电离辐射生物效应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维径迹结构(3DTS)是当前辐射生物效应研究的主要立足点。近些年来,径迹结构研究及其应用呈现如下趋势和特点:1)研究表明能量为几个电子伏特的电子能使DNA链断裂,该类电子的径迹模拟是3DTS研究的新方向;2)利用3DTS所提供的信息,建立面向机制的生物物理模型;3)模拟生物等效介质中的3DTS;4)旁观者效应以及相关研究。本学位论文所报告的工作就是围绕这几个方面展开的。
     第一章介绍了与径迹结构方法有关的放射生物效应的概念和理论。
     第二章根据近年报道的<100 eV电子与水介质相互作用的截面数据,将原有的径迹结构模型推广到0~10 eV能区,并在计算机上实现了对<10 eV电子的径迹模拟。运用这一工具我们研究了低能电子在径迹结构中的分布、低能电子射程分布等物理内容。同时,这一工作提供了进一步研究辐射生物效应的理论工具。
     第三章提出了集群簇(clustering clusters)的概念—辐射品质的一种更细致的描述。在纳米级电离簇谱和集群簇概念的基础上,我们提出了ICC(Ionization Clustering Cluster)模型。经过刻度的ICC模型,能够更好地描述GI/S期和晚S期V79细胞存活率的实验数据,因此该模型能够提供对重带电粒子导致细胞增殖死亡机制的更富洞察力的解释。同时,我们证明了唯象动力学模型、线性二次模型和ICC模型的近似等价性,并从动力学的角度探讨了ICC模型参数的物理意义。
     第四章探讨了历史凝聚算法(CH)用于微观尺度径迹模拟的可行性,并提出了一个相应的判据:截断电子穿透射程R远小于问题特征尺度l。通过与事件跟踪算法的比较,发现CH算法能够应用于特征尺度在100纳米以上的微观径迹结构模拟。由于CH算法在相同计算精度的要求下对碰撞截面的依赖程度较轻,因而能够对更多的辐射材料进行研究,同时可以成量级地缩短计算时间。
     第五章应用CH算法研究了电子微束装置的微观剂量分布,得到的一次事件谱与文献中用精细算法得到的结果符合良好。邻靶比的计算表明,采用60~70keV电子具有最大的邻靶比,因而实验中要尽量避免应用该能量的电子。本文还研究了有限束宽的影响,发现束流宽度对细胞核、细胞质和邻居细胞中的授予能分布均有一定的连续变化的影响。邻靶比随着束流宽度的增加而呈两段线
The 3-dimensional track structure(3DTS) is the main starting point of theoretical work in the study of radiation biological effect. In recent years, the new features and trends in this field of research include: 1) electrons with energy of several electron-volts(ESEV) were confirmed as a new mechanism inducing DNA strand breaks, and the track simulation of ESEV became a new direction of 3DTS; 2) to establish mechanism-oriented model on the basis of 3DTS; 3) the 3DTS generation in tissue-equivalent (TE) materials; 4) the bystander-effect and the relevant studies. Works reported in this dissertation were carried out around the points stated above.Some 3DTS-related concepts and theories were retrospected in chapter 1.Based on the cross section data reported in literature, we generalized the 3DTS model to 0~10 eV energy region and implemented the simulation code in chapter 2. With this code we studied the spatial distribution of low-energy electron (LEE) in track structure and the range distribution of LEE. Further theoretical work can be done with the tool.Chapter 3 proposed the concept of clustering clusters, which is a more meaningful description of quality factor. Using this concept and the concept of nanometer ionization spectrum, we proposed the Ionization Clustering Cluster model (ICC). The calibrated ICC model can give better description for the experimental data of Gl/S and Late-S V79 cell irradiated by protons and α-particles of different energies. Furthermore, we verified the approximate equivalence of the dynamics model, the linear quardratic (LQ) model and the ICC model. Then the physical meanings of the model parameters were analyzed in terms of dynamics.In chapter 4, the applicability of the condensed-history (CH) algorithm in problems of microscopic scale was explored. A criterion was proposed to determine whether the CH algorithm can be used: the penetration range R is much smaller than the characteristic length / of the problem. We found that the CH method can be used in the problem of characteristic length larger than 100 nm. Because the CH algorithm is less dependent on cross section data, it can simulate the experimental environment of actual materials. And the calculating time is reduced by more than an order of magnitude.
