深空辐射粒子在介质材料中的输运及损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着探月工程、火星探险等深空探测任务的提出、实施,航天活动在时间上的延长、空间上的延伸,尤其是载人航天工程的开展,深空辐射带来的辐射危险和防护问题日益突出。本文围绕着深空辐射损伤和防护问题,系统地研究了深空辐射模型、粒子输运、辐射效应和材料屏蔽,重点研究了高能重离子在介质中的输运过程、能量转移和能量沉积,研发了重粒子剂量计算软件HID和深空辐射分析软件PSR,研究了重离子在高聚物材料中损伤形成的径迹结构及其微剂量学实验特征。
     本文分析研究了深空辐射场粒子的特点和模型,采用CREME-96模型得到了GCR的各种粒子谱分布,以特大太阳粒子事件的拟合谱代表SPE质子谱,获得了不同来源空间辐射粒子的注量、谱分布。采用蒙特卡罗方法,运用Geant4软件工具包进行程序编制,对粒子输运问题进行了深入研究;通过扩充数据库、纳入新的相互作用模型、建立新的功能模块实现了粒子输运的能量沉积、能量转移、等效剂量等辐射剂量学量的模拟计算、分析。采用软件移植、封装手段和操作界面优化设计,形成了两个粒子输运软件HID和PSR。HID软件中引入了核碎裂模型,改进了计算结果,实现了重离子能量沉积、剂量等的准确计算,通过对比高能碳离子和铁离子在等效介质中的能量沉积行为,发现碎裂核反应对射线品质因子有重要影响,并研究了次级粒子的剂量学特性。PSR经过数据库扩充和完善,实现了行星表面的辐射环境、粒子在大气或行星磁场中的运动模拟,可为火星任务等深空探测提供辐射环境预估。这两个软件均实现了windows界面的操作方式,同时也可在Linux下操作,满足多层次任务的需求。
     通过基于Linux和MPI的并行模拟计算平台,从次级碎片、人体关键器官剂量、中子场三个辐射防护量对典型空间辐射屏蔽材料的屏蔽性能进行评价,从三个方面得到了一致的结论:富氢元素材料在深空辐射防护中具有较好的屏蔽效果,对于深空中的重离子,厚度增加对提高屏蔽效率已经不再具有优势,对于长时间的深空探测,深空辐射防护问题十分严峻。
     从微观层次对重离子的径迹结构进行了研究,以高聚物CR-39为介质材料,利用中国原子能院提供重离子微束进行实验,用光学和原子力显微镜(AFM)研究重离子的径迹结构。研究了纳米和微米尺度蚀刻径迹,得到了微观辐射损伤参数,发现了传统模型在蚀刻初始时的不适用性,同时在传统模型适用的微观尺度提出了新的蚀刻速率比参量来建立蚀刻动力学模型,并通过观测分析得到了100MeV硅离子的径迹半径、微观局部剂量等微剂量学量。
With the development of deep exploration, the hazards of space radiation to crews in traveling to moon and mars play the dominant role. In case of mars mission, in which crews spend most of the time outside the earth’s magnetic field, galactic cosmic rays(GCR) and solar particle event(SPE) are main exposure concerns. The accumulation of exposures to GCR ions can significantly increase the risk of cancer to astronaut and the SPE can deliver a potentially lethal dose in a few hours’time. So radiation protection is essential and central significance in exploration scenario.
     The topics of this paper include deep space radiation environment modeling, radiation transport, material protection and damage, which have been recognized as four critical issues in space radiation protection system.
     First, GCR model which is CREME-96 and SPE model which is a data fitting model are used for deep space radiation analysis. Thereafter, two space radiation transport codes, Heavy Ion Dosimetry(HID) and Deep Space Radiation Analysis(PSR), are developed based on Geant4 Monte Carlo toolkit. Nuclear reaction model– abrasion-ablation model is adopted in HID code which refines the calculation results as dose, energy deposition, et al. Heavy ion induced fragments is analyzed in case of high energy heavy ion pass through biological material and space protection materials. PSR code is aim to deal with space radiation transport in atmosphere and magnet of the planet. It can be used for planet radiation analysis in deep space by renewing the database of the planet and particle transport data. These two codes are encapsulated and windows operating interface and can operated under both Linux and windows system to meet the need of different people.
