纤维预制件渗透率的预测及其浸润过程有限元模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进树脂基复合材料因其具有高比强度、高比模量、耐腐蚀、耐疲劳、可设计性强和可大面积整体成型等诸多优点而成为航空航天领域不可或缺的重要战略材料。然而,复合材料制造高成本限制了其进一步发展,为此低成本的树脂传递模塑(Resin Transfer Moulding, RTM)成型已成为航空工业的主流技术之一,但在其制品中经常会出现干斑、孔隙等浸润缺陷,这些缺陷会极大影响产品的质量和性能,而预制件渗透率的不均匀性是引起空隙或干斑的一个重要原因。纤维预制件的渗透率描述了预制件对树脂流动的阻碍程度,是RTM成型过程中树脂流动的一个重要参数。渗透率作为预制件的关键性能之一,与其结构密切相关,由于它与预制件多层次结构的复杂相关性而使得渗透率的预测一直面临着挑战;另外,树脂在纤维中的充分浸润流动是RTM复合材料制品性能的关键影响因素。因此,探讨预制件渗透率与其结构参数的相关性并对其精确预报,进而通过数值模拟预测RTM浸润工艺过程是目前亟待解决的关键问题。
     本文建立非弯折织物(Non-Crimp Fabric, NCF)预制件无缝线和有缝线两类单胞,针对纤维预制件具有双级多孔的特性,在基于双尺度多孔介质的束内/束间耦合流动基础上,数值模拟树脂在预制件细微观结构中的浸润耦合流动行为。采用Brinkman方程描述树脂在纤维束内孔隙的流动,采用Stokes方程描述树脂在纤维束间区域的流动,建立在预制件束内和束问树脂耦合流动的数学模型,利用体积平均化理论,求解速度场和压力场,通过Darcy定律开展NCF预制件面内渗透率的预测。探究了影响渗透率的关键结构参数,开展了不同纤维铺层方式对NCF预制件面内渗透率的影响研究,揭示了纤维预制件的多层次结构参数对面内渗透率的影响规律,在渗透率的预测方面取得了较大进展。对比了有缝线和无缝线两种类型NCF单胞的渗透率大小,重点分析了纤维束形状大小(包括纤维束宽度B、高度h和纤维束沿纤维方向截面椭圆长半轴c、束间距b)及纤维布不同铺层方式等结构因素对预制件面内渗透率的影响。通过引入Morris全局灵敏度分析方法量化了纤维预制件结构参数对渗透率的影响程度,为纤维预制件结构进一步优化提供了重要的理论依据。研究了纤维束在缝制分叉时等效直径、缝线的尺寸和分布、缝线偏离中心距离等因素对纤维预制件面内渗透率的影响。结果表明:没有缝线的预制件单胞面内渗透率大于有缝线的预制件渗透率。预制件渗透率随着纤维束宽度的增加而降低,随着纤维束的高度、纤维束截面边沿椭圆弧的长半轴和纤维束间距的提高而提高。当纤维束宽增加1.2倍时,无缝线的单胞渗透率降低了约52%,而有缝线的单胞渗透率降低了约54%;高度提高一倍时,对应无缝线单胞渗透率增加了约2倍,而有缝线单胞渗透率增加了1.73倍;长半轴增加3.2倍,对应无缝线单胞渗透率增加了30%,有缝线单胞渗透率增加了29%;纤维束间距增加4.7倍,对应无缝线单胞渗透率增加了11.3倍,而有缝线单胞渗透率增加了14倍。预制件渗透率对于不同参数的灵敏度顺序是:b>h>B>c。预制件渗透率对纤维束间距是最为敏感的,对于纤维束截面边沿椭圆弧的长半轴相对不敏感。NCF预制件因缝制时纤维束的分叉阻碍了流体的渗流速度,当流道内交叉束的等效直径与纤维束间距离比是0.7时,纤维束分叉情况下渗透率比没有分叉的预制件单胞渗透率降低约80%。预制件渗透率随着缝线中心位置逐渐偏离流道中心略有增加,随着缝线倾斜角度增加而略有降低。
     基于预制件纤维束间流道的压力降和其几何结构参数的关系,建立了纤维预制件面内渗透率与其结构相关联的解析模型;对于缝制的单胞,通过引入修正因子和缝线等效方法,建立了纤维预制件渗透率与关键参数的结构相关性解析模型。应用该模型预测的渗透率与有限元计算结果进行对比,结果表明所提出的解析模型在一定范围内能够精确预测纤维预制件面内渗透率,从而实现了多层次结构预制件渗透率的快速精确预测,为完善RTM成型充填理论、优化工艺参数和降低成本起到重要作用。
     针对北京航空材料研究院先进复合材料重点实验室提出的“离位”增韧技术,揭示了增韧层对预制件渗透率的影响规律和机理,重点分析了增韧层的厚度和渗透率以及不同纤维铺层角度对纤维预制件Z向渗透率的影响。结果表明:纤维预制件Z向渗透率随着增韧层厚度的增加而降低,随着增韧层渗透率的增加而增加;[0]2铺层的纤维预制件Z向等效渗透率远大于其他铺层角度的预制件渗透率,在[0/30]、[0/45]、[0/60]和[0/90]铺层中,[0/45]铺层预制件渗透率最大,[0/30]铺层预制件渗透率最小。纤维体积分数、流道比表面积和流道分布结构决定着渗透率的大小;所提出的数值模拟模型能够精确预测Z向渗透率,作为Z向流动RTM成型模拟的关键参数,它的精确预测对进一步RTM成型的设计和优化提供了重要指导。
