钢丝滚道球轴承的接触力学特性及其相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近10来年,钢丝滚道球轴承(Wire race ball bearing, WRBB)以其径向尺寸大、轴向尺寸小的结构特点,被广泛地应用于大型雷达天线和飞行器仿真转台等国防科技领域、数控回转工作台、建筑机械、医疗器械以及纺织工业。它被认为是具有高刚惯比和高抗倾覆能力的轴系支承系统技术,已经成为解决许多存在几何空间限制、质量约束和惯量约束的工程设计与制造等方面问题的优选方案。该类轴系支承可同时承受轴向载荷、径向载荷、倾覆力矩及其组成的多种形式的复合载荷。然而,接触体间循环交变的接触应力及残余不平衡力矩往往导致疲劳、磨损及点蚀在钢丝滚道表面发生,影响系统的运转平稳性和回转精确度。针对该现象国内外目前相关研究不足。因此,本文提出将其视为接触问题进行对待,运用接触力学、摩擦学和材料学知识,采用解析法、弹-塑性有限元法及试验,考虑几何非线性、材料非线性、复合载荷分布以及摩擦等接触边界条件,对WRBB轴系的预紧、支承刚度和接触破坏进行全面研究。
     适当的预紧有利于提高轴系的支承刚度;过大的预紧导致塑性变形和接触破坏;故WRBB的预紧是首先需要研究的内容。
     为了克服相关行业目前WRBB轴系预紧的调试方法极其依赖工程师个人经验的问题,本文对其轴系进行力学分析,然后基于非协调性Hertz接触理论建立了确定其轴系预紧量范围的数学模型,通过MATLAB?编程形成一套数值计算方法。数值求解得到了法向接触力、接触变形、最大接触压力以及椭圆形接触区域的长、短半轴,并获得了WRBB轴系预紧量合理的范围。以某型号飞行仿真转台中直径为1000mm的WRBB为例,组建了预紧测量系统,实验结果与理论结果吻合良好。
     为了能够准确定位并确定WRBB轴系的预紧量,本文在对其轴系的空间力系进行分析的基础上,基于库伦定律、滚动摩阻定律和空间力偶等效定理,建立了其起动力矩与预紧量关系的数学模型。通过MATLAB?编程并进行数值求解,得到该数学模型的理论曲线。此后通过实验系统对理论结果进行了实验验证,获得了良好效果,为实际工程中WRBB轴系预紧量的调节与控制提供了有效的方法。
     刚度计算是振动理论和结构稳定性分析的重要环节,研究大型WRBB的刚度特性对提高其使用性能具有实际意义。为此,本文首先对WRBB的接触载荷分布进行了分析,然后根据非协调性Hertz接触理论、虚位移原理、余弦定理、极限定理中的洛必达法则、刚度和柔度的数学定义以及Stribeck的载荷分布理论分别建立了WRBB的轴向支承刚度、径向支承刚度和翻转支承刚度的数学模型。分别设计了加载机构并组建了轴向支承刚度、径向支承刚度和翻转支承刚度的测量系统,实验验证了上述支承刚度数学模型的正确性。对理论与实验结果进行对比和分析,获得了良好效果,为WRBB今后进一步的接触动力学分析奠定了基础,为工程实际提供了参数依据。
     接触问题的求解是一个高度非线性且相当耗费计算资源的问题。常规接触分析的方法主要基于经典Hertz弹性接触理论,而且未考虑接触体的几何与材料非线性。因此,本文充分考虑接触体的几何与材料非线性,在Instron-5569万能电子拉伸机上测得工程中常用的两种钢丝(牌号均为T8MnA;一种是国产质地偏软的,称其为I号钢丝;另一种是日本进口质地偏硬的,称其为II号钢丝)的应力-应变曲线。然后,在ANSYS?中运用APDL语言建立了球-钢丝滚道的3D接触子模型,对I号钢丝-钢球、II号钢丝-钢球、I号钢丝-Si3N4陶瓷球以及II号钢丝-Si3N4陶瓷球4种接触模型的弹-塑性接触分析进行了求解,得到了接触体的von Mises应力、弹性应变、塑性应变以及接触斑的形状和尺寸。最后,与弹性接触分析的结果进行了对比。结果表明:(1)考虑接触体的应力-应变曲线的弹-塑性接触分析的结果比不考虑应力-应变曲线的纯弹性接触分析的结果更接近实际;(2)采用子模型技术和多尺度有限元分网方法有效地节约了接触分析的计算成本,提高了计算效率和求解精度。
     另外,目前尚不明确接触载荷、接触体的几何尺寸和材料属性参数对接触特性的影响关系以及接触体的磨损及点蚀的特征和规律。鉴于此,本文首先分析了接触载荷、接触体的几何参数和材料属性参数对接触特性的影响关系。然后,分别对钢球-I号钢丝、钢球-II号钢丝、Si3N4陶瓷球-I号钢丝和Si3N4陶瓷球-II号钢丝4种接触方式进行了接触破坏试验。最后,对接触区用扫描电子显微镜(SEM)进行了表征和分析,揭示了接触体发生接触破坏的特征、规律和机理,为有效控制钢丝滚道发生接触破坏的难题和钢丝滚道的新材料、新工艺研究奠定了理论和技术基础。
In recent 10 years, the wire race ball bearing has been extensively used, including in the field of weapon equipments, like the big antenna of radar and the aircraft simulating rotary table; the field of numerical control slewing machines, the field of building machineries, the medical apparatus and instruments, and the field of the textile industry. It has been regarded as a technique of the supporting system with high ratio of stiffness to inertia and high resistance capability to overturning moment. It has become the optimal proposal for solving the engineering design and manufacture problem with limitation in spatial dimension, and with restriction in mass and