厚壁空心件辊锻工艺模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辊锻是采用轧辊作为工具,通过轧制工艺生产锻造工件的方法,它具有设备重量轻、驱动功率小、成形生产效率高及锻件尺寸稳定等一系列优点。随着计算机有限元软件的不断发展,传统的经验方法已逐步被代替。采用有限元模拟厚壁空心件的辊锻过程,对优化辊锻模的设计、控制空心辊锻件质量、揭示辊锻过程金属流动规律、弥补空心件辊锻理论的空白及促进辊锻技术在厚壁空心件上的应用具有重要意义。
     由于厚壁空心件辊锻理论的空白,且现有实心件辊锻理论对空心件辊锻模设计只能起到指导作用,因此设计的空心件辊锻模与实际情况会有较大误差。这不仅延长现场调试的时间,还不可避免地浪费大量的人力物力。借助DEFORM-3D有限元软件模拟厚壁空心件辊锻全过程,分析空心件的金属流动规律、各道次典型截面的等效应变场分布、温度场分布、管壁增厚情况等,揭示辊缝、摩擦系数、温度及压下量对空心件辊锻的影响规律,均具有节约成本,缩短试制周期,提高效率等优点。
     根据现有辊锻工艺确定原始管坯的尺寸与辊锻道次、选择型槽系、设计孔型等。通过CATIA软件对辊锻件和扇形辊锻模进行三维实体造型,建立厚壁空心件辊锻的有限元模型,通过两道次辊锻和一次整形完成厚壁空心件的辊锻,并根据模拟结果,修改辊锻模。本文对厚壁空心件辊锻过程模拟中的定位、接触、咬入、约束和增加整形辊锻等问题进行系统的分析与研究,这对空心件辊锻理论的建立具有重要价值。
     通过与实心件的辊锻模拟结果对比,揭示壁厚对延伸量和展宽量影响规律,讨论摩擦系数对实心件与空心件辊锻的影响。结合空心辊锻件实验产品,对比产品的几何尺寸、前滑值、管壁增厚情况、缺陷种类及产生缺陷机理,表明模拟结果与真实实验结果基本一致,证明该有限元模型建立的准确性、可信性,论文针对辊锻过程中出现的弯曲、飞边、圆截面成形质量差等提出改进措施,并利用改进后的孔型进行了模拟研究.数值模拟结果表明:增加整形道次后,圆截面椭圆度基本消失,有效地改善了锻件的成形质量,对指导实际厚壁空心件辊锻生产提供了参考。
Roll-forging is a way to produce the forging piece by means of rollers, and it presents a seriesof advantages, such as light weight of equipment, low driving power, high production efficiencyand stable size of forging piece. With the increasing development of FEM software, traditionalmethod has gradually been replaced. Making use of FEM to simulate roll-forging forthick-walled hollow part, it is very beneficial for optimizing the rolling die design, controllingthe quality of hollow part, revealing metal flow law during roll-forging process, making up forthe theory blank of roll-forging for hollow part and improving the roll-forging technologyapplied in hollow part.
     Because roll-forging theory of thick-walled hollow part is blank and existing roll-forgingtheory of solid part just plays a role in guiding rolling die design,the gap between designed diesand actual ones is bigger. It not only extends the on-site commissioning time, but also inevitablywastes a lot of manpower and resources. By means of DEFORM-3D to simulate the wholeroll-forging process for thick-walled hollow piece including metal flow law of hollow part、equivalent strain field distribution of typical sections、temperature field distribution、situation ofwall thickening、 influence law of gap、friction coefficient μ、temperature and reduction onroll-forging for hollow part,and it can save cost, reduce trial cycle and improve efficiency.
     Based on existing roll-forging process, not only the size of original tube blank and roll-forgingsteps are determined, but also the grooves are selected and rolling passes are designed.Roll-forging part and fan-shaped dies are modeled by CATIA, roll-forging FEM for thick-walledhollow part is set up, and roll-forging for thick-walled hollow part is finished through two stepsand one step for reshaping.At the same time, rolling dies are modified according to thesimulation results. This paper systematically analyzed and studied positioning, contact, bite,constrained conditions and pass increased to shape during the thick-walled hollow roll-forgingprocess simulation, and all the results are of great value to establish roll-forging theory of the hollow part.