    In chapter 5 the dose distribution of Electron Microbeam (EMB) device was calculated with the 3DTS code of CH type. The single event size distribution agrees well with the results of event-by-event code reported in the literature. The calculated neighbor-to-target ratio, Ryvr. attains a maximum value around 60-70 keV , which indicates that electrons of these energies should be avoided in the experiments. Furthermore, the effect of finite beam-width were studied and it was found thatthe single event size distribution in HeLa cell nucleus, in cytoplasm and in neighbors shift continuously with the beam-width. And Rnt increases with the beam-width. The results are useful for the design and calibration of EMB.
引文
[1] Lea D.E. Actions of Radiations on Living Cells. (London: Cambridge University Press) 1946.
    [2] Dale RG. The application of the linear-quardratic dose-effect equation to fractionated and protracted radiotherapy. British Journal of Radiobiology. (1985) 58 515-528
    [3] Thames HD. An 'incomplete-repair' model for survival after fractionated and continuous irradiation. British Journal of Radiobiology. (1985) 47 319-339
    [4] Curtis SB. Lethal and potentially lethal model-a review and recent development. British Journal of Radiobiology. In: Quantitative Mathematical Models in Radiation Biology, edited by J. Kiefer (New York: Springer) pp 146-152
    [5] Tobias CA, Blakely EA, et. al. The repair and misrepair model of cell survival. In: Radiation Biology in Cancer Research, edited by Meyn RE and Withers HR (New York: Raven Press) pp 195-229
    [6] Kellerer AM, Rossi HH The theory of dual radiation action. Current topics in Radiations Research Quarterly 8 pp 85-158
    [7] Chadwick KH, Leenhouts HP The Molecular Theory of Radiation Biology. (Berlin:Springer)
    [8] Brenner D.J., Hall E.J., and Hall E.J. Fractionated high dose-rate versus low dose-rate regimens intra-cavitary brachytherapy and external irradiation. International Journal of Radiation Oncology, Biology and Physics. (1991) 1415-1423 21
    [9] Katz R, Ackerson B, Homayoonfar M, Scharma SC Inactivation of cells by heavy ion bombardment. Radiat. Res. (1971) 402-425 47
    [10] Recommentations of the International Commission on Radiological Protection. Annals of the ICRP21(1-3). ICRP Publication 60. Pergamon Press, Oxford, 1991. International Commission on Radiological Protection. 1990.
    [11] United Nations Sources, Effects and Risks of Ionizing Radiations. United Nations Scientific Commission on the Effects of Atomic Radiations. (1988) Reported to the General Assembly,with annexes. New York 1988.
    [12] United Nations Sources,'Effects and Risks of Ionizing Radiations. Vol 2. United Nations Scientific Commission on the Effects of Atomic Radiations. (2000) Reported to the General Assembly, with annexes. New York 2000.