inertia. This kind of bearing can simultaneously support axial loads, radial loads, overturning moment and compound loads. However, the alternating stress and the residual unbalanced moment often result in fatigue, wear and pitting corrosion on contacting surfaces of wires. They have significant effects on the precision and dynamic stability of the system. No effective method has been reported. Hence, we present that this problem can be treated as a contact problem. According to the corresponding theories of contact mechanics, tribology and material science, by the analytical method, elastic-plastic finite element method and experiments, with taking the geometric nonlinearity, the material nonlinearity, the compound load distribution and the friction into account, the preload of the wire race ball bearing, the supporting stiffness and the contact failure were investigated in detail.
     Reasonable preload can improve the supporting stiffness; while excessive preload results in plastic deformation and contact failure. Therefore, the research on preload is critical.
     In order to eliminate the problem of the traditional method for adjusting the preload which relies heavily on personal experience of engineers, the mechanical equilibrium conditions were analyzed firstly. Then, the preload mathematical model of a wire race ball bearing was built based on the non-conforming Hertz contact theory. And a numerical method was developed in MATLAB?. The normal contact forces, contact deformation, contact pressure distribution and the semi axes of the contact ellipse were obtained. Further, the appropriate range of preload for a wire race ball bearing was achieved. Finally, the preload measuring system was constructed by employing an example of a wire race ball bearing with a diameter of 1000 mm used in a certain type of aircraft simulating rotary table. The experimental results are in good agreement with the theoretical results.
     To exactly determine the preload magnitude of the wire race ball bearing, in the present dissertation, the mathematical model of the relationship between the starting torque and the preload magnitude was built, based on the analysis of the spatial force system, Coulomb’s law, the law of rolling resistance and the theorem of equivalent spatial couple. The theoretical curve of the above model was obtained by the numerical solution in MATLAB?. Finally, the experiments were performed to validate the theoretical results. It shows that the theoretical and experimental results are very close. The investigation provides an effective method for the adjusting and controlling of preload in a wire race ball bearing in practice.