     Compared with simulation results of roll-forging for solid pieces, influence law of wallthickness on elongation and width is revealed, and effect of friction coefficient μ on roll-forgingfor solid part and hollow part is discussed. According to experimental product of hollow part,geometric sizes、forward slips、wall thickening conditions、defect types and mechanisms ofemergence of the defects of two products are coincident by contrast, accuracy and reliability ofFEM establishment are proved. In the paper, improving methods of defects are presented, androll-forging process for hollow part is again simulated after rolling dies are modified. Thesimulation results indicate after increasing the roll-forging step, ellipse degree of circular sectionhas disappeared, efficiently improved quality of the forging piece, and provided a reference forguiding the actual roll-forging for thick-walled hollow part.
引文
[1]张承鉴.辊锻技术[M].机械工业出版社,1986.
    [2]洪慎章.辊轧工艺[M].上海:上海交通大学出版社,1984.
    [3]姚泽坤.锻造工艺学[M].西北工业大学出版社,1998.
    [4]林法禹.特种锻压工艺[M].机械工业出版社,1991.
    [5]胡亚民.回转塑性成形技术的应用[M].锻压机械,1996,(6):3-5.
    [6] Li Dongping. Developments and applications of roll forging technology in agricultural machineryi-ndustry, Transactions of the Chinese Society of Agricultural Machinery,v23,n1,1992:90.
    [7] B.P.Bewlaya, M.F.X.Gigliottia, C.U.Hardwickea, O.A.Kaibyshevb, Net-shape manufacturing of aircr-aft engine disks by roll forming and hot die forging[J]. Journal of Materials Processing Technol-ogy.2003;135:324-329.
    [8]王强,何芳,Hermann Eratz.辊锻模具三维CAD专用软件开发[J].模具工业,2002,(4):8-11.
    [9]黄良驹,刘化民,李义.辊锻技术的发展现状与展望[J].机械工人,2005.(11):73-77.
    [10]张春景,蔡中义,刘纪纯.汽车前轴的辊锻成形工艺[J].汽车技术,1994(6):31-34.
    [11] Song Yuquan, Zuo Wanyong. Mathematical Model of Thinning Patten for Non-Sphere Superplasti-c Free Bulging[J]. Science in China A,1992,35(1):122.
    [12] Song Yuquan, Zuo Wanyong.Moddels of Geometric Profile for Non-Sphere Superplastic Free Bul-ging [J]. Science in China A,1992,35(2):247.
    [13]蒋鹏,胡福荣,张忠东,于华龙.坯辊锻在铁路车辆组合式制动梁中间支柱生产中的应用[J].机械工人,2005(12):22-23.
    [14]李焕海,张立寰,玄永杰,阎雪萍.收割机护刃器联合锻造工艺研究[J].农业机械学报,1992.(23):99-103.
    [15]洪慎章,曾振鹏.集装箱门铰链辊锻成形工艺及模具设计[J].热加工工艺,2001,(5):57-58.
    [16]金秀杰,梁巧云.近净成形技术-精密辊锻[J].科技传播,2009(12):45-46.
    [17]杨慎华,黄良驹,王雨露.离合器控制踏板周期辊锻工艺[J].锻压技术,1992.(1):18.
    [18]付沛福,杨慎华,黄良驹.单耳夜板的精密辊锻[J].工艺.8-11.
    [19]高士义,刘喜万,李东平等.提高连杆成形辊锻工艺稳定性的研究[J].锻压技术,1983,8(3):23-26.
    [20] Yang Shenhua, Kou Shuqing, Deng chunping. Research and application of precision roll-forging t-aper-leaf spring of vehicle[J]. Journal of Materials Processing Technology,1997,(65):268-271.
    [21]傅沛福.辊锻理论与工艺[M].长春:吉林人民出版社,1982.
    [22] J. Bartnicki, Z. Pater, Theoretical analysis of cross-wedge rolling process of hollowed shafts, in:National Academy of Sciences of Belarus Deform ability Conference[C]. Belarus Poland,2004, pp.80–84.
    [23] Reimund Neugebauer, Roland Glass.Matthias Kolbe, Michael Hoffimann, Optimization of processi-ng routes for cross rolling and spin extrusion[J]. Journal of Material Processing Technology,2002,125-126:856-862.