     针对树脂在多尺度纤维预制件中的流动特点,引入了不饱和因子修正Darcy定律,建立了描述树脂在纤维预制件中非稳态流动的偏微分方程(Partial Differential Equation, PDE),利用COMSOL软件作为求解器求解RTM成型时树脂流动的控制方程,研究了树脂流动前沿演化规律,将其与解析解和实验结果进行对比,结果表明该模型能够精确预测树脂在纤维预制件中的非稳态流动。针对“离位”增韧技术和Z-RTM成型技术,研究了RTM非稳态浸润过程注射口压力与时间关系的曲线,并与实验结果进行了对比。模拟了树脂在层间未增韧和“离位”增韧纤维预制件束内和束间的流动,实现了树脂在纤维预制件细微观层次浸润的可视化。这种可视化结果为预测树脂在预制件中的宏观流动提供了重要补充并为实际工艺提供了一定指导作用。通过分析发现增韧层使得流动前锋更加平滑,从而减少了成型制品的缺陷。研究了不同成型工艺参数(包括树脂黏度、注射压力和不同渗透率等)对流动前沿的影响规律,从而为实际生产提供了一定的指导作用。
Advanced resin matrix composites are indispensable strategic materials in the field of aerospace due to their advantages of high specific strength, high specific modulus, corrosion resistance, fatigue resistance, easy design and large area molding. But its further development is restricted by the high cost of the composite manufacturing. Resin transfer molding (RTM), as a typical representative in the advanced composites molding process, has become one of mainstream technologies to realize low-cost. However, the products in RTM often have the defects such as dry spots or voids, which will affect the product quality and performance. The permeability inhomogeneity is one of important reasons of dry spots or voids. The permeability of the fiber preform, which represents the ease of flowing through a porous medium, is an important parameter influencing the resin impregnation process. The permeability is one of preform's key properties, which is closely related to its structure. Many challeges are faced for permeability prediction due to its complex correlation with multi-level structure of preform. Besides, the sufficient infiltration flow of the resin in the fiber is a key factor directly affecting the performance of RTM products. Therefore, it is an urgent issue to discuss the permeability's correlation with structural parameters of the preform and further accurate prediction of RTM process by numerical simulation.