     It is paramount that the stiffness characteristic should be exactly described for being the foundation of the vibration theory and the structure stability analysis. Hence, firstly, the load distribution of the wire race ball bearing was analyzed. According to the non-conforming Hertz contact theory, the principle of virtual displacement, the cosine law, L’Hospital’s rule and the definition of stiffness and flexibility and Stribeck’s load distribution, the mathematical models of the axial supporting stiffness, the radial supporting stiffness and the overturning supporting stiffness were developed. Finally, the loading mechanisms were designed. The measuring systems of the above supporting stiffness were built. The experimental results are in good agreement with the theoretical results, which demonstrates the validity of the above supporting stiffness mathematical models. It provides basis for the contact dynamics analysis and parametric support for engineering application of the wire race ball bearing.
     The solution of contact problems is highly nonlinear and requires significant computer resources. The conventional contact analysis is mainly based on the classical Hertz elastic contact theory and the geometric and material nonlinearity are not considered. Hence, firstly, the geometric and material nonlinearity of 2 kinds of wires named No. I and No. II were taken into account by using the real stress-strain curve of the wire tested on the Instron-5569 universal electron tension tester. Secondly, the ANSYS Parameter Design Language (APDL) was used to model and solve the contact analysis of 4 kinds of 3-D contact sub-models, namely steel ball-wire race of No. I, steel ball-wire race of No. II, Si3N4 ceramic ball-wire race of No. I and Si3N4 ceramic ball-wire race of No. II. The von Mises stresses, the elastic strain, the plastic strain and the shape and sizes of contact ellipses were achieved. Finally, comparison between the elastic-plastic contact analysis and the elastic contact analysis shows that the elastic-plastic contact analysis is exacter and closer to the fact in practice; and the sub-modeling technology and the multi-size mesh method greatly contribute to the saving of the computing cost, and the improvement of the computational efficiency and precision.
     In addition, the influences of the contact load, the geometric parameters and the material property parameters on the contact characteristic are not clear. Furthermore, the characteristic, regularity and mechanism on wear and pitting corrosion are ambiguous. Therefore, firstly, the influnces of the contact load, the geometric parameters and the material property parameters on the contact characteristic were analyzed theoretically. Secondly, the contact failure experiments for the 4 types of contact, namely steel ball-wire race of No. I, steel ball-wire race of No. II, Si3N4 ceramic ball-wire race of No. I and Si3N4 ceramic ball-wire race of No. II were carried out. Finally, the contact zones of the contact bodies were characterized by the scanning electronic microscopy (SEM). The results reveal the characteristic, regularity and mechanism on contact failure. The present work provides theory and technology for effectively preventing the wire from contact failure and studying on the new material and the novel processing.
