用户名: 密码: 验证码:
增量体积成形数值模拟技术及其在多道次拔长工艺设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现对锻件产品精确“控形”和“控性”的目标,需要对成形工艺方案进行合理设计,并对成形产品质量进行准确预报。近几十年来,以有限元法为代表的数值模拟技术和相关计算机软硬件技术都取得了显著进步,从而为实现这一目标带来了巨大机遇。然而,目前的数值模拟技术和计算机软硬件技术还不能完全满足实现精确“控形”和“控性”的要求。例如对于许多增量体积成形工艺,由于其工序很多而且耗时很长,导致对工艺方案进行完整数值模拟的成本很高或者并不现实,因而难以采用数值模拟对工艺方案进行完整设计。因此,如何提高数值模拟对于增量体积成形工艺分析的适用性,以及如何将数值模拟合理地应用于成形工艺方案的设计,仍然是具有重要科学与工程价值的问题。本文从金属体积成形通用数值模拟技术、增量体积成形专用数值模拟技术、多道次平砧拔长工艺设计等几个方面进行了研究和探讨,对现有技术进行了改进并提出了一些新技术。
     提出了针对增量体积成形的预指定刚性区自由度缩聚原理,并改进了刚粘塑性有限元的非线性迭代算法与待定刚性区自动判别算法。针对增量体积成形的瞬时局部变形特点,根据刚性区材料对总能量泛函的贡献为零以及刚性区材料仅发生刚体运动,首次推导了预指定刚性区自由度缩聚原理——泛函积分区域缩减原理与刚性区节点自由度凝聚原理,从而降低分析系统的自由度规模。改进了非线性刚粘塑性有限元方程组的直接迭代解法与牛顿-拉夫森迭代解法,以提高迭代收敛的稳健性。改进了待定刚性区的自动判别算法,利用变形历史信息来不断更新当前参考平均等效应变率,从而可以适应不同变形条件。
     解决了增量体积成形高效稳健有限元模拟的关键技术,包括采用两套网格描述的预指定刚性区自由度缩聚技术、三维动态接触边界搜索处理技术以及离散型流动应力数据插值技术。针对增量体积成形中变形发生在局部区域而传热发生在全部区域的特点,提出了采用“全网格”和“子网格”的描述方法解决分析系统的计算量问题,其中“全网格”用于计算整体温度场,“子网格”用于计算变形区速度场。通过预指定刚性区自由度缩聚技术实现子网格生成以及两套网格间运动映射,从而构造了热力耦合问题的高效分析方法。提出了同时采用“穿透”判据和“靠近”判据的三维动态接触边界搜索算法以及考虑特殊“穿透”情形的接触节点调整算法,还提出了离散型流动应力数据的两种插值方式——简单分段插值和对数分段插值。
     引入基于栅格法中“表面零厚度单元层”概念,对非结构化与分层六面体网格分别提出了一种自动重划分方法,并改进了新旧网格间数据传递方式。对于非结构化六面体网格,提出了通过在旧网格空间域上直接覆盖表面零厚度六面体单元层以生成新网格的方法。针对拔长、扩孔、径向锻造等一类增量体积成形工艺,提出了一种分层六面体网格模型,通过四边形单元层插入、表面零厚度六面体单元层覆盖以及后续的网格平滑处理与边界拟合等步骤来实现网格质量优化。在将旧网格单元物理量传递至旧网格节点时,分别采用内部边外插和单元对角外插获得不同类型边界节点的传递值。在计算新网格节点在旧网格单元中局部坐标时,采用粒子群优化算法以提高算法的求解精度和稳健性。算例结果表明,由所提出的非结构化与分层六面体网格重划分方法生成的新网格具有较好质量,且新旧网格间数据传递具有较高精度。
     基于上述原理和技术,开发了具有自主知识版权的增量体积成形有限元模拟系统XFORM,并通过数值算例和物理实验对该系统的有效性进行了验证。算例和实验的结果表明:对于一般金属体积成形过程模拟,XFORM与商业有限元软件DEFORM的计算精度相当,且XFORM的迭代收敛速度具有一定优势;将所提出的预指定刚性区自由度缩聚技术应用于某正八角形截面坯料多工步拔长的有限元模拟后,计算效率提高了约62%,且计算精度并无明显损失,从而验证了该技术对于增量体积成形过程模拟的有效性。
     基于解析方法与有限元模拟,建立了一套多道次平砧拔长的工艺设计流程。首先,提出了一种基于Markov变分原理的平砧拔长压下过程解析方法。在该方法中,考虑摩擦及刚性端的影响建立了一组变形区瞬态动可容速度场,并采用增量法对压下过程进行分析。在每个增量步中,利用Markov变分原理对速度场进行求解,并将拉格朗日网格应用于数值积分和变形区构形更新。其次,以上述解析法为基础提出了一个多道次平砧拔长的工艺规划算法,可以快速生成满足成形尺寸要求的工艺方案集。然后,以XFORM为核心分析模块,开发了多道次平砧拔长的连续有限元模拟平台,并且包含了预指定刚性区自由度缩聚技术与分层六面体网格自动重划分技术。此外,从工艺角度对拔长过程中压机与操作机的动作进行了分析,并提出了一种描述压机与操作机联动的代码,以用于拔长过程的精确控制与自动化。利用上述工艺规划算法和连续有限元模拟平台,对某35吨特种钢模块的一个拔长工序进行了工艺设计,并生成了压机与操作机联动代码,从而为实际的锻造生产提供了科学的指导。
In order to precisely control geometry and property of forging products, it is necessary to rationally design process schedules and accurately predict the forging performance. Great opportunities for this goal have arisen due to achievements in numerical simulation technology and computer technology over the recent decades. However, precise control of product geometry and property demands more than what the state-of-the-art can provide. For example, some incremental bulk forming processes are composed of many operations. Complete numerical simulations of these processes are too costly or unpractical, which makes it hard to fully design process schedules with numerical simulations. Therefore the problems, including how to improve applicability of numerical simulation for analysis of incremental bulk forming processes and how to rationally use numerical simulation in design of process schedules, have important scientific and engineering values. This paper researches on general techniques for numerical simulation of bulk metal forming, special techniques for numerical simulation of incremental bulk forming and process design of multi-pass flat-tool stretching, which yields some technical improvements and some new techniques as follows.