    [13] Butt JJ and Katz R Theory of RBE for heavy ion bombardment of dry enzymes and viruses.Radiat. Res. (1967) 855-871 30
    [14] Katz R, Zachariah R, Cucinotta FA, and Chanxiang Z Survey of radiosensitivity parameters. Radiat. Res. (1994) 356-365 140
    [15] Kobetich EJ, Katz R Width of heavy ion tracks in emulsion. Phys. Rev. (1968) 405-411 170
    [16] Kobetich EJ, Katz R Energy Deposition by electron beams abd δ-rays. Phys. Rev. (1968) 257-265 170
    [17] Chatterjee A, Maccabee HD, Tobias CA Radial cut-off LET and radial cut-off dose calculations for heavy charged particles in water. Radiat. Res. (1973) 479-494 54
    [18] Fain J, Monnin M, Montret M Spatial Energy Distribution around heavy ion paths. Radiat. Res. (1977) 379-389 57
    [19] Kiefer J, Straaten H A model of ion track structure based on classical collision dynamics. Phys. Med. Biol. (1986) 1201-1209 31
    [20] Zhang CX, Liu XW, Li MF Numerical calculation of the radial distribution of dose around the path of a heavy ion. Radiat. Prot. Dosim. (1994) 93-96 52
    [21] Brandt W, Ritchie RH Primary processes in the physical stage. In: Gray TJ, Starace AF (eds) Physical mechanisms in radation biology. Tech. Info. Center , US Atomic Energy Commission, pp 20-29
    [22] Wilson JW, Townsend LW, et. al. Transport methods and interactions for space radiation. (NASA RP 1257) NAS, Washington DC (1994) 93-96 52
    [23] Scholz M, Kraft G Calculation of heavy ion inactivation probabilitiea based on track structure, x-ray sensitivity, and target size. Radiat. Prot. Dosim. (1994) 29-33 52
    [24] Scholz M, Kellerer AM, et. al. Computation of cell survival in heavy ion beam for therapy-the model and its approximation. Radiat. Environ. Biophys. (1997) 59-66 36
    [25] Varma MN, Bond VP Empirical evaluation of a cell survival volume dose vs. cell response function for pink mutations in Tradescantia. In Proc. 8th Symp. on Microdosimetry (Juelich, FRG. Sept. 1982) EUR-8395, CEC, Luxemburg, pp 439-450
    [26] Zaider M, Brenner DJ On the microdosimetric definition of quality factors. Radiat. Res. (1985) 302 103
    [27] Morstin K, Bond VP, Baum JW A Probabilistic approach to obtain Hit-Size Effectiveness Functions which relate microdosimetry and radiobiology. Radiat. Res. (1989) 393 120
    [28] Loncol TH, Cosgrove V, Denis JM, el. al. Radiobiological Effectiveness of Radiation beams with broad LET spectra: Microdosimetric Analysis using Biological Weighting Functions. Radiat. Prot. Dosim. (1994) 299 66
    [29] Waligoriski MPR, Olko P Are Neutron Data Unsuitable for Making Model Predictions of Radiation Risk? in Proc. from Workshop on Biophysical Modelling of Radiation Effects.Padua, Italy,2-5 Sept. 1991, ed. by Chadwick K pp 163-170 (1992)
    [30] Olko P, Waligoriski MPR On Model-based Assessment of Risk from Radon Daughters- the Microdosimetri Approach Nuklconika 38, 5
    [31] Pihet P, Menzel HG, Schmidt R Biological Weighting Functions for RBE Specification of ceutron therapy beams. Intercomparison of 9 European centers. Radiat. Prot. Dosim. pp 437(1990) 31
    [32] TAN Zhen-Yu(谭震宇),XIA Yue-Yuan(夏曰源),ZHAO Ming-Wen(赵明文) Monte Carlo Simulation on Energy Deposition of Low-Energy Electrons in Liquid Water. Chinese Phys.Letters (2005) 91 22
    [33] TAN Zhen-Yu(谭震宇), XIA Yue-Yuan(夏曰源),ZHAO Ming-Wen(赵明文) Electron stopping power and mean free path in organic compounds over the energy range of 20-10,000 eV Nucl. Instr. Meth. B (2004) 27 222
    [34] Butts JJ, Katz R Theory of RBE for heavy ion bombardment of dry enzymes and viruses Radiat. Res. (1967) 855-971 30
    [35] Paretzke HG. Radiation Track Structure Theory. In: Freeman GR. (eds) Kinetics of nonhomogeneous processes John Wiley, Now York (1987) 121-129