引文
1王子才.运动体角运动仿真系统. 2003年全国系统仿真学术年会.西安, 2003:10~19
    2 Intake Engineering. http://www.intakeengineering.co.uk/wirerace.asp (2008.03.20)
    3 Franke. http://www.franke-gmbh.de/en1/default.asp (2008.04.20)
    4 H. Staudt.低噪声钢丝滚道球轴承.刘家文译.国外轴承. 1992,6:16~18
    5 A. Astrop. Wire Race Bearings Cut Costs Down to Size. Machinery and Production Engineering. 1979,135(3484):31~32
    6 Z. Chaib, A. Daidié, J. Gurllot, A. Vadean. Study of a Bolted and Screwed Joint of a Slewing Bearing. CPI 2005. Conception et Production Intégrés. 9,
    10, 11 November 2005 - Casablanca - MAROC– IEEE: 1~16
    7 M. Thomas, J. T. Schafer, M. W. Sinclair, M. J. Kesteven, P. J. Hall. The Parkes Radio Telescope Modified for Rapid Receiver Changes. IEEE Antennas and Propagation Magazine. 1977,39(2):54~63
    8 L. E. Stacke, D. Fritzson. Dynamic Behaviour of Rolling Bearings: Simulations and Experiments. Proceedings of the Institution of Mechanical Engineers. 2001,215 part J: 499~508
    9 Rothe Erde. http://www.rotheerde.com/ (2008.03.20)
    10林砺宗.高炮回转支承5自由度本构关系.兵工学报. 1993(2):15~20
    11雷挺.钢丝滚道球轴承的预紧及接触应力研究.哈尔滨工业大学硕士学位论文. 2005
    12石金彦.小型光电平台线滚道轴承的设计.光电技术. 2004,(2):33~35
    13赖天华.重载、高精度的转盘式轴承设计探讨.电子机械工程. 1998,(4):20~26
    14樊松林.大型天线座方位支承转动装置结构设计.现代雷达. 2005,27(4):67~70
    15宏基机械. http://www.jj-hj.com.cn/products/index.htm (2008.03.20)
    16洛阳轴承研究所.国外大型滚动轴承应用概况.轴承. 1971,(6):5~39
    17 J. Townsend, C. M. Townsend. Improvements Relating to Wire Race Bearings. UK. 1183321. Mar. 4, 1970
    18 K. A. Jonsson, B. Johsson. Wire Race Ball Bearing. USA. 3700845. Oct. 24, 1972
    19 J. Bertram, H. Wolzenburg. Center-Free One-Row Wire Ball Bearing. USA. 4015884. Apr. 5, 1977
    20 J. R. H. Cosens. Wire-Race Bearings. UK. GB2126667A. Mar. 28, 1984
    21 G. Neder. Wire Race Ball Bearing. UK. GB 2250064 A. 27, May, 1992
    22徐懋瑞.钢丝滚道球轴承.轴承. 1975(2):41~44
    23陆裕祁.防空坦克雷达天线座的设计特点.零八一科技. 1990,(1):21~25
    24刘长有.车载随动圆顶.光学精密工程. 1995,3(5):121~125
    25陆裕祁,唐颖,程波,赵琨.精密机电一体化装置的小型化设计.零八一科技. 2003,(2):56~59
    26董军.浅析双35牵引高炮提高立靶密集度的设计.四川兵工学报. 2003,24(6):20~21
    27扈文庄,杨孟祥,苏健,牛青波.钢丝滚道四点接触球轴承.中华人民共和国国家知识产权局.专利号:ZL 200420075446.2. 2006年11月22日
    28 H. Hertz.über die Berührung Fester Elastischer K?rper (On the Contact of Elastic Solids). Journal für reine und Angewandte Mathematik. 1882,92:156~171
    29 K. L. Johnson. Contact Mechanics. Cambridge University Press. Cambridge. 1985
    30 K. L. Johnson.接触力学.徐秉业,罗学富,刘信声,等译.高等教育出版社.北京. 1992
    31 J. J. Kalker. Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer: Dordrecht. 1990
    32 J. J. Kalker.三维弹性体的滚动接触.李自力译.西南交通大学出版社,1993
    33孔祥安,江晓禹,金学松.固体接触力学.北京:中国铁道出版社. 1999
    34金学松.轮轨蠕滑理论及其试验研究.西南交通大学博士学位论文. 1999
    35金学松,沈志云.轮轨滚动接触力学的发展.力学进展. 2001,31(1):33~46
    36李贵涛,王树人.数值仿真技术与三维接触应力测量.机械设计. 2001,(6):43~45
    37 H. Zhao. The Virtual Contact Loading Method for Contact Problems Considering Material and Geometric Nonlinearities. Computers & Structures. 1996,58(3):621~632
    38赵华,孔祥安,孙训方.滚动接触问题的一种数值算法.铁道学报. 1995,17(1):29~33
    39 J. Li, E. J. Berger. A Semi-Analytical Approach to Three-Dimensional Normal Contact Problems with Friction. 2003,30(4):310~322
    40 P. Heintz, P. Hansbo. Stabilized Lagrange Multiplier Methods for Bilateral Elastic Contact with Friction. Computer Methods in Applied Mechanics and Engineering. 2006,195:4323~4333