     The principles for reduction of pre-assigned rigid zone DOFs are presented, and the algorithms for solving nonlinear rigid-viscoplastic finite-element equations and for identifying unknown rigid zone are improved. In order to reduce the system DOFs in analysis of incremental bulk forming, two principles are derived for the first time: the principle of reduction of functional integral region based on the condition that the contribution of the rigid zone material to the total energy functional is zero, and the principle of condensation of rigid-zone nodal DOFs based on the condition that the motion of the rigid zone material is of rigid body type. In order to enhance iteration robustness, the direct iteration algorithm and the Newton-Raphson iteration algorithm are both improved. An approach is proposed for automatic identification of unknown rigid zone. It uses the information of deformation history to update the current reference average effective strain rate and is adaptive to different deformation conditions.
     Some key techniques for efficient and robust simulation of incremental bulk forming are discussed. In incremental bulk forming, deformation occurs in the local region while heat transfer occurs in the whole region. According this characteristic, two mesh systems are adopted to improve computation efficiency for the thermo-mechanical coupled analysis of incremental bulk forming. The whole mesh is used for temperature field computation and the sub mesh is used for velocity field computation. A technique of reduction of pre-assigned rigid zone DOFs is proposed for generation of the sub mesh and for mapping of the two mesh systems. A“penetration”criterion and a“near”criterion are used for search of dynamic contact boundaries, and a special“penetration”case is considered in the algorithm for adjustment of the contact boundary nodes. Two interpolation approaches, which are linear piecewise interpolation and logarithmic piecewise interpolation, are proposed for handling discrete flow stress data.
     By introducing the concept of zero-thickness surface element layer from the grid-based method, two methods are respectively proposed for automatic regeneration of unstructured hexahedral mesh and layered hexahedral mesh. In regeneration of unstructured hexahedral mesh, a new mesh is produced by surface coverage of the old mesh with zero-thickness element layer(s). For a class of incremental bulk forming processes such as stretching, saddle forging and radial forging, a layered hexahedral mesh model is proposed. The new mesh is generated and improved by insertion of quadrilateral element layer(s), surface coverage of the old mesh with zero-thickness element layer(s) and subsequent mesh smoothing and boundary fitting. In data transfer from the old mesh to the new mesh, extrapolation along the inside edge and extrapolation along the element diagonal are respectively used for two types of boundary nodes. When calculating local coordinates of the new nodes in the old elements, a particle swarm optimization algorithm is adopted to improve computation efficiency and robustness. The results of two examples show that the new meshes produced by the proposed methods have good quality and the data transfer procedure leads to small accuracy loss.
     On the basis of these principles and techniques, the software XFORM is developed with the capability of finite element simulation of incremental bulk forming. The effectiveness of the software is validated by some numerical examples and a physical experiment. The results show that: (i) for finite element simulation of general bulk metal forming, the accuracy of XFORM are close to that of the commercial finite element software DEFORM and, XFORM has advantage on convergence speed of nonlinear iteration but lack on bandwidth optimization; (ii) in the finite element simulation of a stretching process, the efficiency is improved by about 62% with no significant loss of accuracy after using the technique of reduction of pre-assigned rigid zone DOFs and this result validates effectiveness of this technique for finite element simulation of incremental bulk forming.
     By using an analytical method and finite element simulation, process design of multi-pass flat-tool stretching is discussed. Firstly, an analytical method is presented for flat-tool stretching based on the Markov variational principle. In this method, a set of transient kinematically admissible velocity fields are established with considering the influence of friction and rigid ends, and then the reduction in a stretching bite is analyzed with incremental method. In each incremental step, the Markov variational principle is used for approximate velocity field solution, and a Lagrangian mesh is used for numerical integration and configuration update. Secondly, with the analytical method, a fast process planning algorithm is developed for multi-pass flat-tool stretching. This algorithm can produce feasible pass schedules which satisfy the requirement of final dimensions. Thirdly, by using XFORM as the analysis core, a continuous finite element simulation platform is developed for multi-pass flat-tool stretching. This platform includes the rigid zone DOFs reduction technique and the layered hexahedral mesh regeneration technique. Fourthly, the operations of press and manipulator during stretching are analyzed from the process schedule point of view, and then a type of code is proposed for describing the press-manipulator linkage operations. This type of code can be used for precise control and automation of stretching process. With the process planning algorithm and the finite element simulation platform, a stretching process for production of an alloy block is designed and a code for press-manipulator linkage operations is generated. The results show the feasibility of using these techniques in industry.
