly J G. Flywheel technology past, present, and 21st century projections. In: Proceeding of the 32nd Intersociety Energy Conversion Engineering Conference, Piscataway, NJ, USA, 1997, 2312~2315.
    [16] Post R F, Fowler T K, Post, S F. A high-efficiency electromechanical battery. Proceedings of the IEEE, 1993, 81(3): 462~474.
    [17] 金能强,夏平畴.飞轮电力储能系统.电工技术杂志,1997,(1):37~38,40.
    [18] 胡小军,董明晶,蒋书运,等.飞轮储能技术的新进展.新能源,1999,21(4):1~9.
    [19] 曹炳君.飞轮储能系统中能量转换环节.电工电能新技术,1997,(4):33~35.
    [20] 刘玲,李维红,金耀萍,等.大容量飞轮蓄能发电系统发展趋势。发电设备,1999,(2):33~35.
    [21] 张铁柱,罗邦杰,吴淑荣,等.高速储能飞轮的设计与分析.机械工程学报,1993,29(1):24~29.
    [22] 王嵘,吴晓波.复合材料飞轮转子的发展概述.玻璃钢/复合材料,2000,(6):51~54.
    [23] 刘迎澍,黄田.磁悬浮轴承研究综述。机械工程学报,2000,36(11):5~9.
    [24] 朱美玲,汪凤泉.电磁式作动器控制转子振动的理论分析与实验研究。振动工程学报,1995,8(1):80~85.
    [25] 赵艾萍,张钢.电磁轴承研究的最新发展.机械科学与技术,1999,18(6):943~945.
    [26] Schweitzer G, Bleuler H, Traxler A. Active Magnetic Beatings. Basics, Properties and Applications of Active Magnetic Beatings, Vefiag der Fachvereine (vdf), ETH-Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland, Aug. 1994
    [27] 汪京荣,吴晓祖,周廉.高温超导磁悬浮与飞轮储能.物理,1997,26(4):226~232.
    [28] 詹三一,唐跃进,李敬东.超导磁悬浮飞轮储能的基本原理和发展现状.电力系统自动化,2001,(8):67~72.
    
    
    [29] Tixador P, Hiebel P, Brunet Y, et al. Hybrid superconducting magnetic suspensions. IEEE Transactions on Magnetics, 1996, 32(4): 2578~2581
    [30] Schochlin A, Ritter T, Bomemann H J. Optimized configurations of auto stable superconducting magnetic bearings for practical applications. IEEE Transactions on Magnetics, 1994, 31 (6): 4217~4219.
    [31] 曹建荣,虞烈,谢友柏.主动磁悬浮推力轴承的状态反馈线性化控制.西安交通大学学报,2000,34(10):67~71.
    [32] 叶宏,林良真,荆伯弘,等.永磁卸载超导磁力轴承提供稳定的立轴旋转结构的实验研究.电工技术杂志,1999,(1):17~19.
    [33] 赵家文.一种新型轴承——永磁体磁力轴承.机械设计与研究,1997,(2):39~40.
    [34] 张恒,朱军,龚小燕,等.无源磁轴承的设计.磁性材料及器件,1996,27(2):12~16.
    [35] 陈立志.磁悬浮轴承在高速旋转机械上的应用及一种混合径向磁悬浮轴承的设计.光学-精密工程,1994,2(4):101~108.
    [36] Lemarquand G, Yonnet J E A partially passive magnetic suspension for a discoidal wheel. J. Appl. Phys. 1988, 64(10): 5997~5999.
    [37] Delamare J, Rullere E, Yonnet J P. Classification and synthesis of permanent magnet beating configurations. IEEE Transactions on Magnetics, 1995, 31 (6): 4190~4192.
    [38] 赵鸿宾.磁轴承研究现状.国际学术动态,1999,(5):55~57.
    [39] 解亚飞,程三海,王雪帆,等.飞轮储能系统中的能量转换环节及其实现.电机电器技术,2001,(1):26~30.
    [40] Paul P A, Barrie C M, James S B, et al. Design Principles for A Flywheel Energy Store for Road Vehicles. IEEE Transactions on Industry Application, 1996, 32 (6): 1402~1408.
    [41] 中国电工技术学会编.电工高新技术丛书(第6分册),北京:机械工业出版社,2000.4.
    [42] Genta G. Kinetic energy storage: theory and practice of advanced flywheel systems. London, England: Cambridge University Press, 1985.