    41 S. Vuayakar, H. Busby, L. Wilcox. Finite Element Analysis of Three-Dimensional Conformal Contact with Friction. Computers & Structures. 1989,33(1):49~61
    42 S. B. Liu, Q. Wang. Elastic Fields Due to Eigenstrains in a Half-Space. Journal of Applied Mechanics, Transactions of the ASME. 2005,72:871~878
    43 M. Sassi, M. Desvignes. A Seminumerical Method for Three-Dimensional Frictionless Contact Problems. Mathematical and Computer Modelling. 1998,28:413~425
    44 J. M. De Mul, J. M. Vree, D. A. Maas. Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degree of Freedom While Neglecting Friction-Part I: General Theory and Application to Ball Bearings, Journal of Tribology, Transactions of the ASME. 1989,111:142~148
    45 S. Natsumeda. Application of Multi-Level Multi-Integration to Contact Problems Part ?: Non-Hertzian Contact in Rolling Bearings. Proceedings of the Institution of Mechanical Engineers. 1999,213 Part J: 63~80
    46 N. Guyot, F. Kosior, G. Maurice. Coupling of Finite Elements and Boundary Elements Methods for Study of the Frictional Contact Problem. Computer Methods in Applied Mechanics and Engineering. 2000,181(1-3):147~159
    47 V. Phan, J. A. L. Napier, L. J. Gray, T. Kaplan. Stress Intensity Factor Analysis of Friction Sliding at Discontinuity Interfaces and Junctions. Compputational Mechanics. 2003,32:392~400
    48 C. Méchain-renaud, A. Cimetière. Influence of a Curvature Discontinuity onthe Pressure Distribution in Two-Dimensional Frictionless Contact Problems. International Journal of Engineering Science. 2000,38:197~205
    49王长武,顾吉丰,陈焕滨.大型四点接触球轴承的有限元模型研究.现代雷达. 2004,26(2):68~70
    50 J. Wang, M. Kaneta, P. Yang. Numerical Analysis of TEHL Line Contact Problem under Reciprocating Motion. Tribology International. 2005,38:165~178
    51 P. Hess, A. Soon. Normal Vibrations and Friction under Harmonic Loads: Part ?—Hertzian Contacts. Journal of Tribology, Transactions of the ASME. 1991,113:80~92
    52 M. ?raml, J. Fla?ker, I. Potr?. Numerical Procedure for Predicting the Rolling Contact Fatigue Crack Initiation. International Journal of Fatigue. 2003,25:585~595
    53 X. Hernot, M. Sartor, J. Guillot. Calculation of the Stiffness Matrix of Angular Contact Ball Bearings by Using the Analytical Approach. Journal of Mechanical Design. 2000,122(1):83~89
    54 B. Paul, J. Hashemi. Contact Pressures on Closely Conforming Elastic Bodies. Journal of Applied Mechanics, Transactions of the ASME. 1981,48:543~548
    55金观昌,周书敏.导电橡胶动态接触压力分布测量系统.传感器技术. 1997,16(3):31~36
    56 J. R. Barber, M. Ciavarella. Contact Mechanics. International Journal of Solids and Structures. 2000,37(1-2):29~43
    57马国华,胡桂兰.滚动轴承弹性接触问题的数值计算.轴承. 2005(1):1~3
    58 B. Storakers, D. Elaguine. Hertz Contact at Finite Friction and Arbitrary Profiles. Journal of the Mechanics and Physics of solids. 2005,53:1422~1447
    59 A. Hills, D. Nowell, J. J. O’Connor. On the Mechanics of Fretting Fatigue. Wear. 1988,125:129~146
    60 D. Nowell, D. A. Hills. Crack Initiation Criteria in Fretting Fatigue. Wear. 1990,136:329~343
    61 J. F. Antoine, C. Visa, C. Sauvey, G. Abba. Approximate Analytical Model for Hertzian Elliptical Contact Problems. Journal of Tribology, Transactions of ASME. 2006,128:660~664