     In this paper, two types of cells with or without stitch of Non-Crimp Fabric (NCF) are built. Aimed at the dual porous charateristic of the fiber preform and based on intra-tow and inter-tow coupling flow of dual scale porous medium, the infiltration coupling flow behaviour of the resin in the meso-level and micro-level of the preform is numerically simulated. Brinkman equation is used to describe intra-tow flow, while Stokes equation is used to discribe inter-tow flow. The mathematical models of the resin flow in the intra-tow and inter-tow of the preform are built. The velocity field and the pressure field are solved by the volume averaging theory and the prediction for NCF's in-plane permeability is developed combined with Darcy's law.
     The key structural parameters affecting permeability are discussed. The effect of the different NCF's ply orientation on the in-plane permeability is investigated. The influencing law of multi-level structural parameters of the preform on the in-plane permeability is revealed, which result in the breakthrough in the permeability prediction. The permeability of two cell of the preform with or without stitch is compared. The effect of the structural factors including the width (B), the height (h), the semi-major axis length of the ellipse section of fiber bundle (c) and the distance between fiber bundles (b) and fiber ply orientation on the in-plane permeability of the preform is investaged. The influencing degree of different structural parameters on the permeability is quantized by Morris sensitivity analysis method, which proves an important theoretical basis for further optimization and design of the fiber preform structure. The effect of crossing equivalent radius between the fiber bundle and flow channel of the cell with stitch, size and distribution of the stitch, off-center distance of stitch on preform permeability is focused. The results show that in-plane permeability of the preform cell without stitch is larger than that of the preform cell with stitch. The preform permeability decreases with the increase of the fiber bundle width, increases with the increase of the fiber bundle height and the semi-major axis length of the ellipse section of fiber bundle and the distance between fiber bundles. The permeability of the cell without stitch decreases about52percent and the permeability of the cell with stitch decreases about54percent when the fiber bundle width inreases by1.2times. The permeability of the cell without stitch increases about two times and the permeability of the cell with stitch increases about1.7times when the fiber bundle height doubles. The permeability of the cell without stitch increases by30%and the permeability of the cell with stitch increases by29%when the semi-major axis length of the ellipse section of fiber bundle increases by3.2times. The permeability of the cell without stitch increases by11.3times and the permeability of the cell with stitch increases by14times when the distance between fiber bundles increases by4.7times. The order of permeability sensitivity degree corresponding to different structural parameters is as follows:b>h>B>c. The in-plane permeability is most sensitive to the distance between fiber bundles, while the semi-major axis length of the ellipse section of fiber bundle is relatively unsensitive. The fiber bundle crossing greatly hampers the flow velocity. Compared with the preform permeability without crossing, the preform permeability with crossing lowers by80%when the ratio of equivalent diameter of crossing bundle of flow channel to distance between the bundles is0.7. The preform permeability increases slightly with the increase of off-center distance, while decreases slightly with the increase of inclination angle of the stitch.
     The analytical model of the in-plane permeability of the fabric correlated with its structure is built on basis of the relation between the pressure drop and geometric parameters of the flow channel between the flow channels. The analytical model correlated with stitched fiber preform structure is built by the introduction of the modifying factor and equivalent channel method for the stitched fabric cell. The predicted permeability by the proposed model is compared with the results by the finite element method. The results show that the proposed mathematical model can accurately predict in-plane permeability of the fiber preform, which makes it possible to fast and accurately predict the permeability of the preform with multi-level structure. It play an important role in promoting RTM molding mold filling theory, improving composite material technology, optimizing the process parameters and reducing costs.
     Aiming at ex-situ toughening technology proposed by National Key Laboratory of Advanced Composites of Beijing Institute of Aeronautical Materials, the influencing law and the mechanism of the interlaminar toughening layer on preform permeability are investigated. The effect of the toughening layer thickness and permeability and fiber ply orientation on the Z-direction permeability of the preform is analyzed emphatically. The results show that the Z-direction permeability of the preform decreases with the increase of toughening layer thickness, while increases with the increase of the toughening layer's permeability. The Z-direction permeability of the preform with [0]2ply orientation is larger than the permeability corresponding to other ply orientations. Among [0/30],[0/45],[0/60] and [0/90] ply orientations, the Z-direction permeability of the preform with [0/45] ply orientation is the largest, while [0/30] ply orientation is the lowest. Fiber volume fraction, specific surface areas of the flow channel and flow channel structure determine the preform permeability. The proposed numerical simulation model can accurately predict Z-direction permeability. It is a key parameter of RTM process flow simulation along the Z-direction of the preform, which will provides an important guiding role for further RTM process design and optimization.