    [24] Z.Pater,A.Gontarz and W.Weronski.Cross-wedge rolling by means of one flat wedge and two sha-ped rolls[J].Journal of Materials Processing Technology,2006,177:550-554.
    [25]梁继才,任广升,白志斌等.空心件楔横轧旋转条件的分析[J].农业机械学报,1995,(01):97-101.
    [26]张康生,刘晋平,王宝雨.楔横轧空心件稳定轧制条件分析[J].北京科技大学学报,2001,23:155-157.
    [27]杜凤山,汪飞雪,杨勇.三辊楔横轧空心件成形机理的研究[J].中国机械工程,2005,24:2242-2245.
    [28] S.Urankar, M.Lovell,C.Morrow, Q.Li and K.Kawada. Development of a critical friction model forcross wedge rolling hollow shafts[J].Journal of Materials Processing Technology,2006,177:539-544.
    [29] S.Urankar, M.Lovell,C.Morrow, Q.Li and K. Kawada.Establishment of failure conditions for the cross-wedge rolling of hollow shafts[J]. Journal of Materials Processing Technology,2006,177:545-549.
    [30] D Woo, P J Hawkes. Determination of stress and st rain characteristics of tubular materials [J].Journal of Institute of Metals,1966.96:357-359.
    [31] A.Shirayori, S.Fuchizawa, H.Ishigure, M.Narazaki, Deformation Behavior of Tubes with ThicknessDeviation in Circumferential Direction During Hydraulic Free Bulging[J]. Journal of Material Processing Technology,2003,139(1-3):58-63.
    [32] M.Bakhshi-Jooybari, M.Elyasi, A.Gorji.Numerical and Experimental Investigation of the Effect ofthe Pressure Path on Forming Metallic bellows.Proceedings of the Institution of Mechanical Engineers,Part B[J]:Journal of Engineering Manufacture,2010,224(1):95-101.
    [33] Muammer Koc. Investigation of the Effect of Loading Path and Variation in Material Propertieson Robustness of the Tube Hydroforming Process[J]. Journal of Materials Processing Technology,2003,133(3):276-281.
    [34]苑世剑,王仲仁,王洪卫.球罐制作的整体液压胀形新工艺[J].化工机械,1991,18(1):47-50,537-540.
    [35] Manabe.Ken-ichi, Suetake.Masamitsu,Koyama.Hiroshi,Yang.Ming,Hydro forming Process Optimization of Aluminum Alloy Tube Using Intelligent Control Technique [J].International Journal of Machine Tools and Manufacture,2006,46(11):1207-1211.
    [36] Fiorentino.A, Ceretti.E, Attanasio.A, Braga.D, Giardini.C.Experimental Study of Lubrication Influe-nce in the Production of Hydro formed T-joint Tubes[J].Key Engineering Materials,2009,410-411:15-24.
    [37] Nikhare,C,Narasimhan,K.Computers,Effect of Prestrain on Formability and Forming Limit StrainsDuring Tube hydroforming[J].Materials&Continua,2008,7(3)129-138.
    [38] Hokook Lee, C.J.Van Tyne, David Field. Finite Element Bending Analysis of Oval Tubes UsingRotary Draw Bender for Hydroforming Applications[J].Journal of Materials Processing Technology,2005,168(2):327-335.
    [39] Jeong Kim,Sung-Jong Kang,Beom-Soo Kang.Computational Approach to Analysis and Design ofHydroforming Process for an Automobile Lower Arm[J]. Computers&Structures,2002,80(14-15):1295-1304.
    [40]苑世剑,李洪洋,戴昆,郎利辉,王仲仁.轻量化结构内高压成形技术[J].材料科学与工艺,2004,5(增刊):139-142.
    [41]林法禹.特种锻压工艺[M].北京:机械工业出版社,1991.
    [42]赵辉,刘靖,鹿守理.金属塑性成形过程的数值计算方法[J].钢铁研究,1997,(3):15-20.
    [43] D.Y Jang, J. H Liou.Study of stress development in axi-symmetric Products processed by radial-forging using a3-D non-linear finite-element method[J].Journal of Materials Precessing Technology,1998.74:74-82.
    [44] Joseph P, Domblesky,Rajiy Shivputi,Brett Painter.Application of the finite-element method to the radial forging of large diameter tubes[J].Journal of Materials Processing technology,1995,49:57-74.