    62 S. Zupan, I. Prebil. Carrying Angle and Carrying Capacity of a Large Single Row Ball Bearing as a Function of Geometry Parameters of the Rolling Contact and the Supporting Structure Stiffness. Mechanism and Machine Theory. 2001,36:1087~1103
    63 P. Szumiński. Determination of the Dynamic Angle of the Bearing’s Rolling Element Location and of Its Influence on the Loads and Rolling Friction. Journal of Robotic Systems. 2000,17(12):671~687
    64 J. I. Amasorrain, X. Sagartzazu, J. Damián. Load Distribution in a Four Contact-Point Slewing Bearing. Mechanism and Machine Theory. 2003,38:479~496
    65 V. Licht, P. Hülsmeier, T. Fett. Probability of Cone Crack Initiation Due to Spherical Contact Loading. Journal of the European Ceramic Society. 2004,24:2907~2915
    66黄浩,张鹏顺,温建民.航空发动机角接触球轴承刚度的一种实用分析方法.南京航空航天大学学报. 2000,32(4):422~427
    67 Y. Choi, C. R. Liu. Spalll Progression Life Model for Rolling Contact Verified by Finish Hard Machined Surfaces. Wear. 2007,262:24~35
    68 J. A. Williams. The Influence of Repeated Loading, Residual Stresses and Shakedown on the Behaviour of Tribological Contacts. Tribology International. 2005,38:786~797
    69 X. Shi, A. A. Polycarpou. Measurement and Modeling of Normal Contact Stiffness and Contact Damping at the Meso Scale. Journal of Vibration and Acoustics, Transactions of the ASME. 2005,127:52~60
    70 T. Le?niewski, S. Krawiec. The Effect of Ball Hardness on Four-Ball Wear Test Results. Wear. 2008,264:662~670
    71 T. Klisch. Contact Mechanics in Multibody Systems. Mechanism and Machine Theory. 1999,34:665~675
    72 X. P. Zhang, H. Ahmed, Z. Yao. Multi-Body Contact Modeling and Statistical Experimental Validation for Hub-Bearing Unit. Tribology International. 2003,36:505~510
    73 K. Willner. Elasto-Plastic Normal Contact of Three-Dimensional Fractal Surfaces Using Halfspace Theory. Journal of Tribology, Transactions of the ASME. 2004,126:28~33
    74 Y. Kondo, C. Sakae, M. Kubota, H. Kitahara, K. Yanagihara. Fretting Fatigue under Variable Loading Below Fretting Fatigue Limit. Fatigue & Fracture of Engineering Materials & Structures. 2006,29:183~189
    75 L. Kogut, I. Etsion. Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat. Journal of Applied Mechanics, Transactions of the ASME. 2002,69:657~662
    76 B. R. Lawn. Indentation of Ceramics with Spheres: a Century after Hertz. Journal of the American Ceramic Society. 1998,81(8):1977~1994
    77 Y. Y. Jiang, B. Q. Xu, H. Sehitoglu. Three-Dimensional Elastic-Plastic Stress Analysis of Rolling Contact. Journal of Tribology, Transactions of the ASME. 2002,124:699~708
    78 Y. C. Chen, J. H. Kuang. Elastic-Plastic Partial Slip Rolling Wheel-Rail Contact with an Oblique Rail Crack. Journal of Tribology, Transactions of the ASME. 2005,127:705~712
    79 L. Vu-Quoc, X. Zhang, L. Lesburg. A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation. Journal of Applied Mechanics, Transactions of the ASME. 2000,67:363~371
    80 X. Zhang, L. Vu-Quoc. An Accurate Elasto-Plastic Frictional Tangential Force–Displacement Model for Granular-Flow Simulations: Displacement-Driven Formulation. Journal of Computational Physics. 2007,225(1):730~752
    81 J. Jamari, D. J. Schipper. Deterministic Repeated Contact of Rough Surfaces. Wear. 2008,264:349~358