     Aimed at the characteristics of the resin flow through multi-scale fiber preform, Darcy's law is modified by the unsaturated factor. The partial differential equation (PDE) describing the resin unsteady flow in the fiber preform is established. The control equation of resin flow in the preform for RTM is solved by COMSOL software as a solver. The resin flow front evolution is investigated, which is compared with analytical solution and experimental result. The results show that the model can accurately predict resin unsteady flow in fiber preform. Aimed at ex-situ toughening technology and Z-direction RTM process, the inlet pressure and time relation curve of untoughening and toughening unsteady infiltration process is investigated and compared with experimental results. The resin flow intra-tow and inter-tow of the preform with toughening layer and untoughening layer is simulated. The infiltration visualization of resin flow through meso-scale and micro-scale fiber preform is realized, which provides an important supplement for prediction of macro-flow in fiber preform and guidance for actual process. The toughening layer makes flow front smoother, which reduces defect of the product. The influencing rule of the process parameters (including the resin viscosity, injection pressure and preform permeability) on the flow front is studied, which makes the model become a powerful tool to guide RTM mould design and process design, and will prove technical support for the actual production.
引文
[1]罗延龄.现代科学技术与材料科学[J].中国科技纵横,2010,(22):4-5.
    [2]王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[M].北京:科学出版社,2004.
    [3]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [4]克鲁肯巴赫,佩顿.航空航天复合材料结构件树脂传递模塑成形技术[M].北京:航空工业出版社,2009.
    [5]杜善义,关志东.我国大型客机先进复合材料技术应对策略思考[J].复合材料学报,2008,25(1):1-10.
    [6]沈军,谢怀勤.先进复合材料在航空航天领域的研发与应用[J].材料科学与工艺,2008,16(5):737-740.
    [7]益小苏,许亚洪,程群峰,等.航空树脂基复合材料的高韧性化研究进展[J].科技导报,2008,26(6):84-92.
    [8]Lee DH, Lee WI, Kang MK. Analysis and minimization of void formation during resin transfer molding process[J]. Composites Science and Technology,2006, 66(16):3281-3289.
    [9]Hamidi YK, Dharmavaram S, Aktas L, et al. Effect of fiber content on void morphology in resin transfer molded e-glass/epoxy composites[J]. Journal of Engineering Materials and Technology,2009,131:021014-1-021014-11.
    [10]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.
    [11]艾伦·哈珀.树脂传递模塑技术[M].董雨达,译.哈尔滨工业大学出版社,2003.
    [12]杨俊英.树脂传递模塑工艺过程的数值模拟[D].济南:山东大学,2007.
    [13]陈祥宝,包建文,娄葵阳.树脂基复合材料制造技术[M].北京:化学工业出版社,1999.
    [14]益小苏,李宏运.航空液态成型复合材料关键技术研究[J].新材料产业,2009,(11):6-15.
    [15]张朋,刘刚,胡晓兰,等.结构化增韧层增韧RTM复合材料性能[J].复合材料学报,2012,29(4):1-9.
    [16]李伟东.基于“离位”增韧技术的Z向流动RTM成型工艺原理研究[D].北京:北京航空材料研究院,2013.
    [17]益小苏,王凡,安学锋,等.一种用于复合材料成型的金属编织网树脂流动分配器:中国,201020597767.4[P].2011-07-06.
    [18]益小苏,安学锋,李宏运,等.一种闭合模腔内置树脂流动分配器的复合材料液态成型方法:中国,201010583204.4[P].2010-12-13.