    [43] Curtiss D H, Mongeau P P, Puterbaugh R L. Advanced composite flywheel structural design for a pulsed disk alternator. IEEE Transactions on Magnetics, 1995, 31 (1): 26~31.
    [44] Ha S K, Tsai S W. Structural analysis of a composite multi-ring flywheel for energy storage system. In: Lectures on Composites Design. 1996: 82~109.
    [45] Ha S K, Jeong H M, Cho Y S. Optimum design of thick-walled composite rings for an energy storage system. Journal of Composite Materials. 1998, 32(9):851~873.
    [46] Widmer J. Woven ribbon composite flywheel with self centering hub. Society of Automotive Engineers, 1985, 164(2):538~543.
    [47] Plant D P Improvement in magnetic bearing performance for flywheel energy storage. In: Proceedings of the 23th Intersociety Energy Conversion Engineering Conference. New York: American Society of Mechanical Engineers. 1988:111~116
    [48] Vijay C, James R D. Low noise spacecraft attitude control systems. In: Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Piscataway, NJ, USA, 1991, (4): 244~249.
    [49] H Moosavi-rad. A bvif-integrated hybrid bus. Proc Instn Mech Engris. 209:95~101
    [50] Puterbaugh R L, Mongeau P P. Pulsed disk alternators as energy storage devices for electrothermal chemical guns. IEEE Transactions on Magnetics. 1995, 31 (1):73~77
    [51] Roger Dettmer. Revolutionary. energy - A wind diesel generator with flywheel storage, IEE Review, 1990.
    
    
    [52] Krodkiewski J. Influence of magnetic bearing operating constraints on rotor-bearing system performance. In: Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, Warrendale: Society of Automotive Engineers, 1992, (4): 15~22.
    [53] Turner L R. Fields and forces in flywheel energy storage with high-temperature superconducting bearings. IEEE Transactions on Magnetics, 1997, 33(2): 2000~2003.
    [54] Fang J R, Lin L Z, Yan L G, et al. A new flywheel energy storage system using hybrid superconducting magnetic bearings. IEEE Transactions on Applied Superconductivity, 2001, 11 (1): 1657~1660
    [55] 施阳,周凯,严卫生,等.主动磁悬浮轴承控制技术综述.机械科学与技术,1998,17(4):580~582.
    [56] 杨作兴,赵雷,赵鸿宾.电磁轴承动刚度的自动测量.机械工程学报,2001,37(3):25~29.
    [57] 刘淑琴,虞烈,谢友柏.电磁轴承驱动级电压与电流对转速和控制精度影响的研究.机械工程学报,1999,35(3):101~104.
    [58] 曾励,朱晃秋,曾学明,等.永磁偏置的混合磁悬浮轴承的研究.中国机械工程,1999,10(4):387~389.
    [59] 李俊,徐德民.主动磁悬浮轴承的非线性反演自适应控制.机械科学与技术,1998,17(5):790~792.
    [60] 汪希平,陈学军.陀螺效应对电磁轴承系统设计的影响.机械工程学报,2001,37(4):48~52.
    [61] Ohashi S, Hirane Y, Hikihara T Three-dimensional vibration of the rotor in the HTSC-permanent magnet flywheel system. IEEE Transactiofis on Magnetics, 1999, 35(5): 4037~4039.
    [62] Turner L R. Fields and forces in flywheel energy storage with high-temperature superconducting bearing. IEEE Transactions on Magnetics, 1997, 33(2): 2000~2003.
    [63] Hauser A O. Calculation of superconducting magnetic bearings using a commercial FE-program (ANSYS). IEEE Transactions on Magnetics, 1997, 33(2): 1572~1575.
    [64] Miyagawa Y, Kameno H, Takahata R, et al. 0.5 kWh flywheel energy storage system using a high-Tc superconducting magnetic bearing. IEEE Transactions on Applied Superconductivity 1999, 9(2): 996~999.
    [65] Stienmier J D, Thielman S C, Fabien B C. Analysis and control of a flywheel energy storage system with a hybrid magnetic bearing. Transactions of the ASME, Journal of Dynamic Systems, Measurement, and Control. 1997, 119,650~456.
    [66] Chen Q Y. Xia Z, Ma K B, et al. Hybrid high Tc superconducting magnetic beatings for flywheel energy storage system. Applied Superconductivity, 1994, 2(7/8): 457~464.