    82 Y. R. Jeng, P. Y. Wang. An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation. Journal of Tribology, Transactions of the ASME. 2003,125:232~240
    83 Y. M. Liu, B. Stratman, S. Mahadevan. Fatigue Crack Initiation Life Prediction of Railroad Wheels. International Journal of Fatigue. 2006,28(7):747~756
    84 S. Bogdański, M. Trajer. A Dimensionless Multi-Size Finite Element Model of a Rolling Contact Fatigue Crack. Wear. 2005,258:1265~1272
    85 Y. Li, G. R. Liu, M. T. Luan, K. Y. Dai, Z. H. Zhong, G. Y. Li, X. Han.Contact Analysis for Solids Based on Linearly Conforming Radial Point Interpolation Method. Computational Mechanics. 2007,39(4):537~554
    86 V. Brizmer, Y. Kligerman, I. Etsion. Elastic-Plastic Spherical Contact under Combined Normal and Tangential Loading in Full Stick. Tribology Letters. 2007,25(1):61~70
    87 M. H. Attia. Prediction of Fretting Fatigue Behavior of Metals Using a Fracture Mechanics Approach with Special Consideration to the Contact Problem. Journal of Tribology, Transactions of the ASME. 2005,127:685~693
    88 A. Lehtovaara, R. Rabb. A Numerical Model for the Evaluation of Fretting Fatigue Crack Initiation in Rough Point Contact. Wear. 2008,264:750~75
    89 M. Bailey, R. S. Sayles. Effect of Roughness and Sliding Friction on Contact Stresses. Journal of Tribology, Transactions of the ASME. 1991,113:729~738
    90 N. T. Liao, J. F. Lin. Ball Bearing Skidding under Radial and Axial Loads. Mechanism and Machine Theory. 2002,37:91~113
    91 D. Chamoret, P. Saillard, A. Rassineux, J. M. Bergheau. New Smoothing Procedures in Contact Mechanics. Journal of Computational and Applied Mathematics. 2004,168:107~116
    92 P. A. McVeigh, T. N. Farris. Finite Element Analysis of Fretting Stresses. Journal of Tribology, Transactions of the ASME. 1997,119:797~801
    93徐强,任成祖,陈锦江.混合陶瓷球轴承接触曲面及接触应力的三维有限元分析.机床与液压. 2003,(2):203~206
    94吴振勇,任成祖,徐强.混合陶瓷球轴承优化设计中接触问题的三维有限元分析.机械设计. 2004,21(5):47~49
    95赵联春,马家驹,马纯青.载荷对球轴承振动特性的影响.轴承. 2003,(5):38~41
    96赵联春,马家驹.球轴承的弹性接触振动.机械工程学报. 2003,39(5):60~64
    97 R. Jorgensen, Y. C. Shin. Dynamics of Spindle-Bearing Systems at High Speeds including Cutting Load Effects. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 1998,120:387~394
    98 L. Qiao, M. Hillmann, R. Sünkel. Tangential Loading Transportationbetween Roller and Flat with Modified Coulomb Friction-a Three-Dimensional Roll-Contact Calculation with the Finite Element Method. Computers & Structures. 1996,58(5):1031~1043
    99 J. A. Wensing, G. C. van Nijen. The Dynamic Behaviour of a System that Includes a Rolling Bearing. Proceedings of the Institution of Mechanical Engineers. 2001,215 part J: 509~518
    100 L. Johansson. Numerical Simulation of Contact Pressure Evolution in Fretting. Journal of Tribology, Transactions of the ASME. 1994,116:247~254
    101 B. Xu, Y. Jiang. Elastic-Plastic Finite Element Analysis of Partial Slip Rolling Contact. Journal of Tribology, Transactions of the ASME. 2002,124:20~26
    102 G. Adams, J. R. Barber, M. Ciavarella, J. R. Rice. A paradox in Sliding Contact Problems with Friction. Journal of Applied Mechanics, Transactions of the ASME. 2005,72:450~452
    103 S. Cai, B. Bhushan. Three-Dimensional Sliding Contact Analysis of Multilayered Solids with Rough Surfaces. Journal of Tribology, Transactions of the ASME. 2007,129:40~59