    [19]李伟东,刘刚,安学锋,等.z向流动RTM工艺树脂的流动浸润行为[J].复合材料学报,2013,30(6):82-89.
    [20]张尧州,李雪芹,唐邦铭,等.RTM成型复合材料中微观缺陷表征及分析[J].材料工程,2009,(增刊2):328-331.
    [21]齐燕燕,刘亚青,张艳君.RTM主要缺陷的研究进展[J].工程塑料应用,2006,34(12):72-75.
    [22]Nina Barnett. Permeability characterization and microvoid prediction during impregnation of fiber tows in dual-scale fabrics[D]. Newark:Faculty of the University of Delaware,2005.
    [23]李嘉禄,吴晓青,冯驰.RTM中纤维渗透率预测的研究进展[J].复合材料学报,2006,23(6):1-8.
    [24]晏石林,杨云飞,杨梅,等.一维面内非饱和渗透率的实验测量[J].武汉理工大学学报,2008,30(2):49-52.
    [25]刘井红,吴晓青.径向法测量经编双轴向织物渗透率[J].宇航材料工艺,2007,(1):55-57.
    [26]Tan H, Pillai KM. Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I:isothermal flows[J]. Composites:Part A, 2012,43(1):1-13.
    [27]Loendersloot R. The structure-permeability relation of textile reinforcements [D]. Enschede:University of Twente,2006.
    [28]Chen XM, Papathanasiou TD. The transverse permeability of disordered fiber arrays:a statistical correlation in terms of the mean nearest interfiber spacing[J]. Transport in Porous Media,2008,71(2):233-251.
    [29]Nabovati A, Sousa ACM. Fluid flow simulation in random porous media at pore level using the lattice Boltzmann method[J]. Journal of Engineering Science and Technology,2007,2(3):226-237.
    [30]Nabovati A, Llewellin EW, Sousa ACM. A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[J]. Composites:Part A,2009,40(6-7):860-869.
    [31]Chen ZR, Ye L, Lu M. Permeability predictions for woven fabric preforms[J]. Journal of Composite Materials,2010,44(13):1569-1586.
    [32]Song YS, Chung K, Kang TJ, et al. Prediction of permeability tensor for three dimensional circular braided preform by applying a finite volume method to a unit cell[J]. Composites Science and Technology,2004,64(10-11):1629-1636.
    [33]Verleye B, Croce R, Griebel M, et al. Permeability of textile reinforcements: Simulation, influence of shear and validation[J]. Composites Science and Technology,2008,68(13):2804-2810.
    [34]NgO ND, Tamma KK. Microscale permeability predictions of porous fibrous media[J]. International Journal of Heat and Mass Transfer,2001,44(16): 3135-3145.
    [35]吴炎,晏石林,谭华.具有空隙尺寸双尺度特性的纤维织物渗透率的预测[J].固体力学学报,2008,29(专辑):80-84.
    [36]Verleye B, Lomov SV, Long A, et al. Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding [J]. Composites Part A:Applied Science and Manufacturing,2010,41(1):29-35.
    [37]Nordlund M, Lundstrom TS. Numerical study of the local permeability of noncrimp fabrics[J]. Journal of Composite Materials,2005,39(10):929-947.
    [38]何海东,贾玉玺,丁妍羽,等.无弯曲纤维织物面内渗透率的结构相关性[J].复合材料学报,2011,28(5):70-76.
    [39]Endruweit A, Long AC. A model for the in-plane permeability of triaxially braided reinforcements[J]. Composites:Part A,2011,42(2):165-172.
    [40]Simacek P, Advani SG. A numerical model to predict fiber tow saturation during liquid composite molding[J]. Composites Science and Technology,2003,63(12): 1725-1736.
    [41]Zhou FP, Kuentzer N, Simacek P, et al. Analytic characterization of the permeability of dual-scale fibrous porous media[J]. Composites Science and Technology,2006,66(15):2795-2803.
    [42]Zhou FP, Alms J, Advani SG. A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions[J]. Composites Science and Technology,2008,6(3-4):699-708.