引文
ARVIND A, WU W T, LI G, TANG J P. 1999. Process modeling of cogging[C]// GEIGER M. Proceedings of the 6th ICTP. Nuremberg, Germany: 1669-1674.
    AKSAKAL B, OSMAN F H, BRAMLEY A N. 1997. Upper-bound analysis for the automation of open-die forging[J]. Journal of Materials Processing Technology, 71: 215-223.
    BANASZEK G, SZOTA P. 2005. A comprehensive numerical analysis of the effect of relative feed during the operation of stretch forging of large ingots in profiled anvils[J]. Journal of Materials Processing Technology, 169(3): 427-444.
    BARTON G, LI X, HIRT G. 2007. Finite-element modeling of multi-pass forging of nickel-base alloys using a multi-mesh method[J]. Materials Science Forum, 539-543: 2503-2508.
    BARAYA G L, JOHNSON W. 1964. Flat bar forging[C]// KOENIGSBERGER S A, TOBIAS F. Proceedings of the 5th International Machine Tool Design and Research Conference. Birmingham, UK: 449-469.
    BELYTSCHKO T, LIU W K, MORAN B. 2000. Nonlinear Finite Elements for Continua and Structures[M]. John Wiley & Sons, Inc.
    BLACKER T D, MEYERS R J. 1993. Seams and wedges in plastering: a 3D hexahedral mesh generation algorithm[J]. Engineering with Computers, 2(9): 83-93.
    BRAUN-ANGOTT P, BERGER B. 1982. An upper bound approximation for spread and pressure in flat tool forging[C]// Pittman J F T, Wood R D, Alexander J M, Zienkiewicz O C. Proceedings of the 1st International Conference on Numerical Methods in Industrial Forming Processes. Swansea, UK: 165-174.
    陈学文,王进,陈军,阮雪榆. 2005.热锻成形过程数值模拟与多目标设计优化技术研究[J].塑性工程学报, 12(4): 80-84.
    CHEN F, CUI Z S, LIU J, ZHANG X X, CHEN W. 2009. Modeling and simulation ondynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method[J]. Modelling and Simulation in Materials Science and Engineering, 17: 1-19.
    CHEN C C, KOBAYASHI S. 1978. Rigid-plastic finite-element analysis of ring compression[J]. Application of Numerical Methods to Forming Processes, ASME, AMD, 28: 163-174.
    CHEN C C, OH S I, KOBAYASHI S. 1979. Ductile fracture in axisymmetric extrusion and drawing, Part 1: Deformation mechanics of extrusion and drawing[J]. Transactions of the ASME, Journal of Engineering for Industry, 101: 23-44.
    CHENG J H. 1988. Automatic adaptive remeshing for finite element simulation of forming processes[J]. International Journal for Numerical Methods in Engineering, 26(1): 1-18.
    CHENG J H, KIKUCHI, N. 1986. A mesh re-zoning technique for finite element simulations of metal forming processes[J]. International Journal for Numerical Methods in Engineering, 23(2): 219-228.
    CHO J R, BAE W B, KIM Y H, CHOI S S, KIM D K. 1998. Analysis of the cogging process for heavy ingots by finite element method and physical modelling method[J]. Journal of Materials Processing Technology, 80-81: 161-165.
    COOK W A, OKAES W R. 1982. Mapping methods of regenerating three-dimensional meshes[J]. Computers in Mechanical Engineering, 8: 67-72.
    CRISTESCU N D. 1967. Dynamic Plasticity[M]. Amsterdam: North-Holland Pub. Co.
    崔青玲. 2005.无网格RKPM法及其在轧制中的应用[D].沈阳:东北大学博士学位论文.
    DAVEY K, WARD M J., 2000. An efficient solution method for finite element ring-rolling simulation[J]. International Journal for Numerical Methods in Engineering, 47(12): 1997-2018.
    DAVEY K, WARD M J., 2002a. A practical method for finite element ring rolling simulation using ALE flow formulation[J]. International Journal of Mechanical Sciences, 44: 165-190.
    DAVEY K, WARD M J. 2002b. The practicalities of ring rolling simulation for profiled rings[J]. Journal of Materials Processing Technology, 125: 619-625.
    DAVEY K, WARD M J. 2003. An ALE approach for finite element ring-rolling simulation of profiled rings[J]. Journal of Materials Processing Technology, 139(1-3): 559-566.
    董湘怀,郭芷荣. 1990.平砧拔长过程的数学模型及其最优化[J].锻压技术, 15(3): 2-6.
    董湘怀,郭芷荣. 1991.一类动态规划问题的解法及其在自由锻造中的应用[J].数学的实践与认识, (4): 1-6.