    104 K. G. Budinski. An Inclined Plane Test for the Breakaway Coefficient of Rolling Friction of Rolling Element Bearings. Wear. 2005,259:1443~1447
    105 Y. Lin, T. C. Ovaert. A Two-Dimensional Thermoelastic Rough Surface Contact Model. Journal of Tribology, Transactions of the ASME. 2004,126:430~435
    106 Y. A. Karpenko, A. Akay. Anumerical Model of Friction between Rough Surfaces. Tribology International. 2004,34:531~545
    107 M. Tomohiro, J. Tatsuhiro, S. Masayuki. Effect of Surface Roughness on Hertzian Contact Deformation. Toraibarojisuto/Journal of Japanese Society of Tribologists, Trends of the Theory and Application about EHL (Elastohydrodynamic Lubrication). 2004,49(4):355~362
    108小天.钢丝滚道轴承.轴承. 1958,(2):41~47
    109周钧.钢丝滚道球轴承的近似计算.工程机械. 1976,(5):29~31
    110 V. Zaretsky, W. V. Branzai. Effect of Rolling Bearing Refurbishment and Restoration on Bearing Life and Reliability. The 59th STLE Annual Meeting in Toronto. Ontario, Canada, 2004:32~44
    111唐郁生,夏金虹.分组逐差法的改进.广西物理. 2004,25(3):30~36
    112唐云冰.航空发动机高速滚动轴承力学特性研究.南京航空航天大学博士论文. 2005:68
    113戴曙.机床滚动轴承应用手册.北京:机械工业出版社. 1993:150~208
    114戴曙.金属切削机床.北京:机械工业出版社. 1999:185~187
    115 T. A. Harris. Rolling Bearing Analysis (4th ed). New York: John Wiley & Sons. 2001
    116 R. Stribeck. Kugellager für beliebige Belastungen. Zeitschrift des Vereines deutscher Ingenieure. 1901,45(3):73~79 (pt I) & 45(4):118~125 (pt II)
    117罗继伟.滚动轴承受力分析及其进展.轴承. 2001,(9):28~31
    118吴凤高.天线座结构设计.西安:西北电讯工程学院出版社. 1986:113~118
    119 B. Jacobson. The Stribeck Memorial Lecture. Tribology International. 2003,36:781~789
    120万长森.滚动轴承的分析方法.北京:机械工业出版社. 1987:74~76
    121冈本纯三.球轴承的设计计算.黄志强译.北京:机械工业出版社. 2003:41~44
    122杨作兴,赵雷,赵鸿宾.电磁轴承动刚度的自动测量.机械工程学报. 2001,37(3):25~29
    123刘悦,汪径松.基于轴承及导轨接触刚度的混联机床静刚度研究及优化.机械工程学报. 2007,43(9):151~155
    124 A. Almqvist, F. Sahlin, R. Larsson, S. Glavatskih. On the Dry Elasto-Plastic Contact of Nominally Flat Surfaces. Tribology International. 2007,40:
    574~579
    125 J. Jamari, D. J. Schipper. An Elastic-Plastic Contact Model of Ellipsoid Bodies. Tribology Letters. 2006,21(3):262~271
    126 J. Jamari, D. J. Schipper. Plastic Deformation and Contact Area of an Elastic-Plastic Contact of Ellipsoid Bodies after Unloading. Tribology International. 2007,40(8):1311~1318
    127 L. Kania. Modelling of Rollers in Calculation of Slewing Bearing with the Use of Finite Elements. Mechanism and Machine Theory. 2006,41:1359~11376
    128 F. Wang, L. M. Keer. Numerical Simulation for Three Dimensional Elastic-Plastic Contact with Hardening Behavior. Journal of Tribology, Transactions of the ASME. 2005,127:494~502
    129 Z. F. Wen, X. S. Jin, Y. Y. Jiang. Elastic-Plastic Finite Element Analysis of Nonsteady State Partial Slip Rolling Wheel-Rail Contact. Journal of Tribology, Transactions of the ASME. 2005,127(4):713~721
    130 M. Alshoaibi, A. K. Ariffin. Finite Element Simulation of Stress Intensity Factors in Elastic-Plastic Crack Growth. Journal of Zhejiang University SCIENCE A. 2006,7(8):1336~1342
    131 M. Alshoaibi, M. S. A. Hadi, A. K. Ariffin. An Adaptive Finite Element Procedure for Crack Propagation Analysis. Journal of Zhejiang University SCIENCE A. 2007,8(2):228~236
    132中国机械. http://211.94.158.8:8002/MachineBase/BasicData/结构力学与材料力学/接触应力/结构力学41.htm# (2007.07.27)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700