    [45] Wang cc, Zhao c Q, Huang X H,et a1. Analysis and design of a New manufacturing process fo-r a support shaft using the finite element method[J]. Journal of Materials Processing Technology,2002,121:259-264.
    [46]曾忠礼.商速客车空心轴的研究[J].铁道车辆,1995,33:5-9.
    [47]黄忠辉.我国首台高速动力车空心车轴结构没汁及工艺[J].机械没计,1998(5):25-27.
    [48]刘庚武.50钢车轴的锻造与热处理工艺探讨[J].机车车辆工艺,1996(6):41-42.
    [49]秦敏,李继光,房娃,刘建生.空心车轴径向锻造工艺的模拟研究[J].太原科技大学学报,2009,(3):373-376.
    [50]曹洋,康凤,黄少东,李祖荣.钛合金管径向精锻数值模拟分析[J].锻压技术,2006,(3):71-73.
    [51]李传民,王向丽,闫华军等.DEFORM5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [52]金伟民.不同设备特性下的锻造成形过程数值模拟技术研究[D].上海:上海交通大学,2007.
    [53]应富强,张更超,潘孝勇.三维有限元模拟技术在金属塑性成形中的应用阴[J].锻压装备与制造技术,2003(5):10-13.
    [54]陈莉,宋宝韫,运新兵.铜扁线挤压模腔内材料成形的数值模拟[J].塑性工程学报,2003,(6):66-69.
    [55]赵颖,宋宝韫,运新兵等.平行流铝管连续挤压金属流动的数值模拟研究[J].塑性工程学报,2007,(2):58-63.
    [56]陈俊锋,闫牧夫,汪向荣.AerMet100钢热挤压变形过程数值模拟[J].材料热处理学报,2007,28:367-330.
    [57]薛永栋,韩静涛.基于DEFORM的金属压力加工数值模拟[J].冶金设备,2007,(4):34-37.
    [58] Dyi-Cheng Chen. Rigid-plastic finite element analysis of plastic deformation of porous metal she-ets containing internal void defects [J]. Journal of Materials Processing Technology,2006,180:193-200.
    [59] T. Katajarinne, T. Manninen, P. Ramsay. Numerical simulation of flash formation in continuous r-otary extrusion of copper [J]. Journal of Materials Processing Technology,2006,177:604-607.
    [60] O.C.Zienkiewicz,The Finite Element Method, third Edition, New York, McGraw-Hill,1977.
    [61]刘桂华,任广升,徐春国.辊锻三维变形过程的数值模拟研究[J].塑性工程学报.2004.(11):89-91.
    [62]朱春东,王辉。拉杆辊锻制坯有限元模拟[J].金属铸锻焊技术.2010.(39):108-111.
    [63]王华君,夏巨谌,胡国安,王新云.前轴成型辊锻工艺及三维有限元模拟[J].华中科技大学学报.2005.(33):84-86.
    [64]蒋鹏,付殿禹,曹飞,余光中.铁路货车钩尾框精密辊锻过程数值模拟[J].锻压技术,2007.(32):107-110.
    [65]洪深泽,胡积威,陈建学.金属成形过程的刚塑性有限元数值模拟川[J].合肥工业大学学报(自然科学版),1995,18(1):22-27.
    [66]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003.
    [67]汪凌云,刘静安.计算金属成形力学及应用[M].重庆大学出版社,1991.
    [68]冯炳饶,韩泰荣,殷振海等.模具设计及制造简明手册[M].机械工业出版社,1985.
    [69]李尧.金属塑性成形原理[M].机械工业出版社,2004.7.
    [70]刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003.
    [71] S. Kobayashi, S. I. Oh, T. Altan. Metal Forming and the Finite Element Method [M]. Oxford U-niversity Press,1989.
    [72]汪大年.金属塑性成形原理,第二版[M].北京:机械工业出版社,1986.
    [73]马爱军,周传月,王旭.Patran和Nastran有限元分析专业教程[M].清华大学出版社2005-06.
    [74]徐荣珍.反挤压凹模内压力的有限元模拟及组合凹模优化[D].合肥工业大学2003.3.
    [75]张莉,李升均. D E F O R M在金属塑性成形中的应用[M].机械工业书版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700