    [36] Turner JE, Magee JL, Wright HA, et. al. Physical and Chemical development of electron tracks in liquid water. Radiat. Res. (1983) 437-449 96
    [37] Chatterjee A, Holley W Computer Simulation of initial events in the biochemical mechanisms of DNA damage. Advances in Radiation Biology. (1993) 181-226 17
    [38] Terrissol M, Beaudre A Simulation of Space and Time Evolution of radiolytic species induced by electrons in water. Radiat. Prot. Dosim. (1990) 171-175 31
    [39] Zaider M, Brenner DJ, Wilson WE The Applications of track calculations to radiobiology 1.Monte Carlo simulation of proton tracks. Radiat. Res. (1983) 231-247 95
    [40] Ito A Calculation of double strand break probability of DNA for low LET radiations based on track structure analysis. Nuclear and Atomic Data for Radiotherapy and Related Radiobiology.International Atomic Energy Agency, IAEA. Vienna 1987
    [41] Lappa AV, Bigildeev EA, Burmistrov DS, el. al. Trion Code for radiation action calculations and its application in komicrodosimetry and radiobiology. Radiat. Environ. Biophys. (1993)1-19 32
    [42] Uehara S, Nikjoo H, Goodhead DT, et. al. Cross-sections for water vapour for Monte-Carlo electron track structure code from 10 eV to MeV region. Phys. Med. Biol. (1993) 1841-1858 38
    [43] Tomita H, Kai M, Kusama T, Ito A Monte Carlo simulation of physicochemical processes of liquid water radiolysis - The effects of dissolved oxygen and OH scavenger. Radiation Environmental Biophysics (1997) 105-116 36
    [44] Dingfelder M, Hantke D, Inokuti M, Paretzke HG. Electron inelastic-scattering cross sections in liquid water. Radiat Phys Chem (1998) 1-18 53
    [45] Wilson WE, Paretzke HG Calculation of distribution of energy imparted and ionisations by fast protons in nanometer sites. Radiat Res (1981) 521-537 81
    [46] Wilson WE, Nikjoo H A Monte Carlo code for Positive Ions Track Simulation. Radiat Envi-ronm Biophys (2000) 97-104 38
    [47] Prise KM, Forkard M, Michael BD, et al Int. J. Radiat. Biol. (2000) pp 881 76
    [48] Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L Resonant Formation of DNA Srand Breaks by Low Energy (3-20 eV) Electrons Science (2000) pp 1658 287
    [49] Barrios R, Skurski P, and Simons J J. Phys. Chem. B (2002) pp 7991 106
    [50] Xifeng Li, Michael DS, L Sanche Dednsity Functional Theory Studies of Electron Interactiong with DNA: Can Zero eV Electrons Induce Strand Breaks? Journal of American Chemical Society (2003) ppl3668-13669 125
    [51] Huels MA, Boundaiffa B, Cloutier P, Hunting D, Sanche L Journal of American Chemical Society (2003) pp 4467-4477 125
    [52] Pan X, Cloutier P, Hunting D, Sanche L Phys. Rev. Lett. (2003) 208102-1 90 [53] Charlton DE, Humm JL Int. J. Radiat. Biol. (1988) 353-365 53 [54] Nikjoo H, Martin RF, Charton DE Acta. Oncol. (1996) 849-856 35
    [55] M Kramer, G Kraft Calculations of heavy-ion track structure Radiat. Environ. Biophys. (1994) 91-109 33
    [56] M Dingfelder, M Inokuti, HG Paretzke Electron inelastic scattering cross sections in liquid water Radiat. Phys. Chem. (1998) 1-18 53
    [57] M Dingfelder, et al. Inelastic-collision cross-sections of liquid water for interactions of energetic protons Radiat. Phys. Chem. (2000) 255-275 59
    [58] S Uehara, LH Toburen, WE Wilson Calculations of electronic stopping cross-sections for low-energy prorons in water Radiat. Phys. Chem. (2000) 1-11 59
    [59] Nishimura H. in Electronic and Atomic Collisions, Proc. Ⅺth Int. Conf. Kyoto, vol 4. ed. K Takayanagi and Oda (1979) (Japan: Society for Atomic Collisions Research.)