    ESCHE S K, KINZEL G L, ALTAN T. 1997. Issues in convergence improvement for non-linear finite element programs[J]. International Journal for Numerical Methods in Engineering, 40: 4577-4594.
    FRITSCHE D, GROCHE P. 2006. Efficient simulation of cyclic processes using similarity methods[C]// Workshop on Modeling of Incremental Bulk Forming Processes. Darmstadt, Germany.
    FOLWELL N T, MITEHELL S A. 1999. Reliable whisker weaving via curve contraction[J]. Engineering with Computers, 15(3): 292-302.
    干年妃. 2007.基于RKPM法的无网格自适应方法研究及其在金属成形中的应用[D]. 长沙:湖南大学博士学位论文.
    GROCHE P, FRITSCHE D. 2005. Efficient algorithms for the simulation of incremental bulk metal forming[C]// Proceedings of the 8th ICTP. Verona, Italy. GROCHE P, FRITSCHE D, TEKKAYA E A, ALLWOOD J M, HIRT G, NEUGEBAUER R. 2007. Incremental bulk metal forming[J]. Annals of the CIRP, 56(2): 635-656.
    关振群,单菊林,顾元宪. 2005.基于转换模板的三维实体全六面体网格生成方法[J].计算力学学报, 22(1): 32-37.
    GUO L, YANG H, ZHAN M. 2005. Research on plastic deformation behaviour in cold ring rolling by FEM numerical simulation[J]. Modelling and Simulation in Materials Science and Engineering, 13: 1029-1046.
    郭晓霞,刘建生,陈慧琴,周贤宾. 2002.大变形有限元中二维网格自动重分技术[J]. 塑性工程学报, 9(3): 20-24.
    郭晓霞. 2003.特别适用于金属成形模拟的四边形网格划分方法[J].塑性工程学报, 10(6): 50-54.
    郭晓霞. 2005.四边形有限元网格划分方法——二分法的改进[J].塑性工程学报, 12(5):96-100.
    郭芷荣. 1980.快速自动锻造的数学模型[J].华中工学院学报, (1): 90-106.
    HAGEMAN L J. 1987. Automatic adaptive remeshing in EAPLID, an advanced forging simulation program[C]// Proceedings of Computerised Engineering, ASME. New York: 93-97.
    郝艳飞,刘建生,安红萍. 2003.基于NURBS的动态接触边界算法研究[J].太原重型机械学院学报, 24(4): 265-269.
    HARTLEY P, PILLINGER I. 2006. Numerical simulation of the forging process[J]. Computer Methods in Applied Mechanics and Engineering, 195: 6676-6690.
    HELLMANN M, HüLSHORST T, KOPP R. 2000. Simulation of ring rolling[C]// 14th International Forgemasters Meeting. Wiesbaden: 454-460.
    HILL R. 1956. New horizons in the mechanics of solids[J]. Journal of the Mechanics and Physics of Solids, 5: 66-74.
    HILL R. 1963. A general method of analysis for metal-working processes[J]. Journal of the Mechanics and Physics of Solids, 11: 305-326.
    HIRT G, KOPP R, HOFMANN O, FRANZKE M, BARTON G. 2007. Implementing a high accuracy multi-mesh method for incremental bulk metal forming[J]. CIRP Annals - Manufacturing Technology, 56(1): 313-316.
    HU, Y K, LIU W K. 1992. ALE finite element formulation for ring rolling analysis[J]. International Journal for Numerical Methods in Engineering, 33: 1217-1237. HU Z M, PILLINGER I, HARTLEY P, MCKENZIE S, SPENCE P J. 1994. Three-dimensional finite-element modelling of ring rolling[J]. Journal of Materials Processing Technology, 45: 143-148.
    黄丽丽. 2010.有限元三维六面体网格自动生成与再生成算法研究及其应用[D].济南: 山东大学博士学位论文.
    黄毅坚,李国基. 1986.金属成形过程刚塑性有限元分析中的摩擦问题[J].模具技术, (2): 10-15.
    江雄心,万平荣,林治平,扶名福. 2002.金属体积成形过程三维刚塑性有限元模拟系统.南昌大学学报, 24(2): 5-8.
    金锡刚,任猛,王祖唐. 1992.平砧拔长过程中坯料的展宽规律及计算机程序控制[J]. 大型铸锻件, 55: 10-16.
    KENNEDY J, EBERHART R C. 1995. Particle swarm optimization[C]// IEEE International Conference on Neural Networks IV. New Jersey, USA: IEEE Press: 1942-1948.
    KIEFER B V, SHAH K N. 1990. Three-dimensional simulation of open-die press forging[J]. Journal of Engineering Materials and Technology, 112(4): 477-485.
    KIM N, MACHIDA S, KOBAYASHI S. 1990. Ring rolling process simulation by the three dimensional finite element method[J]. International Journal of Machine Tools and Manufacture, 30(4): 569-577.
    KIM P H, CHUN M S, MOON Y H. 2002. Pass schedule algorithm for hot open die forging[J]. Journal of materials processing technology, 130-131: 516-523.