    [43]Kuentzer N, Simacek P, Advani S G, et al. Permeability characterization of dual scale fibrous porous media[J]. Composites Part A:Applied Science and Manufacturing,2006,37(11):2057-2068.
    [44]戴福洪,卢守舟,杜善义.树脂传递模塑工艺中的非饱和流动过程模拟与实验研究[J].复合材料学报,2010,27(2):84-89.
    [45]Francucci G, Rodriguez ES, Vazquez A. Study of saturated and unsaturated permeability in natural fiber fabrics[J]. Composites:Part A,2010,41(1):16-21.
    [46]田正刚,祝颖丹,张垣,等.剪切效应对纤维增强材料渗透率的影响[J].武汉理工大学学报,2005,27(2):4-6.
    [47]Lai CL, Young WB. Model resin permeation of fiber reinforcements after shear deformation[J]. Polymer Composites,1997,18(5):642-648.
    [48]Demaria C, Ruiz E, Trochu F. In-plane anisotropic permeability characterization of deformed woven fabrics by unidirectional injection. Part II:prediction model and numerical simulations[J]. Polymer Composites,2007,28(6):812-827.
    [49]梁晓宁,李炜,罗永康,等.厚铺层结构纤维增强体渗透性能研究[J].玻璃钢/复合材料,2010,(1):46-52.
    [50]陈萍,李宏运,陈祥宝.铺层方式对织物渗透率的影响[J].复合材料学报,2001,18(1):30-33.
    [51]高娟娟,张佐光,梁子青,等.织物预成型体厚度方向渗透特性研究[J].材料工程,2006,(9):20-22.
    [52]Nabovati A, Llewellin EW, Sousa ACM. Through-thickness permeability prediction of three-dimensional multifilament woven fabrics[J]. Composites:Part A,2010,41(4):453-463.
    [53]Song YS, Heider D, Youn JR. Statistical characteristics of out-of-plane permeability for plain-woven structure[J]. Polymer Composites,2009,30(10): 1465-1472.
    [54]Merotte J, SimaceK P, Advani SG. Resin flow analysis with fiber preform deformation in through thickness direction during compression resin transfer molding[J]. Composites:Part A,2010,41(7):881-887.
    [55]Simacek P, Advani SG. Permeability model for a woven fabric[J]. Polymer Composites,1996,17(6):887-899.
    [56]NgO ND, Tamma KK. Complex three-dimensional microstructural permeability prediction of porous fibrous media with and without compaction[J]. International Journal for Numerical Methods in Engineering,2004,60(10):1741-1757.
    [57]Golestanian H, Poursina M. Neural network analysis application to permeability determination of fiberglass and carbon preforms[J]. Chinese Journal of Polymer Science,2009,27(2):221-229.
    [58]Golestanian H. Preform permeability variation with porosity of fiberglass and carbon mats[J]. Journal of Materials Science,2008,43(20):6676-6681.
    [59]Rodriguez E, Giacomelli F, Vazquez A. Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements[J]. Journal of Composite Materials,2004,38(3):259-268.
    [60]Shih CH, Lee LJ. Effect of fiber architecture on permeability in liquid composite molding[J]. Polymer Composites,1998,19(5):626-639.
    [61]董抒华,王成国,贾玉玺,等.纤维复合材料预制件渗透率与其结构相关性的研究进展[J].材料工程,2013,(5):94-100.
    [62]李海晨,王彪,周振功.RTM工艺树脂流动过程数值模拟[J].复合材料学报,2002,19(2):18-23.
    [63]江顺亮.树脂传递成型加工溢料口位置的快速确定法[J].复合材料学报,2002,19(3):29-32.
    [64]贾玉玺,原波,杨俊英,等.树脂传递模塑过程的数学描述和数值模拟进展[J].材料研究学报,2005,19(5):449-456.
    [65]孔晋峰,张彦飞,刘亚青.树脂传递模塑(RTM)工艺数值模拟研究进展[J].绝缘材料,2008,41(4):52-55.