     Heavy ion fragments, organ dose and neutron flux are considered as three main aspect in space radiation protection material assessment. All the evaluation aspects do claim and verify that liquid hydrogen is the optimal material among typical space radiation protection materials as water, polyethylene and aluminum. And in deep space, protection efficiency decreases as shielding thickness increases for heavy ions.
     Heavy ion track is connected to radiation damage. A kind of polymer material called CR-39 is chosen as protection and biological equivalent material. The experiment is done in china institute of atomic energy in which silicon ion with the energy of 100 MeV is supplied. After irradiation, heavy ion tracks is displayed by chemical etching and observed under atomic force microscope (AFM). AFM is a relatively new and fine tool to get the images of tracks in nanometer size. As a result, a new track etch rate parameter is defined to model the track development. The track core size is determined after second etching. And then local dose in the track core is calculated by theδ-ray theory. Track etch rate and etch rate are derived after minute etching from three dimensional track structure. In addition, it is found that the micro-track development model violets the traditional model. And it is the micro-track development model that can explain the relationship between micro-track and material damage.
引文
[1]王同权,沈永平,王尚武,等.空间辐射环境中的辐射效应.国防科技大学学报,1999, 21(4): 36-39.
    [2]Koons, H.C., J.E.Mazur, R.S.Selesnick, et al. The impact of the space environment on space systems. Aerospace Technical Report TR-99(1670)-1, 1999.
    [3]王同权,戴宏毅,沈永平,等.宇宙高能质子致单粒子翻转率的计算.国防科技大学学报,2002, 24(2): 11-13.
    [4] Biological Effects of Space Radiation Space Studies,Radiation Hazards to Crews of Interplanetary MIssions, Biological Issues and Research Strategies, Washington, D.C., NATIONAL aCADEMY PRESS, 1996.
    [5]Eleanor A.Blakely, R.J.Micheal Fry. Radiation protection in space. Radiat Environ Biophys,1994, 34: 129-131.
    [6]The National Research Council: Space Radiation Hazards and the Vision for Space Exploration. Washington DC, The National Academies Press, 2001
    [7]Webber, W.R., Kish, J.C.,and Schrier, D.A.. Individual Isotopic Fragmentation Cross Sections of Relativistic Nuclei in Hydrogen. Helium, and Carbon Targets, Phys. Rev.C,1990, 41(2): 533-546.
    [8]John W. Wilson, Lawrence W. Townsend, Walter Schimmerling, et al. Transport Methods and Interactions for Space Radiations. NASA Reference Publication 1257. Washington, D.C., National Aeronautics and Space Administration,1999.
    [9]R.G. Jaeger, E.P. Blizard, A.B.Chilton,et al. Engineering Compendium on Radiation Shielding, Vol. I Shielding Fundamentals and Methods New York, Springer Verlag, 1968.
    [10]Charles E.Harris, Dennis L.Dicus and Mark J.Shuart. A revolution in the marking:Advances in materials that may transpform future exploration infrastructures and missions. AIAA Space 2001 Conference and Exposition.2001
    [11]James H.Adams, Huntsville. Radiation Shielding Materials. AIAA 2001-0326,2001.
    [12]J.H.Adam, D.H.Hathaway, R.N.Grugen, et al. Revolutionary Concepts of Radiation Shielding for Human Exporation of Space. NASA/TM-2005-213688, 2005.
    [13]Francis A.Cucinotta, Robert Katz, John W.Wilson, et al. Heavy ion track-structure calculations for radial dose in arbitrary materials. NASA Technical Paper 3497,1995.
    [14]John W.Wilson, Francis A. Cucinotta, H.Tai, et al. Galactic and Solar Cosmic Ray Shielding inDeep Space. NASA Technical Paper 3682, 1997.
    [15]H.H Anderson, H. Simonsen and H Sorensen,An experimental investigation of charge-dependent deviations form the Bethe stopping power fomula, Nucl.Phys.,1969, (A125): 121~173.
    [16]Clowdsley, Matha S., John W.Wilson, et al. Radiation Protection Quantities for Near Earth Environments. AIAA-2004-0627, 2004.
    [17]Cucinotta, Francis A., Myung-HeeY.Kim and Lei Ren. Managing Lunar, Radiation Risks, PartI:;Cancer Shielding Effectiveness. NASA TP-2005-213164, 2005.
    [18]C Zeitlin, S Guetersloh, L Heibronn, et al.,Shielding experiments with high-energy heavy ions for spaceflight applications, New Journal of Physics,2008, 10: 075007-075027.