    [67] Higgins M A, Plant D P, Ries D M, et al. Flywheel energy storage for electric utility load leveling. In: Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, La Grange Park, 1991: D209~D214.
    [68] 叶宏,夏平畴,林良真.永磁卸载高温超导体提供稳定的立轴旋转系统.电工电能新技术,1998,17(4):69~70.
    [69] 胡小军.储能飞轮技术研究.清华大学硕士学位论文,1999.6
    [70] Asper H K. Inverter FED 10 kW advanced reluctance machine for flywheel energy storage system operating from 12000 to 24000 rpm. In: Advancing Toward Technology Breakout in Energy Conversion, Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, Washington, American Chemical Society, 1986. 889~894.
    [71] Niemeyer W L. A high efficiency motor/generator for magnetically suspended flywheel energy storage system. In: Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, Piscataway, 1989. 1511~1516.
    [72] Hockney R L, Driscoll C A. Powering of standby power supplies using flywheel energy storage. In: Proceedings of 19th International Telecommunications Energy Conference, Melbourne, Aust, 1997.105~109.
    
    
    [73] Anand D K, Kirk J A. Final prototype of magnetically suspended flywheel energy storage system. Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, 1991. 203~208.
    [74] Acarnley P P, Mecrow B C, Burdess J S, et al. An integrated flywheel/machine energy store for road vehicles. In: IEEE Colloquium on New Topologies for Permanent Magnet Machines. 1997, 91~96.
    [75] Hoolboom G J, Szabados B. Nonpolluting automobiles. IEEE Transactions on Vehicular Technology, 1994, 43(4):1136~1144.
    [76] Anerdi G, Brusaglino G. Technology potential of flywheel storage and application impact on electric vehicles. In: Proceedings of the 12th International Electric Vehicles Conference, 1994, 37~45.
    [77] Davies T S, Larsen N. A regenerative drive for incorporating flywheel energy storage into wind generation systems. In: Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, Piscataway, 1989, 2065~2069.
    [78] Hardan F, Bleijs J A M, Bromley P, et al. Fast-response bi-directional power electronic converter for a flywheel energy storage system. Proceedings of the 1997 32nd Universities Power Engineering Conference, Manchester, UK, 1997, 419~422.
    [79] Higgins M A. Flywheel energy storage for electric utility load leveling. In: Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, La Grange Park, 1991,209~214.
    [80] Bornemann H J, Sander M. Conceptual system design of a 5MWh/100MW superconducting flywheel energy storage plant for power utility application. IEEE Transactions on Applied Superconductivity, 1997, 7(2):398~401.
    [81] Pieronek T J, Decker D K, Spector A. Spacecraft flywheel systems-benefits and issues. In: Proceedings of the National Aerospace and Electronics Conference, Piscataway, 1997, 589~593.
    [82] Davies T S. Use of flywheel storage for wind diesel systems. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 27:157~165.
    [83] Edwards J, Aldrich J W, Christopher D A, et al. Flight test demonstration of a flywheel energy storage system on the international space station. In: Proceedings of the National Aerospace and Electronics Conference, Piscataway, 1997, 617~621.
    [84] Hockney R L, LeBlanc P L. Powering of remote node locations using flywheel energy storage. Proceedings of the 1996 18th International Telecommunications Energy Conference, 1996, 662~667
    [85] Taylor T, Mistry K. Power, the broadband challenge. Telephony, 1996, 231(15):52~54.
    [86] Waldron K J. The use of the mechanical energy storage in an unconventional rough terrain vehicle. In: Proceedings of the 17th Intersociety Energy Conversion Engineering Conference, 1982, 1973~1980.
    [87] Mongeau P. Combustion driver pulsed linear generators for electric gun applications. IEEE Transactions on Magnetics, 1995, 33(1): 468~473.
    [88] Christopher L, Dave K A. Development of a high-efficiency motor/generator for flywheel energy storage. In: Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, 1991, (4): 2210~2216.
    [89] Robert Acebal. Shape factors for rotating machines. IEEE Transactions on Magnetics, 1997, 33(1):753~762.
    [90] Homer R E, Proud N J. Key factors in the design and construction of advanced flywheel energy storage systems and their application to improve telecommunication power back-up In: Proceedings of the 1996 18th International Telecommunications Energy Conference, Boston, MA, USA, 1996, 668~675.