    [66]Young WB, Han K, Fong LH, et al. Flow simulation in molds with preplaced fiber mats[J]. Polymer Composites,1991,12:391-403.
    [67]Lee LJ, Young WB, Lin RJ. Mold filling and cure modeling of RTM and SRIM processes[J]. Composite Structures,1994,27:109-120.
    [68]Gogos CG, Huang CF, Schmidt LR. Process of cavity filling including the fountain flow in injection molding[J]. Polymer Engineering and Science,1986, 26(20):1457-1466.
    [69]戴福洪,张博明,杜善义,等.RTM工艺注模过程模拟的有限元/控制体积方法和流动分析网络技术比较[J].复合材料学报,2004,21(2):92-98.
    [70]Bruschke MV, Advani SG. A fintie element/control volume approach to mold filling in anisotropic porous media[J]. Polymer Composites,1990,11:398-405.
    [71]Trochu F, Gauvin R, Zhang Z. Simulation of mold filling in resin transfer molding by non-conforming finite elements[J]. Computer Aided Design in Composite Material Technology,1992,109-120.
    [72]梁志勇,段跃新,尹明仁,等.复合材料RTM制造工艺计算机模拟分析研究[J].航空学报,2000,21(51):66-71.
    [73]江顺亮.RTM加工工艺充模过程的计算机模拟[J].复合材料学报,2002,19(2):13-17.
    [74]吕昶,薛元德.RTM工艺充模过程数值模拟及实验比较[J].复合材料学报,1999,16(1):131-136.
    [75]李海晨,王彪,林新.用贴体坐标法模拟RTM工艺树脂流动过程[J].哈尔滨工业大学学报,2003,35(1):58-61.
    [76]Saouab A, Breard J, Lory P, et al. Injection simulations of thick composite parts manufactured by the RTM process[J]. Composites Science and Technology,2001, 61(3):445-451.
    [77]姚振汉.边界元法[M].北京:高等教育出版社,2010.
    [78]Gebart BR. Permeability of unidirectional reinforcements for RTM[J]. Journal of Composite Materials,1992,26(8):1100-1133.
    [79]贝尔·J.多孔介质流体动力学[M].李竞生,陈崇希,译.北京:中国建筑工业出版社,1983.
    [80]T.G.古托夫斯基.先进复合材料制造技术[M].李宏运译.北京:化学工业出版社,2004.
    [81]周光垌,严宗毅,许世雄,等.流体力学(第二版)[M].北京:高等教育出版社,2000.
    [82]Yang JY, Jia YX, Sun S, et al. Mesoscopic simulation of the impregnating process of unidirectional fibrous preform in resin transfer molding[J]. Materials Science and Engineering A,2006,435-436:515-520.
    [83]Tamayol A, Hooman K, Bahrami M. Thermal analysis of flow in a porous medium over a permeable stretching wall[J]. Transport in Porous Media,2010,85: 661-676.
    [84]丁妍羽.基于化学流变学的树脂传递模塑工艺过程的数值模拟及灵敏度分析[D].济南:山东大学,2011.
    [85]罗建.系统灵敏度理论导论[M].西安:西北工业大学出版社,1990:60-90.
    [86]Confalonieri R, Bellocchi G, Bregaglio S, et al. Comparison of sensitivity analysis techniques:A case study with the rice model WARM[J]. Ecological Modelling,2010,221:1897-1906.
    [87]孟宪萌,田富强.越流区承压含水层特殊脆弱性评价模型的参数灵敏度分析[J].水力发电学报,2011,30(4):49-55.
    [88]王勖成.有限单元法[M].北京:清华大学出版社.2003.
    [89]马慧,王刚.COMSOL Multiphysics基本操作指南和常见问题解答[M].北京:人民交通出版社,2009.
    [90]戴福洪,张博明,杜善义.用均匀化方法预报平纹织物的渗透率[J].复合材料学报,2009,26(2):90-93.
    [91]Verleye B, Croce R, Griebel M, et al. Permeability of textile reinforcements: Simulation, influence of shear and validation[J]. Composites Science and Technology,2008,68(13):2804-2810.