    [19]Kramer M, Kraft G.,Track structure and DNA damage, Adv Space Res. ,1994, 14(10): 151-159.
    [20]A. Wroe, A. Rosenfeld, M. Reinhard, et al.,Solid State Microdosimetry With Heavy Ions for Space Applications, IEEE Transactions on Nuclear Science,2007, 54(6): 2264-2271.
    [21]G. D. Badhwar,Shuttle radiation dose measurements in the international space station orbits,, Radiat. Res.,2002, 157: 69-75.
    [22]J.Wrote, Andrew . Developments in microdosimetry and nanodosimetry for space and therapeutic applications. [PhD thesis]. Australia: Department of Engieering Physics, University of Wollongong, 2007.
    [23]Kr?mer M, Kraft G.,Calculations of heavy-ion track structure, Radiat Environ Biophys.,1994, 33(2): 91-109.
    [24]党秉荣,卫增泉,张树明,等,研究微剂量学的Q型计数器,核电子学与探测技术, 1999,19( 03):216-218.
    [25]党秉荣,卫增泉,张树民,等,用于微剂量学研究的无壁正比计数器系统,核电子学与探测技术,1998,18( 2):98-105.
    [26]李强,卫增泉,马受武,液态水中重离子的径向剂量分布的计算,高能物理与核物理,1995, 20(5): 476-480.
    [27]Lindard, J and M Scharff,Energy dissipation by ions in the keV region, Phys.Rev.,1961, 124: 128-130.
    [28]Ziegler, J. F., W.H Barkas and U Littmark, The stopping and range of ions in solids.In:The Stopping and Range of Ions in Matter,vol.1,Ziegler,J.F.,Ed., New York:Pergamon, 1985:1-319.
    [29]N.Bohr, On the Constitution of Atoms and Molecules, Phil. Mag., 1913, 26(1):1-24.
    [30]P.Sigmund and A.Schinner,Binary stopping theory for swift heavy ions, Eur.Phys.J.D,2000, 12: 425-434.
    [31]P.Sigmund and A.Schinner,Binary theory of light-ion stopping, Nucl.Instrum,Meth. B,2002, 193: 48-55.
    [32]Bohr, N.,The penetration of atomic particles through matter, Mat.Fys.Medd.Dan.Vid.Selsk,1948, 18(8): 1-144.
    [33]Lindard, J., V. Nielsen and M. Sarrazin,Approximation method in classical scattering by screened coulomb fields, Mat.Fys.Medd.Dan.Vid.Selsk,1968, 36(10): 1-32.
    [34]Firsov, O.B.,Interaction energy of atoms for small nuclear separations, Zh.Eksp.Teor.Fiz.,1957, 36: 1464-1469.
    [35] International Commision on Radiological Protection: 1990 Recommendations of the International Commision on Radiological Protection. ICRP Publication 60, Pergamon Press, 1991.
    [36] National Council on Radiation Protection, Guidance on Radiation Received in Space Activities. NCRP Report No. 98, Beeheesda, MD, 1989.
    [37]胡佩钢,吴和宇,靳根明,李祖玉,贺智勇,符彦飚,王宏伟,段利敏,张保国,戴光曦,中能Abrasion - Ablation模型的核内核子密度分布修正,高能物理与核物理,2000, 24(7): 662-666.
    [38]Garcia-Munoz M, G.M.Mason, and J.A.Simpson,A New Test for Solar Modulation theory: the 1972 May-July Low-energy Galactic Cosmic-ray Proton and Helium Spectra, Astrophys. J.,1973, 182: 81.
    [39]Hovestadt D., O.Vollmer, G.Gloeckler, et al., Differential Energy Spectra of Low-Energy(<8.5 MeV/Nuc) Heavy Cosmic Rays During Solar Quiet Times, Phys.Rev.Letters,1973, 31: 650.
    [40]B.Klecker,anomalous cosmic rays:our present understanding and open questions, Pergamon,1999, 23(3): 521-530.
    [41]都亨,叶宗海,低地球轨道航天器空间环境手册,国防工业出版社, 1996.
    [42]Sawer D M, J I Vette . AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum. NSSDC/WDC-A-R&S 76-06, 1976.
    [43]I, Vette J . The AE-8 Trapped Electron Model Environment. NSSDC/WDC-A-R&S 91-24, 1991.