    KNAP M, KUGLER G, PALKOWSKI H, TURK R. 2004. Prediction of material spreading in hot open-die forging[J]. Steel Research International, 75: 405-410.
    KNUPP P M. 2003. A method for hexahedral mesh shape optimization[J]. International Journal for Numerical Methods in Engineering, 58: 319-332.
    KOBAYASHI S, OH S I, ALTAN T. 1989. Metal Forming and the Finite-Element Method[M]. New York: Oxford University Press.
    KWAK D Y, CHEON J S, IM Y T. 2002. Remeshing for metal forming simulations—Part I: Two dimensional quadrilateral remeshing[J]. International Journal for Numerical Methods in Engineering, 53: 2463-2500.
    KWAK D Y, IM Y T. 2002. Remeshing for metal forming simulation—Part II: Three-dimensional hexahedral mesh generation[J]. International Journal for Numerical Methods in Engineering, 53: 2501-2528.
    LAHOTI G D, KOBAYASHI S. 1974. Flat-tool forging[C]// The 2nd North American Metalworking Research Conference. Madison, USA: 73-87.
    赖佳才,谢云岫,吴书勤,王君红,温带锋. 1993.展宽率和展宽量计算公式的推导及其应用[J].锻压技术, (2): 9-14.
    LEE C H, KOBAYASHI S. 1973. New solutions to rigid-plastic deformation problemsusing a matrix method[J]. Transactions of the ASME, Journal of Engineering for Industry, 95: 865-873.
    LEE K H, LEE S R, YANG D Y. 2004. Rigid-plastic finite element analysis of incremental radial forging process using automatic expansion domain scheme[J]. Engineering Computations, 21(5): 470-487.
    LEE Y K, YANG D Y. 1999. Development of a grid-based mesh generation technique and its application to remeshing during the finite element simulation of a metal forming process[J]. Engineering Computations, 16(3): 316-336.
    LEE Y K, YANG D Y. 2000. A Grid-based approach to non-regular mesh generation for automatic remeshing with metal forming analysis[J]. Communications in Numerical Methods in Engineering, 16: 625-635.
    李尚健,肖景容. 1984.刚塑性有限元法中刚性区的计算[J].华中工学院学报, 12(6): 47-50.
    LI T S, MCKEAG R M, ARMSTRONG C G. 1995. Hexahedral meshing using midpoint subdivision and integer programming[J]. Computer Methods in Applied Mechanics and Engineering, 124: 171-193.
    LILLY K W, MELLIGERI A S. 1996. Dynamic simulation and neural network compliance control of an intelligent forging center[J]. Journal of Intelligent and Robotic Systems, 17: 81-99.
    LIM T, PILLINGER I, HARTLEY P. 1998. A finite-element simulation of profile ring rolling using a hybrid mesh model[J]. Journal of Materials Processing Technology, 80-81: 199-205.
    林大超,赵静远. 1989.矩形棒料延伸锻造的变形分析[J].热加工工艺, (2): 22-25.
    刘建生,陈慧琴. 1998.动态接触边界的自动处理技术[J].塑性工程学报, 5(2): 69-75.
    刘建生,陈慧琴,郭晓霞. 2003.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社.
    刘建生,郭会光,孙捷先. 1997.刚粘塑性有限元软件TFORM2及其应用[J].太原重型机械学院学报, 18(3): 255-259, 268.
    刘建生,王立元,原向阳. 1999.金属塑性成形的三维刚塑性有限元模拟技术研究[J]. 太原重型机械学院学报, 20(4): 283-287.
    刘磊超. 2009.金属成形过程自适应耦合无网格—有限元法数值模拟技术研究[D].上海:上海交通大学博士学位论文.
    刘永辉. 2007.金属体积成形过程无网格RKPM法数值模拟技术研究[D].上海:上海交通大学博士学位论文.
    刘助柏. 1994.平砧拔长矩形截面毛坯的新理论[J].机械工程学报, 30(5): 47-49.
    娄淑梅. 2007.铝型材挤压有限体积法数值模拟技术研究与系统开发[D].济南:山东大学博士学位论文.
    路平. 2008.三维金属体积成形过程无网格伽辽金方法及其关键技术研究[D].济南: 山东大学博士学位论文.
    吕炎. 1995.锻造工艺学[M].北京:机械工业出版社.
    马新武,赵国群. 2003.体积成形有限元模拟软件CASFORM的开发研究[J].锻压技术, (1): 9-13.
    马新武,赵国群,王芳. 2007.全自动四边形有限元网格生成——I:区域分解法.塑性工程学报, 14(4): 105-109.
    MARQUES M J M B, MARTINS P A F. 1990. Three-dimensional finite element contact algorithm for metal forming[J]. International Journal for Numerical Methods in Engineering, 30(7): 1341-1354.
    MARéCHAL L. 2001. A new approach to octree-based hexahedral meshing[C]// Proceedings of the 10th International Meshing Roundtable. Newport Beach, California, USA: 209-221
    MOON H K, LEE M C, CHUNG J H, JOUN M S. 2005. Finite element analysis of a rotary forging process for bearing assembly[C]// Proceedings of the 8th ICTP. Verona, Italy.