    [91] Nagy G, Rosenwasser S. The evaluation of advanced composite material performance in high speed pulsed power rotor applications. IEEE Transactions on Magnetics, 2001, 37(1): 314~317.
    
    
    [92] 杨庆生.复合材料细观结构力学与设计.北京:中国铁道出版社,2000.3.
    [93] 蔡为仑[美]著.复合材料设计.北京:科学出版社,1989.11.
    [94] 宫能平,夏源明,毛天样.复合材料飞轮的三维应力分析.复合材料学报,2002,19(1):113~116.
    [95] 林泉洪,陈怀宁,陶晓峰.储能飞轮的压应力增强技术研究.机械强度,2001,23(1):114~116.
    [96] 李文超,沈祖培.复合材料飞轮结构与储能密度.太阳能学报,2001,22(1):96~101.
    [97] Leslie NP著,理有亲译。复合材料的设计基础与应用.北京:航空工业出版社,1992.
    [98] Kirk J A, Schmidt J R, Sullivan G E, et al. An open core rotator design methodology. In: Proceedings of IEEE National Aerospace and Electronics Conference, Piscataway, NJ, USA, 1997. 594~601.
    [99] Ha S K, Yang H I, Kim D J. Optimal design of a hybrid composite flywheel with a permanent magnet rotor. Journal of Composite Materials. 1999, 33(16): 1544~1575.
    [100] Gabrys C W, Bankis C E. Simplified analysis of residual stresses in in-sim cured hoop-wound rings. Journal of Composite Materials. 1998, 32(13): 1325~1343.
    [101] Qiao P Z, Davalos J F, Barbero E J. Design optimization of fiber reinforced plastic composite shapes, Journal of Composite Materials. 1998, 32(2):177~196.
    [102] Robert Acebal. Effect of shape factor, operating stresses, and electrical conductors on the energy density of rotating machines. IEEE Transactions on Magnetics, 1996, 32(2): 421~425.
    [103] S.B. Pratap, W.F. Weldon. Eddy currents in anisotropic composites applied to posed machinery. IEEE Transactions on Magnetics, 1996, 32(2): 437~444.
    [104] Geza Nagy, Stuart Rosenwasser, and Greg Mehle. The evaluation and testing of graphite fiber composite materials for high speed rotors. IEEE Transactions on Magnetics, 1999, 35(1): 289~293.
    [105] Robert Acebal. Energy storage capabilities of rotating machines including a comparison of laminated disk and rim rotor composite designs. IEEE Transactions on Magnetics, 1999, 35(1): 317~322.
    [106] 赵雷,张德魁,杨作兴,等.电磁轴承最优刚度与系统结构参数关系的研究.机械工程学报,2000,36(12):62~64.
    [107] 曹建荣,虞烈,谢友柏.主动磁悬浮推力轴承的状态反馈线性化控制.西安交通大学学报,2000,34(10):67~71.
    [108] 张恒,朱军,龚小燕,等.无源磁轴承的设计.磁性材料及器件,1996,27(2):12~16.
    [109] 宋后定,陈培林.永磁材料及其应用.北京:机械工业出版社,1984.7.
    [110] 吕峰.磁悬浮轴承超高速旋杯式静电喷枪的研究与实现.北京科技大学博士学位论文,1994,8.
    [111] 邹继斌,刘宝廷,崔淑梅,等.磁路与磁场.哈尔滨;哈尔滨工业大学出版社,1998.1.
    [112] 周寿增.稀土永磁材料及其应用。北京:冶金工业出版社,1990.12.
    [113] Feusch M F. A problem related to Eamshaw's Theorm. IEEE Transactions on Magnetics, 1994, 30(3): 1324~1326.
    [114] LeMarquand G, Yonnet J P. Partially passive magnetic suspension for a discoidal wheel. J. Appl. Phys. 1988, 64(10): 5997~5999.
    [115] Delamare I, Yonnet J P, Rulliere E. A compact magnetic suspension with only one axis control. IEEE Transactions on Magnetics, 1994, 4746~4748.
    [116] Silva I D, Hofikawa O. An attraction-type magnetic bearing with control in a single direction. IEEE Transactions on Industry Applications, 2000, 36(4): 1138~1142.
    [117] Yonnet J P. Permanent magnet bearing and coupling. IEEE Trhnsactions on Magnetics, 1981, 17:1169~1172.
    [118] Marinescu M, Marinescu N. A new improved method for computation of radial stiffness of permanent magnet bearings. IEEE Transactions on Magnetics, 1994, 30(5): 3491~4394.