    [44]D.Heynderickx, M.Kruglanski, V.Pierrard,et al., A Low Altitude Trapped Proton Model for Solar Minimum Conditions Based on SAMPEX/PET Date, IEEE Trans. Nucl.Sci.,1999, 46(6): 1475-1480.
    [45]B.Blank, S.Andriamonje, R.Del Moral, et al., Production cross sections and the particle stability of proton-rich nuclei from 58Ni fragmentation, Phys.Rev.C,1994, 50(5): 2398-2407.
    [46]J.W.Wilson, R.K.Tripathi, F.A.Cucinotta et al., NUCFRG2:An Evaluation of the Semiempirical Nuclear Fragmentation Database. NASA Technical Paper 3353, 1995.
    [47]Konradi A, Hardy A C, Atwell W., Radiation environment models and the atmospheric cutoff, JSpacecraft,1987, 24: 284~288.
    [48]Stafford, P. M., J. L. Horton, K. R. Hogstrom, et al.,The critical angle dependence of CR-39 nuclear track detectors for 3-10 MeV protons and 7-15 MeV alpha particles, International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,1988, 14(3): 373-378.
    [49]Cucinotta F A, Wu Honglu, Shavers M R, et al., Radiation Dosimetry and biophysical models of space radiation effects, Dosimetry and Biophysical models of space radiation effects Gravitational and Space Biology Bullutin,2003, 16(2): 11-18.
    [50]G.D.Badhwar, O'Neil P.M.,Galactic Cosmic Radiation Model and Its Application, Adv.Space Res.,1996, 17: 7-17.
    [51]J. Feynman, T. P. Armstrong, L. Dao-Gibner,A New Interplanetary Proton Fluence Model, J. Spacecraft and Rockets,1990, 27: 403.
    [52]J. Feynman, G. Spitale, J. Wang, et al.,Interplanetary proton fluence model: JPL 1991, J. Geophys. Res.,1993, 96: 13281-13294
    [53]. Feynman, A. Ruznaikin, and V. Berdichevsky,The JPL proton fluence model: an update, J. Atmos. Solar-Terr. Phys,2002, 64: 1679-1686.
    [54]E. G. Stassinopoulos and J. H. King, Empirical Solar Proton Model for Orbiting Spacecraft Applications, IEEE Trans. Aerospace Electronic Systems 1974, 10: 4.
    [55]King, J. H.,Solar Proton Fluences for 1977-1983 Space Missions, J. Spacecraft Rockets 1974, 11: 401.
    [56]Stassinopoulos, E. G. , SOLPRO: A Computer Code to Calculate Probabilistic Energetic Solar Proton Fluences. NSSDC 75-11. Greenbelt, Maryland, 1975.
    [57] J. H. King and E. G. Stassinopoulos,Energetic Solar Protons vs. Terrestrially Trapped Proton Fluxes for the Active Years 1977-1983, J. Spacecraft Rockets 1975, 12: 122.
    [58]Jr., J.H.Adams. Cosmic Ray Effects on MIcro-electronic, Part IV. Naval Research Laboratory Memorandum Report 5901, 1992.
    [59]Allan J.Tylka, James H.Adams Jr., Paul R.Boberg, et al.,CREME96:A Revision of the Cosmic Ray Effects on Micro-Electronics Code, IEEE Trans. Nucl.Sci.,1997, 44(6): 2150-2160.
    [60]魏志勇,辐射剂量学,黑龙江:哈尔滨工程大学出版社, 2010.
    [61]许淑艳,蒙特卡罗方法在实验核物理中的应用,北京:原子能出版社, 2006.
    [62]G.D.westfall, Lance W.Wilson, P.J.Lindstrom,et al.,Fragmenation of relativistiv 56Fe, Phys.Rev.C,1979, 19(4): 1309-1323.
    [63]Wilson J W, Chun S Y, Badavi F F. ,et al., HZETRN: A Heavy Ion/Nucleon Transport Code for Space Radiations. Technical Report: rdp3146.tex, 2003
    [64] Helmut Paul and Andreas Schinner, Judging the reliability of stopping power tables and programs for heavy ions, Nucl.Instrum,Meth. B,2003, 209: 252-258.
    [65]K. Niita, T. Sato, H. Iwase, et al.,PHITS-a particle and heavy ion transport code system, Radiat. Meas.,2006, 41: 1080-1090.