    MUSIC O, GüLEY V, ?ZTOP M S, SAVAS T, ?ZHAN F, TEKKAYA A E. 2005. Analysis of cold ring rolling process[C]// Proceedings of the 8th ICTP. Verona, Italy.
    NYE T J, ELBADAN A M, BONE G M. 2001. Real-time process characterization of open die forging for adaptive control[J]. Journal of Engineering Materials and Technology, 123: 511-516.
    OSAKADA K, NAKANO J, MORI K. 1982. Finite element method for rigid-plastic analysis of metal forming—Formulation for finite deformation[J]. International Journal of Mechanical Sciences, 24(8): 459-468.
    OH S I. 1982. Finite element analysis of metal forming processes with arbitrarily shaped dies[J]. International Journal of Mechanical Sciences, 24(8): 479-493.
    OH S I, TANG J P, BADAWY A. 1984. Finite element mesh rezoning and its applications to metal forming analysis[J]. Advanced Technology of Plasticity, 2: 1051-1058.
    OWEN S J, SAIGAL S. 1999. H-Morph: An indirect approach to advancing front hex meshing[C] // 2nd Symposium on Trends in Unstructured Mesh Generation. Boulder, Colorado, USA.
    (?)ZTOP M S, MUSIC O, TEKKAYA A E. 2006. Two novel elastic-plastic models for incremental ring rolling process[C]// Workshop on Modeling of Incremental Bulk Forming Processes. Darmstadt, Germany.
    彭颖红. 1999.金属塑性成形仿真技术[M].上海:上海交通大学出版社.
    PAHNKE H J. 1983. Fundamentals of programmed forging[J]. Metallurgical Plant and Technology, 6: 92-101.
    PARK J J, KOBAYASHI S. 1984. Three-dimensional finite element analysis of block compression[J]. International Journal of Mechanical Sciences, 26(3): 165-176.
    PAUSKAR P M, SAWAMIPHAKDI K, JIN D Q. 2004. Static implicit vs. dynamic explicit finite element analysis for ring rolling process modeling[C]// NUMIFORM 2004. Columbus, Ohio: 412-417.
    PERZYNA P. 1966. Fundamental problems in viscoplasticity[J]. Advances in Applied Mechanics, 1966, 9(2): 244-368.
    PETERSEN S B, MARTINS P A F. 1997. Finite element remeshing: a metal forming approach for quadrilateral mesh generation and refinement[J]. International Journal for Numerical Methods in Engineering, 40(8): 1449-1464.
    PRICE M A, ARMSTRONG C G, SABIN M A. 1995. Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges[J]. International Journal for Numerical Methods in Engineering, 38(19): 3335-3359.
    PRICE M A, ARMSTRONG C G. 1997. Hexahedral mesh generation by medial surface subdivision: Part II. Solids with flat and concave edges[J]. International Journal for Numerical Methods in Engineering, 40(1): 111-136.
    秦泗吉,李洪波,朱清香,杨煜生. 1998.刚塑性有限元牛顿迭代解法收敛性分析及改进方法[J].燕山大学学报, 22(2): 143-145.
    任猛,金锡刚,王祖唐. 1989.拔长锻造时的展宽值计算[J].锻压技术, 2: 8-10.
    任猛,王祖唐,刘庄. 1992.有效压实锻造法[J].锻压技术, 5: 2-5.
    任猛,吴昊,金锡刚等. 1991.极限锻造成形方法的原理及工艺应用[J].大型铸锻件, 1-2: 13-17.
    ROCA X, SARRATE J, HUERTA A. 2004. Surface mesh projection for hexahedral mesh generation by sweeping[C]// Proceedings of the 13th International Meshing Roundtable. Williamsburg, Virginia, USA: 169-180.
    SAGAR R, JUNEJA B L. 1979. An upper bound solution for flat tool forging taking into account the bulging of sides[J]. International Journal of Machine Tool Design and Research, 19: 253-258.
    SCHMID F, SCH?FER M. 2005. Performance of algebraic multigrid methods for simulation of incremental forming processes[C]// Proceedings of the 8th European Multigrid Conference. Delft, Netherlands.
    SCHNEIDERS R, OBERSCHELP W, KOPP R, BECKER M. 1992. New and effective remeshing scheme for the simulation of metal forming processes[J]. Engineering with Computers, 8(3): 163-176.
    SCHNEIDERS R, BüNTENB R. 1995. Automatic generation of hexahedral finite element meshes[J]. Computer Aided Geometric Design, 12(7): 693-707.
    SCHNEIDERS R. 1996. A grid-based algorithm for the generation of hexahedral element meshes[J]. Engineering with Computers, 12(3-4): 168-177.
    单德彬,吕炎,王真. 1997.金属体积成形过程三维刚塑性有限元模拟技术的研究[J]. 塑性工程学报, 4(3): 98-102.
    SHI Y, EBERHART R C. 1998. A modified particle swarm optimizer[C]// The 1998 IEEE International Conference on Evolutionary Computation. New Jersey, USA: IEEE Press: 69-73.
    SHIAU Y C, KOBAYASHI S. 1988. Three-dimensional finite element analysis of open-die forging[J]. International Journal for Numerical Methods in Engineering, 25(1): 67-85.