    [60] A Danjo, H Nishimura Elastic Scattering of Electrons from H_2O Molecule. J. Phys. Soc. Jap.(1985) pp 1224-1227
    [61] AK Jain, et al. Elastic Scattering of Electrons by water Molecules at intermediat and high energes Phys. Rev. A (1988) pp 2893-2899 37
    [62] Y Hatano, et al. Electron excitation and attachment by water vapor Radiat. Phys. Chem.(1989) pp 675 34
    [63] KF Ness, RE Robson Transport Properties of Electrons in Water Vapor Phys. Rev. A (1988) pp 1446-1456 38
    [64] J Schutten, et al. Gross and partial-Ionisation Cross Sections for Electrons on Water vapor in the Energy Range 0.1-20 keV J. Chem. Phys. (1966) pp 3924-3928 40(10)
    [65] MA Bolorizadeh, ME Rudd Angular and energy dependence of cross sections for ejection of electrons from water vapor Phys. Rev. A (1986) pp 882-887 33
    [66] R. Schulte, et al Physica Medica - Vol. ⅩⅦ, Supplement 1, 2001.
    [67] D.T. Goodhead, et al Biol. 28,485 (1983).
    [68] 田德祥 电离辐射量及其单位(1992) 25-27 原子能出版社
    [69] Little JB. Radiation Carcinogensis. Carsinogensis. (2000) 397-404 21
    [70] 李士俊. 电离辐射剂量学 (第二版) . 原子能出版社. 1986. 89-117
    [71] Hickman A.W., Jaramillo R.J., Lechner J.F. and Johnson N.F. Alpha-particle induced p53 protein expression in rat lung epithelial cell strain. Cancer. Res. (1994) 5797-5800 54
    [72] Azzam E.I., Toledo de S.M. Gooding T., and Little J.B. Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluence of alpha-particles. Radiat. Res. (1998) 497-504 150
    [73] Nagasawa H. and Johnson N.F. Induction of sister chromatid exchanges by extremely low doses of alpha particles. Cancer. Res. (1992) 6394-6396 52
    [74] Deshpande A., Goodwin E.H., Bailey S.M., Marrone B.L. and Lehnert B.E. Alpha-particle induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extranuclear target. Int. J. Radiat. Biol. (1996) 260-267 145
    [75] Cox R. The multi-step nature of carcinogensis and the implications for risk analysis. Radiat.Res. (1998) 373-376 73
    [76] Orlando TM. Kimmel GA. Thrall BD. Metting NF. Miller JH. and Strom DJ. A novel,spacely resolved cell irradiator to study bystander and adaptive responses to low-LET radiation(Abstract). DOE Low Dose Radiation Research Program Workshop I, November 10-12,Washington DC, http://low-dose.org
    [77] Wilson WE. Miller JH. and Nikjoo H. PITS: A code set for positive ion track structure.In:Varma NM. Chatterjee A.(eds) Computational approaches in molecular radiation biology, Monte Carlo methods. Basic life science 63. Plenum Press, New York, pp 137-153
    [78] Wilson WE. and Nikjoo H. A Monte Carlo code for positive ion track structure. Radiat.Environ. Biophys. (1999) 97-104 38
    [79] Paretzke HG. Radiation Track Structure Theory. In: Freeman GR. (eds) Kinetics of nonhomogeneous processes John Wiley, Now York (1987) 121-129
    [80] Paretzke HG., Turner JE., Hamm RN., Ritchie RH. and Wright HA. Spatial distributions of inelastic events produced by gaseous and liquid water. Radiat. Res. (1991) pp 89-170 127
    [81] Dingfelder M., Hantke D., Inokuti M., and Paretzke HG Electron Inelastic scattering cross sections in liquid water. Radiat. Phys. Chem. (1998) 1-18 53
    [82] Jintana M., Jean-Paul JG., Abdelali FM. and Samlee M. Low-Energy Electron Penetration Range in liquid water. Radiat. Res. (2002) 657-660 158