    [66]A. Fasso`, A. Ferrari, J. Ranft, et al., FLUKA: a multi-particle transport code. CERN-2005-10, INFN/TC_05/11, SLAC-R-773, 2005
    [67]G. Battistoni, S. Muraro, P.R. Sala,et al.,The FLUKA code: Description and benchmarking, Proceedings of the Hadronic Shower Simulation Workshop 2006, M. Albrow, R. Raja eds. (2006). 31-49.
    [68]Geant4 Physics Reference Manual: 13-297, 2008.
    [69]P.V.Degtyarenko, M.V.Kossov, and H.-P.Wellisch,Chiral invariant phase space event generator, Eur.Phys.J.A.,2000, 9: 421-424.
    [70]A.Heikkinen, N.Stepanov, and J.P.Wellisch,Bertini intranuclear cascade implementation in Geant4, Proc.Computing in High Energy and Nuclear Physics, La Jolla, CA. 2003.
    [71]G.Folger, V.N.Ivanchenko, and J.P.Wellisch,The binary cascade, Eur.Phys.J.A.,2004, 21: 407-417.
    [72]L.Sihver, C.H.Tsao, R.Silberberg,et al.,Total reaction and partial cross section calculations in proton-nucleus(Zt≤26)and nucleus-nucleus reactions(Zp and Zt≤26), Phys. Rev. C,1993, 47(3): 1225.
    [73]S.Kox, A.Gamp, C.Perrin,et al., Trends of total reaction cross sections for heavy ion collisions in the intermediate energy range, Phys. Rev. C,1987, 35(5): 1678-1691.
    [74]Shen Wen-qing, Wang Bing, Feng Jun, et al.,Total reaction cross section for heavy-ion collisions and its relation to the neutron excess degree of freedom, Nuclear Physics A,1989, 491(1,2): 130-146.
    [75]R K Tripathi, F A Cucinotta, J W Wilson. Universal Parameterization of Absorption Cross Sections. NASA Technical Paper 3621, 1997.
    [76]申杰,王文凡,并行蒙特卡罗方法的应用,电脑知识与技术,2009, 5(22): 6296-6297.
    [77]王文凡,张志鸿,申杰,机群环境下并行蒙特卡罗方法的研究与应用,软件天地,2007, 23(11-1): 270-272.
    [78]王家翀,许川,姚栋,蒙特卡罗算法并行计算研究,核动力工程,2007, 28(4): 20-24.
    [79]王同权,于万瑞,冯煜芳,微机集群的并行蒙特卡罗模拟,微电子学与计算机,2006, 23: 210-212.
    [80]E.R.Benton, E.V.Benton,Space radiation dosimetry in low-Earth orbit and beyond, Nuclear Instruments and Methods in Physics Research B,2001, 184: 255-294.
    [81]Gautam D. Badhwar, D. Stuart Nachtwey and Tracy Chui-hsu Yang,Radiation issues for piloted Mars mission Advances in Space Research,1992, 12(2-3): 195-200.
    [82]International Commission on Radiation Units and Measurements: Stopping Powers for Electrons and Positions, ICRU report 37, Oxford: Oxford University Press. 1994.
    [83] International Commission on Radiation Units and Measurements: Stopping Powers and Ranges for Proton and Alpha Particles. ICRU Report 49, Oxford: Oxford University Press, 1993.
    [84] International Commission on Radiation Units and Measurements: Stopping of Ions Heavier Than Helium, ICRU Report 73, oxford:Oxford University Press, 2005.
    [85]Townsend LW, Cucinotta FA, Wilson JW, et al.,Solar modulation and nuclear fragmentation effects in galactic cosmic ray transport through shielding, Adv Space Res.,1994, 14(10): 853-861.
    [86]John W.Wilson, Francis F.Badavi, Francis A. Cucinotta. HZETRN: Description of a free-space ion and nucleon transport and shielding computer program. NASA Technical Paper 3495, 1997.
    [87]Takashi Nakamura, Lawrench Heilboronn,HANDBOOK OF SECONDARY PARTICLE PRODUCTION AND TRANSPORT BY HIGH-ENERGY HEAVY IONS, Word Scientific, 2006.
    [88]Cummings, J.R., Binns, W.R.,Garrard, T.L.,et al., Determination of the cross sections for the production of fragments from relativistic nucleus-nucleus interactions.I.Measurements, Phys. Rev.C,1990, 42(6): 2508-2529.
    [89]Tull, C.E.. Relativistic Heavy Ion Fragmentation at HISS. LBL-29718, Univ. of California, 1990.