    SHIMIZU T, SUTO S, OHUCHIK K, SANO T. 1990. Process design on multi ram forging[J]. Advanced Technology of Plasticity, 1: 137-142.
    SHUTT A. 1960. A note on spread in indenting[J]. Applied Scientific Research, 9: 389-392.
    宋超. 2004.非结构化自适应有限元网格生成的AFT方法[D].大连理工大学博士学位论文.
    SUN J X, LI G J, KOBAYASHI S. 1983. Analysis of spread in flat tool forging by the finite element method[C]// The 11th North American Manufacturing Research Conference. Madison, USA: 224-231.
    SAWAMIPHAKDI K, PAUSKAR P M, JIN D Q, LAHOTI G D. 2002. Ring rolling process modelling using explicit finite element analysis[C]// Proceedings of the 7th ICTP. Yokohama, Japan: 859-864.
    TAMURA K, TAJIMA J. 2001. Optimization of hot free forging condition for the uniformity of forged shape by three dimensional rigid-plastic finite element analysis[J].
    The Iron and Steel Institute of Japan, 41(3): 268-274.
    TAMURA K, TAJIMA J. 2003. Optimisation of open die forging condition and tool design for ensuring both internal quality and dimensional precision by three-dimensional rigid-plastic finite element analysis[J]. Ironmaking and Steelmaking, 30(5): 405-411.
    谭文,刘振宇,吴迪,刘相华,王国栋. 2007.基于粒子群优化算法的热轧厚板工艺性能优化[J].轧钢, 24(1): 15-18.
    TANIGUCHI T, FILLION E, SAUTY J P, ZIELKE W. 1994. Fast mesh generation for groundwater flow analysis in 3D structure system[C]// Proceedings of Numerical Grid Generation in Computational Fluid Dynamics. Swansea, UK: 374-378.
    TAUTGES T J, BLACKER T, MITCHELL S A. 1996. The whisker weaving algorithm: A connectivity-based method for constructing all-hexahedral finite element meshes[J]. International Journal for Numerical Methods in Engineering, 39(19): 3327-3349.
    TCHON K-F, JULIEN DOMPIERRE J, CAMARERO R. 2004. Automated refinement of conformal quadrilateral and hexahedral meshes[J]. International Journal for Numerical Methods in Engineering, 59(12): 1539-1562.
    田涌涛,李从心. 2002.基于子结构技术的复杂齿轮系统有限元三维接触分析[J].机械工程学报, 38 (5): 133-137.
    田柱平,郝南海,卢志勇. 1998.塑性成形过程三维刚塑性有限元模拟软件开发[J].太原重型机械学院学报, 19(4): 281-284, 289.
    TOMLINSON A, STRINGER J D. 1959. Spread and elongation in flat tool forging[J]. Journal of the Iron and Steel Institute, 193: 157-162.
    VRIES E D, DING P. 1999. Simulation of 3D forging and extrusion problems using a finite volume method[C]// Proceeding of 17th MSC JAPAN Users Conference. Tokyo, MSC Software Japan Ltd.: 155-161.
    WADA Y, OKUDA H. 2002. Effective adaptation technique for hexahedral mesh[J]. Concurrency and Computation: Practice and Experience, 14(6-7): 451-463.
    WANG L, LIU Z, DENG D. 2000. Three-dimensional finite-element simulation of stretching technological parameters w/h and b/h of heavy forgings[C]// Proceedings of 14th International Forgemasters Meeting. Wiesbaden: 475-478.
    王雷刚,黄瑶,刘助柏. 2002.大锻件拔长工艺研究进展与展望[J].塑性工程学报, 9(2): 28-31, 38.
    WANG M, YANG H, SUN Z, GUO L, OU X. 2006. Dynamic explicit FE modeling of hot ring rolling process[J]. Transactions of Nonferrous Metals Society of China, 16(6): 1274-1280.
    王鹏. 2009.基于全量理论的金属体积成形有限元模拟研究[D].上海:上海交通大学博士学位论文.
    王锐. 2009.铝型材挤压非正交网格有限体积数值模拟关键技术研究[D].济南:山东大学博士学位论文.
    王勖成,邵敏. 1997.有限单元法基本原理和数值方法(第2版)[M].北京:清华大学出版社.
    王真,赵章焰. 2002.子结构技术在门座起重机门架结构有限元分析中的应用[J].武汉理工大学学报(交通科学与工程版), 26(5): 678-680.
    温宏宇. 2006.无网格法在金属塑性成形数值模拟中的应用研究[D].上海:上海交通大学博士学位论文.
    WISTREICH J G, SHUTT A. 1959. Theoretical analysis of bloom and billet forging[J]. Journal of the Iron and Steel Institute, 193: 163-176.
    吴鸿庆,任侠. 2000.结构有限元分析[M].北京:中国铁道出版社.
    吴向红. 2006.铝型材挤压过程有限体积数值模拟及软件开发技术的研究[D].济南: 山东大学博士学位论文.
    吴欣. 2006.金属塑性成形过程无网格伽辽金方法及其关键技术研究[D].济南:山东大学博士学位论文.