    
    
    [119] Yonnet J P, Lemarquand G, Hemmerlin S, et al. Stacked structures of passive magnetic bearings. J. Appl. Phys. 1991, 70(10): 6633~6635.
    [120] Silva I D, Horikawa O. An l-DOF controlled attraction type magnetic bearing. Proceedings of International Electric Machines and Drives Conference, 1999, 481~483.
    [121] 盛剑霓.工程电磁场数值分析.西安:西安交通大学出版社,1991.
    [122] 宛剑业,赵存根.ANSYS有限元软件在永磁磁路中的应用.辽宁工学院学报,1999,19(4):31~33.
    [123] Delamare J, Rutliere E, Yonnet J P. Classification and synthesis of permanent magnet bearing configurations. IEEE Transactions on Magnetics, 1995, 31 (6): 4190~4192.
    [124] 谭庆昌,修世超,刘明洁,等.永磁向心轴承承载能力与刚度的计算.摩擦学学报,1994,14(4):337~344.
    [115] 徐建康,谢友柏,毛军红.电磁轴承——转子系统的动态特性.应用力学学报,1991,8(1):10~17.
    [126] 汪希平.电磁轴承系统及其仿真方法.上海大学学报,1995,1(3):293~301.
    [127] 唐钟麟,冯志华,吴德龄.电磁轴承优化设计.北京工业大学学报, 1993,19(4):95~101.
    [1281 G.施韦策,H.布鲁勒,A.特拉克斯勒.主动磁轴承——基础、性能及应用.北京:新时代出版社,1997.3
    [129] 袁崇军,曹洁,杨涌.电磁轴承的结构优化设计.机械科学与技术,1995,(6):29~36.
    [110] 孙雨施,王素菊,曲民兴,等.直流磁系统的计算与分析.北京:国防工业出版社,1987.
    [131] 李文彬.磁力应用工程.北京:兵器工业出版社,1991.10.
    [132] 王红,王海,王士和.磁路计算的新方法.电气开关,1994,(3):44~45&1995,(2):22~26.
    [133] Antila M, Lantto E, Arkkio A. Determination of forces and linearized parameters of radial active magnetic bearings by finite element technique. IEEE Transactions on Magnetics, 1998, 34(3):684~694.
    [134) 王洪礼,吴志强.磁力轴承的电磁力分析及刚度研究.天津大学学报,1992,(4):15~20.
    [135] 黄席椿.电磁能与电磁力.北京:人民教育出版社,1983.
    [136] Bloodgood, V D, Groom, N J, Britcher, C P. Further development of an optimal design approach applied to axial magnetic bearings. Proceedings of the 7th International Symposium on Magnetic Bearings. Z(?)rich, Switzerland, August 2000.
    [137] Levine J, Lottin J, Ponsart J C. A nonlinear approach to the control of magnetic bearings. IEEE Transactions on Control Systems Technology, 1996, 4(5): 524~544.
    [138] Lee A C, Hsiao F Z, Ko D. Analysis and testing of magnetic bearing with permanent magnets for bias. JSME Int. J., Series C, 1994, 37(4): 774~782
    [139] Smith R D, Weldon W F. Nonlinear control of a rigid rotor magnetic bearing system: modeling and simulation with full state feedback. IEEE Transactions on Magnetics, 1995, 31(2): 973~980.
    [140] Groom, N J, Bloodgood, V D. A comparison of analytical and experimental data for a magnetic actuator. NASA/TM-2000-210328, September 2000.
    [141] 陈立群,张艳鸣,张钢,等.电磁轴承的力学特性.西北轻工业学院学报,1997,15(1):9~16.
    [142] 赵雷,丛华,赵鸿宾.可控磁悬浮轴承刚度与阻尼特性研究.清华大学学报,1999,39(4):96~99.
    [143] 汪希平.电磁轴承系统的刚度阻尼特性分析.应用力学学报,1997,14(3):95~99.
    [144] 张钢,虞烈,曹广忠,等.电磁推力轴承的力学特性研究.西安交通大学学报,1998,32(8):43~47.
    [145] 方家荣,林良真,夏平畴,等.超导混合磁轴承的发展现状和前景.电工电能新技术,2000,(1):27~31.
    [146] Scharfe M, Meinzer K, Zimmermann R. Development of a magnetic bearing momentum wheel for the AMSAT phase 3-D small satellite. Proceedings of the 1996 International Symposium on Small Satellites,Annecy, France 1996.