    [90]Westfall, G.D.; Wilson, L. W.; Lindstrom, P.J.; et al.,Fragmentation of Relativisic 56Fe, Phys. Rev.C,1979, 19(4): 1309-1323.
    [91]Kidd, J.M.;Lindstrom, P.J.; Crawford, H.J.; et al.,Fragmenation of Carbon Ions at 250 MeV/nucleon, Phys. Rev.C,1988, 37(6): 2613-2623.
    [92]C.Zeitlin, L.Heilbronn, J.Miller, et al. Heavy fragment production cross sections from 1.05 GeV/nucleon 56Fe in C, Al,Cu, Pb and CH2 targets. Paper LBNL 40192, University of California, 1997: 1-14.
    [93]D. Schardt, I. Schall, H. Geissel,et al., A. Magel, M. F. Mohar, G. Münzenberg, F. Nickel, C. Scheidenberger, W. Schwab and L. Sihver,Nuclear fragmentation of high-energy heavy-ion beams in water Advances in Space Research,1996, 17(2): 87-94.
    [94]郁庆长,罗正明,安竹,等,刘世杰,质子治疗技术基础,北京,原子能出版社, 1999.
    [95]H. Tsujii, J.E. Mizoe and T. Kamada,Overview of clinical experiences on carbon ion radiotherapyat NIRS, Radiother Oncol,2004, 73(suppl): S41–S49.
    [96]M. Gurtner , L. Desorgher, E.O. Flückiger, et al.,Simulation of the interaction of space radiation with the Martian atmosphere and surface, Advances in Space Research,2005, 6: 2176-2181.
    [97]G. DeAngelis, J.W.Wilson, M.S. Clowdsley, et al.,Modeling of the Martian environment for radiation analysis, Radiation Measurements,2006, 41: 1097-1102.
    [98]Tidjani Adams,Effects of UV light on the efficiency of alpha-particle detection of CR-39, LR-115 type II and CN-85, International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,1990, 17(4): 491-495.
    [99]Tripathi, R. K., J. W. Wilson, F. F. Badavi, et al.,A characterization of the moon radiation environment for radiation analysis, Advances in Space Research,2006, 37(9): 1749-1758.
    [100] A. N. Denisov, N. V. Kuznetsov, R. A. Nymmik, et al.,Assessment of the radiation environment on the Moon, Acta AstronauticaIn Press, Corrected Proof.
    [101] N. A. Tsyganenko,A magnetospheric magnetic field model with a warped tail current sheet, Plant. Space Sci.,1989, 37: 5.
    [102] M. Purucker, D. Ravat, H. Frey,et al, M. Acuna An altitude-normalized magnetic map of Mars and its inter pretation, Geophys. Res. Let,2000, 27: 2449-2452.
    [103]J.C. Cain, B. B. Ferguson, and D. Mozzoni, An n=90 internal potential function of the Martian crustzal magnetic field, J. Geophys. Res,2003, 108(E2): 5008.
    [104]G. De Angelis, F.F. Badavi, J.M. Clem, et al.,Modeling of the Lunar Radiation Environment Nuclear Physics B - Proceedings Supplements,2007, 166: 169-183.
    [105]P. Spillantini, M. Casolino, M. Durante , et al.,Shielding from cosmic radiation for interplanetary missions: Active and passive methods Radiation Measurements,2007, 42(1): 14-23.
    [106]Piero Spillantini,Active shielding for long duration interplanetary manned missions Advances in Space Research,2010, 45(7): 900-916.
    [107]LW. Townsend, Overview of active methods for shielding spacecraft from energetic space radiation, Phys Med.,2001, 17(Suppl 1): 84-85.
    [108]LW. Townsend, Implications of the space radiation environment for human exploration in deep space, Radiat Prot Dosimetry,2005, 115(1-4): 44-50.
    [109]方美华,魏志勇,陈达,高能α粒子辐射屏蔽的蒙特卡罗模拟,核技术,2007, 30(4): 307-309.
    [110] E.J. Kobetichand Katz Robert,Electron energy dissipation, Nucl. Instrum. Methods,1959, 71(2): 226-230.
    [111]Kowbel, W.; Kropachev, A.; Withers, J.C.; et al.A Novel boron fiber composites for radiation shielding, Aerospace Conference, 2005 IEEE (2005). 718 - 723
    [112]W.H. Zhong, G. Sui, S. Jana, et al.,Cosmic radiation shielding tests for UHMWPE fiber/nano-epoxy composites Composites Science and Technology,2009, 69(13): 2093-2097.