    XIE C, DONG X, LI S, HUANG S. 2000. Rigid-viscoplastic dynamic explicit FEA of the ring rolling process[J]. International Journal of Machine Tools and Manufacture, 40(1): 81-93.
    杨煜生,陶永发,符志. 1988.刚塑性有限元中减速系数的确定[J].东北重型机械学院院报, 12(1): 13-18.
    虞松. 2004.金属塑性成形过程三维有限元六面体网格自动生成算法及数值模拟关键技术研究[D].济南:山东大学博士学位论文.
    虞松,王广春,赵国群. 2003a.金属塑性成形三维有限元模拟过程中动态边界调整新方法[J].山东大学学报(工学版), 33(4): 349-352.
    虞松,赵国群,王广春. 2003b.刚塑性有限元模拟中体积变化问题处理方法[J].塑性工程学报, 10(3): 1-5.
    YEA Y, KO Y, KIMA N, LEE J. 2003. Prediction of spread, pressure distribution and roll force in ring rolling process using rigid–plastic finite element method[J]. Journal of Materials Processing Technology, 140: 478-486.
    YEOM J T, LEE C S, KIM J H, PARK N K. 2006. Finite-element analysis of microstructure evolution in the cogging of an Alloy 718 ingot[J]. Materials Science and Engineering A, 448-451: 722-726.
    詹艳然,张中元,王卫英,王仲仁. 2000.刚塑性有限元模拟中罚因子的取值[J].锻压技术, (1): 7-9.
    詹梅,刘郁丽,杨合,李明奇,杜坤. 2000.金属塑性成形三维有限元模拟过程中修正触模节点位置的一种新方法[J].塑性工程学报, 7(2): 62-65.
    詹梅,杨合,刘郁丽. 2005.金属塑性成形三维有限元模拟软件3D-PFS的开发[J].材料科学与工艺. 13(4): 402-406.
    曾攀. 2004.有限元分析及应用[M].北京:清华大学出版社.
    张洪梅. 2007.三维六面体网格自适应生成算法研究及其应用[D].济南:山东大学博士学位论文.
    张美艳,韩平畴. 2008.结构动力重分析的子结构有理逼近[J].计算力学学报, 25(6): 879-881.
    张向. 2000.金属体积成形过程有限元模拟中六面体网格生成技术[D].上海:上海交通大学博士学位论文.
    张效迅,崔振山. 2008.大锻件内部空洞热锻闭合的Z-C判据及其应用[J].机械工程学报, 45(1): 148-153.
    ZHANG X X, CUI Z S, CHEN W, LI Y. 2009. A criterion for void closure in large ingots during hot forging[J]. Journal of Materials Processing Technology, 209(4): 1950-1959.
    张新泉. 1996.三次因式法——一种加快刚塑性有限元迭代收敛的新算法[J].塑性工程学报, 3(2): 24-32.
    赵国群. 1991.锻压过程的正反向数值模拟[D].上海:上海交通大学博士学位论文.
    赵国群,马新武. 2003.全自动自适应四边形有限元网格生成/再生成方法与软件AUTOMESH-2D/PC[J].金属成形工艺, (2): 42-44.
    赵国群,王广春,马新武. 1999.塑性有限元模拟中材料体积损失的控制方法[J].金属成形工艺, 17(6): 42-45.
    赵国群,虞松,王广春. 2006.六面体网格自动划分和再划分算法[J].机械工程学报, 42(3): 188-192.
    赵永录,乔端. 1987.金属压剪变形过程的分析[J].北京钢铁学院学报, 9(2): 119-124.
    周飞,苏丹,彭颖红,阮雪榆. 2003.有限体积法模拟铝型材挤压成形过程[J].中国有色金属学报, 13(1): 65-70.
    ZHU J, GOTOH M. 1999a. Automatic remeshing of 2D quadrilateral elements and its application to continuous deformation simulation: part I. remeshing algorithm[J]. Journal of Materials Processing Technology, 87(1-3): 165-178.
    ZHU J, GOTOH M. 1999b. An automated process for 3D hexahedral mesh regeneration in metal forming[J]. Computational Mechanics, 24: 373-385.
    ZIENKIEWICZ O C. 1977. The Finite Element Method, 3rd Edition [M]. New York: McGraw-Hill.
    ZIENKIEWICZ O C, GODBOLE P N. 1974. Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes[J]. International Journal for Numerical Methods in Engineering, 8(1): 1-16.
    ZIENKIEWICZ O C, GODBOLE P N. 1975. A penalty function approach to problems of plastic flow of metals of large surface deformations[J]. The Journal of Strain Analysis for Engineering Design, 10(3): 180-183.
    左旭,卫原平,陈军,阮雪榆. 1999.三维六面体有限元网格自动划分中的一种单元转换优化算法[J].计算力学学报, 16(3): 343-345.
    左旭,卫原平,陈军,曾令寿,阮雪榆. 1999.复杂体积成形三维有限元仿真的关键技术[J].金属学报, 35(3): 325-329.
    左旭,卫原平,陈军,曾令寿,阮雪榆. 1999.金属体积成形三维数值仿真的研究进展[J].力学进展: 29(4): 549-556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700