    [92]Lekakou C, Edwards S, Bell G, et al. Computer modelling for the prediction of the in-plane permeability of non-crimp stitch bonded fabrics[J]. Composites:Part A,2006,37(6):820-825.
    [93]Lai YH, Bamin Khomami, and John L. Kardos. Accurate Permeability Characterization of Preforms Used in Polymer Matrix Composite Fabrication Processes[J]. Polymer Composites,1997,18(3):368-377.
    [94]吴晓青,李嘉禄.编织预制件渗透率测量方法的比较研究[J].武汉理工大学学报,2007,29(3):16-19.
    [95]李海晨,张明福,王彪.RTM工艺增强纤维渗透率测量方法研究[J].航空材料学报,2001,21(1):51-54.
    [96]LBIE. Multiaxial Fabrics. (2012)http://www.lbie.com/vyarn.htm.
    [97]何海东.纤维复合材料预制件渗透率的结构相关性建模[D].济南:山东大学,2011.
    [98]Nicola Tessitore, Aniello Riccio. A novel FEM model for biaxial non-crimp fabric composite materials under tension[J]. Computers and Structures,2006,84: 1200-1207.
    [99]孙艳伟,把多铎,王文川,等.SWMM模型径流参数全局灵敏度分析[J].农业机械学报,2012,(7):42-49.
    [100]贾建芳,岳红,刘太元,王宏.基于Morris法的细胞信号转导网络全局灵敏性分析[J].计算机与应用化学,2008,25(1):7-10.
    [101]徐崇刚,胡远满,常禹,等.生态模型的灵敏度分析[J].应用生态学报,2004,15(6):1056—1062.
    [102]Morris MD. Factorial sampling plans for preliminary computational experiments[J]. Technometrics,1991,33(2):161-174.
    [103]Nordlund M, Lundstrom TS, Frishfelds V, et al. Permeability network model for non-crimp fabrics[J]. Composites:Part A,2006,37(6):826-835.
    [104]Lundstrom TS. The permeability of non-crimp stitched fabrics[J]. Composites: Part A,2000,31(12):1345-1353.
    [105]Bahrami M, Yovanovich MM and Culham JR. A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section[J]. International Journal of Heat and Mass Transfer,2007,50(13-14):2492-2502.
    [106]Tamayol A and Bahrami M. Analytical determination of viscous permeability of fibrous porous media[J]. International Journal of Heat and Mass Transfer,2009, 52(9-10):2407-2414.
    [107]Bahrami M, Yovanovich MM and Culham JR. Pressure drop of fully-developed, laminar flow in microchannels of arbitrary cross-section[C]. In:Proceedings of ICMM 2005,3rd International Conference on Microchannels and Minichannels. Toronto,2005, June, p.1-12.
    [108]Zhao HZ. The numerical solution of gaseous slip flows in microtubes[J]. International Communications in Heat and Mass Transfer,2001,28(4):585-594.
    [109]Bahrami M, Tamayol A and Taheri P. Slip-flow pressure drop in microchannels of general cross section[J]. Journal of Fluids Engineering,2009,131(3):031201.
    [110]卜建辉.RTM成型过程数值模拟[D].郑州大学,2006.
    [111]张国利,李嘉禄,李学明.二步法三维编织变截面薄壁壳体RTM工艺数值模拟与试验研究[J].复合材料学报,2005,22(3):135-139.
    [112]Klunker. F, Elsenhans C, Aranda.S, et al. Modelling the Resin Infusion Process, Part I:Flow Modelling and Numerical Investigation for Constant Geometries[J]. Journal of Plastics Technology[J],2011.7(5):179-200.
    [113]秦伟,李海晨,张志谦,等.RTM工艺树脂流动过程数值模拟及实验比较[J].复合材料学报,2003,20(4):77-80.
    [114]王柏臣,黄玉东,刘丽.树脂传递模塑(RTM)工艺树脂微观流动行为数值分析[J].固体火箭技术,2006,29(4):296-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700