    [113]Lisa C.Simonsen, William Atwell, John E.Nealy, et al., Radiation Dose to Critical Body Organs for October 1989 Proton Event. NASA TP-3237, 1992.
    [114]黄倬,碳纳米管储氢研究现状,稀有金属, 2005, 29(6): 890-897.
    [115]Enrique V. Barrera, Richard Wilkins, Meisha Shofner, et al.Functionalized carbon nanotube-polymer composites and interactions with radiation United States Patent 7744844, 2008.
    [116]F. Ballarini, G. Battistoni, F. Cerutti,et al.,GCR and SPE organ doses in deep space with different shielding: Monte Carlo simulations based on the FLUKA code coupled to anthropomorphic phantoms Advances in Space Research,2006, 37(9): 1791-1797.
    [117]Badavi FF, Wilson JW, Hunter A. Numerical Study of the Generation of Linear Energy Transfer Spectra for Space Radiation Applications. NASA/TP-2005-213941,(2005.
    [118]Wilson JW; Denn, F.M. Preliminary Analysis of the implications of Natural Radiations on Geostationary Operations. NASA TN D-8290, 1976.
    [119]Simonsen L.C., Atwell W., Nealy J. E., et al., Radiation Dose to Critical Body Organs for October 1989 Proton Event. NASA TP-3237, 1992.
    [120]Bier SG, Townsend LW, Maxson WL,New equivalent sphere approximation for BFO dose estimation: solar particle event, Advances in Space Research,1998, 21(12): 1777-1979.
    [121]B.G. Cartwright, E.K. Shirk, P.B. Price,A nuclear-track-recording polymer of unique sensitivity and resolution, Nuclear Instrument and Methods,1978, 153(2-3): 457-460.
    [122]唐孝威,翟鹏济, CR-39核径迹探测器及其在核科学等研究领域中的应用,物理, 2000, 29(7): 397-400.
    [123]孙有梅,刘杰,张崇宏,等,快重离子辐照聚酰亚胺潜径迹的电子能损效应,物理学报,2005, 54(11): 5269-5273.
    [124]A.Chatterjee, J.J.Schaefer, Microdosimetric Structure of Heavy Ion Tracks in Tissue, Rad. and Environm. Biophys.,1976, 13: 215-227.
    [125]朱润生,固体核径迹探测器的原理和应用,北京:科学出版社, 1987.
    [126]许伟,李天柁,马文彦,等,固体核径迹探测器最佳蚀刻条件选择,第十二届全国核电子学与核探测技术学术年会,第十二届全国核电子学与核探测技术学术年会论文集. 2004.
    [127]D.Azimi-Garakani, M.Boschung, C.Wernli, New Etching Conditions for CR-39 for NeutronDosimetry, Radiat Prot Dosimetry . ,1991, 35(2): 93-98.
    [128]M. Drndic, Y.D. He, P.B. Price, et al.,Atomic-force-microscopic study of etched nuclear tracks at extremely short distance scale, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,1994, 93(1): 52-56.
    [129]N.Yasuda, K.Uchikawa, K.Amemiya, et al.,Estimation of the laten track size of CR-39 using atomic force microscope, Radiation Measurements,2001, 34: 45-49.
    [130]M.Yamamoto, N.Yasuda, Y.Kaizuka, et al., CR-39 sensitivity analysis on heavy ion beam with atomic force microscope, Pergamon,1997, 28(1-6): 227-230.
    [131]J.P.Y.Ho, W.Y.Yip, V.S.Y.Koo, et al., Measurement of bulk etch rate of LR115 detector with atomic force microscopy, Radiation Measurements,2002, 35: 571-573.
    [132]T.Yamauchi, N.Yasuda, T.Asuka, et al, R.Barillon,Track core size estimation for heavy ions in CR-39 by AFM and UV methods, nuclear Instrument and Methods in Physics Research B,2005, 236: 318-322.
    [133]C. Vázquez-Lópeza, R. Fragosoa, J.I. Golzarrib, et al., The atomic force microscope as a fine tool for nuclear track studies, Radiation Measurements,2001, 34: 189-191.
    [134]D.Nikezic, J.P.Y.Ho, C.W.Y.Yip, et al., Feasibility and limitation of track studies using atomic force microscopy, Nuclear Instrument and Methods in Physics Research B,2002, 197: 293-300.