    
    
    [147] Driga M D, Sang J O. Electromagnetically levitated flywheel enemy storage system with very low internal impedance. Proceedings of the 1997 11th International Pulsed Power Conference. 1997, 1560~1565.
    [148] 钟文定.铁磁学(中册).北京:科学出版社,1998.5
    [149] 刘淑琴,詹东安,虞烈,等.高速CBN磨床主轴系统的电磁轴承参数设计.机械设计,2000,(3):32~43,36.
    [150] 曾励,黄民双,魏伟,等.主轴系统混合磁悬浮轴承的设计.制造技术与机床,1999,(2):10~12.
    [151] 张德魁,赵雷,赵鸿滨,等.磁悬浮轴承内圆磨床电主轴及其控制.轴承,2000,(11):11~13.
    [152] 陈立志.磁悬浮轴承在高速旋转机械上的应用及一种混合径向磁悬浮轴承的设计.光学-精密工程,1994,2(4):101~108.
    [153] 张钢,刘淑琴,虞烈,等.推力电磁轴承的动态承载能力与动刚度计算.中国机械工程,1998,9(9):5~8.
    [154] 刘淑琴,江大川,虞烈,等.电磁径向轴承结构参数设计研究.机械设计与研究,1998,17(1):41~43.
    [155] Mukhopadhyay S C, Ohji T, Iwahara M, et al. Modeling and control of a new horizontal shsft hybrid type magnetic bearing. IEEE Transactions On Industrial Electronics, 2000, 47(1 ): 100~108.
    [156] Xia Z, Chen Q Y. Designing and testing of high Tc superconducting magnetic bearing for flywheel energy storage application. In: Proceeding of the 29nd Intersociety Energy Conversion Engineering Conference, Piscataway, NJ, USA, 1994, (3): 1496~1501.
    [157] 张钢,虞烈,谢友柏.推力磁轴承的力学特性及其对径向磁轴承的影响.机械工程学报,2000,36(12):5~8.
    [158] 张晓友,金永德.五轴控制型磁轴承控制系统设计。哈尔滨工业大学学报,1994,26(2):41~47.
    [159] 李安定.飞轮贮能系统设计分析.太阳能学报,1982,3(1):43~51.
    [160] 张钢.磁悬浮轴承—转子系统的机电耦合动力学研究.西安交通大学博士学位论文,1999.
    [161] 王晓宏.磁悬浮止推轴承应用研究.河北工业大学硕士学位论文,1999.4.
    [162] 杨泉林.状态反馈去耦原理在磁悬浮轴承设计中的应用.自动化学报,1988,14(2):88~95.
    [163] 张钢,谢振宇,陈立群,等.高速电磁轴承转子轴的设计研究.机械科学与技术,1998,17(5):714~716.
    [164] 沈钺,虞烈.电磁轴承及控制系统的设计原理及参数选择.轴承,2001,(9):13~16.
    [165] 陈立群,张钢,谢友柏.电磁轴承系统中的功率放大器.西北轻工业学院学报,1998,16(2):22~26.
    [166] 汪希平,崔卫东.电磁轴承用非接触式位移传感器的研究.上海大学学报,1998,4(1):54~60.
    [167] 邢光荣,郭玉民.飞轮蓄能发电技术发展动向.电工技术,1998,(12):1~2.
    [168] 舒立,马波,刘晓芳,等.飞轮蓄能系统中磁阻发电机的运行机理及其数字仿真.现代电力,2001,18(4):58~63.
    [169] 机械工程手册、电机工程手册编辑委员会.机械工程手册第4卷机械设计(一).北京:机械工业出版社,1982.12:19-226~19-234.
    [170] 吴光强,陈礼番,王国林.高速储能飞轮现代动态设计与分析方法.1997,33(3)32~37.
    [171] 王士杰.复合材料力学导引.重庆;重庆大学出版社,1987.2.
    [172] 唐任远.现代永磁电机理论与设计.北京:机械工业出版社,2000.4.
    [173] 陶永华,尹怡欣,葛芦生.新型PID控制及其应用.北京:机械工业出版社,1998.9.
    [174] 欧阳黎明.MATLAB控制系统设计.北京:国防工业出版社,2001.1.
    [175] 高钟毓,王永梁.机电控制工程.北京:清华大学出版社,1994.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700