    [135]G.SOMOGYI,development of etched nuclear tracks, Nuclear Instrument and Methods,1980, 173: 21-42.
    [136]G.SOMOGYI, S.A.SZALAY, track diameter kinetics in dielecric track detectors, Nuclear Instrument and Methods,1973, 109: 211-232.
    [137]B. D?rschel, D. Hermsdorf , S. Starke, Track etch rates along the trajectories of nitrogen and oxygen ions in CR-39, Radiation Measurements,2003, 37(6): 583-587.
    [138]M.Fromm, P.Meyer, A.Chambaudet, Ion Track etching in isotropic polymers: etched track shape and detection efficiency, Nucl. Instrum. Meths Phys. Res. B,1996, 107: 337.
    [139]R.Barillon, M.Fromm, A.Chambaudet, track etch velocity study in a radon detector(LR115, CELLULOSE NITRATE), Radiat. Meas.,1997, 28: 619.
    [140]A. Peter Fews, Denis L. Henshaw,High resolution alpha-particle spectroscopy using CR-39 plastic track detector, Nuclear Instruments and Methods in Physics Research B,1984, 223(2-3): 609-616.
    [141]D. Nikezic, K.N. Yu, Three-dimensional analytical determination of the track parameters: over-etched tracks, Radiat. Meas.,2003, 37(1): 39-45.
    [142]沈东军.重离子微束辐照装置的研制. [硕士学位论文].北京,中国原子能科学研究院, 2004.
    [143]A. H USSEIN, KH. SHNISHIN, A. A. ABOU, et al.,Etching properties of a Homalite polycarbonate nuclear track detector, Journal of Materials Science,1993, 28: 6026-6028.
    [144]Yasuda, N., M. Yamamoto, N. Miyahara, et al.,Measurement of bulk etch rate of CR-39 with atomic force microscopy, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,1998, 142(1-2): 111-116.
    [145] F. Cucinotta,P. Saganti , X. Hu, et al., Physics of the isotopic dependence of Galactic Cosmic Ray fluence behind shielding. NASA/TP-200-210792. Houston, NASA JSC, 2003.
    [146]S. V. Springham, F. Malik, M. V. Roshan, et al.,Ferrofluidic masking of solid state nuclear track detectors during etching, Radiation Measurements,2009, 44(2): 173-175.
    [147]G.Somogyi, I.Hunyadi, Etching properties of the CR-39 polymeric nuclear track detector, Proceedings of the 10th International Conference on Solid State Nuclear Track Detectors, Oxford, Lyon, Pergamon. 1979: 443-452.
    [148]M. Fromm, F. Membrey, A. Chambaudet, et al.,A study of CR39 bulk etch properties under various temperature and concentration conditions to modelize the dissolution rate, International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,1991, 19(1-4): 169-170.
    [149]T.A.Tombrello,The dimensions of latent ion damage tracks, Nuclear Instrument and Methods in Physics Research B,1984, 1(1): 23-25.
    [150]P.APEL, R.SPOHR, C.TRAUTMANN, et al.,track structure in ployethylene terephthalate irradiated by hevay ions: LET dependence of track diameter, Radiation Measurements,1999, 31: 51-56.
    [151]E.J.Kobetich, Robert Kate . Energy Deposition by electron Beams andδRays. Lincoln, Unversity of Nebraska, 1968.
    [152]Fazal-ur-Rehman, F. Abu-Jarad, M.I. Al-Jarallah,et al.,Comparison and limitations of three different bulk etch rate measurement methods used for gamma irradiated PM-355 detectors, Radiation Measurements,2001, 34: 617-623.
    [153]T.Yamauchi, H.Ichijo, K.Oda,Depth-dependence of the bulk etch rate of gamma-ray irradiated CR-39 track detector, Radiation Measurements,2001, 34: 85-89.
    [154]T.Yamauchi, T.Taniguchi, K.Oda, et al.,Dose-rate effects on the bulk etch-rate of CR-39 track detector exposed to low-let radiations, Radiation Measurements,1999, 31: 121-126.
    [155]D.Sinha, S.Ghosh, A.Srivastava,et al.,Effects of gamma rays on PADC detectors, RadiationMeasurements,1997, 28: 145-458.
    [156]F.ABU-JARAD, A.M.HALA, M.FARHAT, et al.,effect of high gamma dose on the PADC properties, Radiation Measurements,1997, 28: 111-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700