    [83] I. Kawrakow, Alex F. Bielajew On the condensed history technique for electron transport.Nucl. Instr. Meth. B (1998) 253-280 142
    [84] Alan E. Nahum Condensed-history Monte-Carlo simulation for charged particles: what can it do for us? Radiat. Environ. Biophys. (1999) 163-173 38
    [85] 裴鹿成张孝泽著 蒙特卡洛方法及其在粒子输运问题中的应用科学出版社(1986) 18-20
    [86] Kahn H. Applications of Monte Carlo. Santa Monica, CA:The Rand Corporation. (1956)
    [87] Paretzke HG. Radiation Track Structure Theory. In: Freeman GR. (eds) Kinetics of nonhomogeneous processes John Wiley, Now York (1987) 121-129
    [88] Berger MJ. Monte Carlo calculation of the penetration and diffusion of fast charged particles. In: Alder, B. (eds), Methods in computational Physics. Acadamy Press, New York, (1963) pp 135-215
    [89] F. Salvat, JM. Fernandez-varea, J. Sempau. Practical aspects of Monte Carlo simulation of charged particle transport: Mixed algorithms and variance reduction techniques. Radiat. Environ. Biophys. (1999) pp 15-22 38
    [90] D. Emfietzoglou, G. Papamichael, M. Moscovitch An event-by-event computer simulation of interactions of energetic charged particles and all their secondary electrons in water. J. Phys. D: Appl. Phys. (2000) pp 932-944 33
    [91] Seng G. Thesis Universitat Kaiserslautern. (1975)
    [92] Trajmar S., Williams W. and Kupperman A. J. Chem. Phys. (1973) pp 2521 58
    [93] Nishimura H. in Electronic and Atomic Collisions. Proc. Ⅺth Int. Conf. Kyoto. vol 4. ed. K Takayanagi and Oda (1979) (Japan: Society for Atomic Collisions Research.)
    [94] Hilgner W., Kessler J and Steeb E Z. Phys. (1969) 324 221
    [95] Bromberg JP. in The Physics of Electronic and Atomic Collisions, Proc. Ⅺth Int. Conf. Seattle. ed. JS Risley and R Geballe (Seattle: University of Washington Press) (1975) p 98
    [96] A Danjo, H Nishimura Elastic Scattering of Electrons from H_2O Molecule. J. Phys. Soc. Jap. (1985) pp 1224-1227 54
    [97] Bethe H. . Phys. Rev. (1953) 1256 89
    [98] Moliere G. . Z.Naturf. a. (1947) 133 2
    [99] Moliere G. . Z. Naturf. a. (1948) 78 3
    [100] Brenner DJ. and ZaiderM. . Phys. Med. Biol. (1983) pp 443 29
    [101] Senger B., Falk S. and Rechenmann RV. . Radiat. Prot. Dosim. (1990) pp 37 31
    [102] S. Uehara, H. Nikjoo and DT. Goodhead Comparison and Assessment of Electron Cross Sections for Monte Carlo Track Structure Codes. Radiat. Res. (1999) pp 202-213 152
    [103] Albright N. A Markov formulation of the repair-misrepair model of cell survival. Radiat. Res. (1989) 118
    [104] Albright N. and Tobias C.A. Extension of the time-independent repair-misrepair model of cell survival to high-LET and multicomponent radiation. Mutation Research (2002) 11 1
    [105] Bauchinger M. Quantification of low-level radiation exposure by conventional chromosome aberration analysis. Mutation Research (1985) 177-189 339
    [106] Bedford J.S. and Cornforth M.N. Relationship between recovery from sublethal X-ray damage and the rejoining of chromosome breaks in normal human fibroblasts. Radiat. Res. (1987) 406-423 111
    [107] Brenner D.J. Track structure, lesion development and cell survival. Radiat. Res. (1990) S29-37 124
    [108] Brenner D.J., Hahnfeldt P., Amundson S.A., and sachs R.K. Interpretation of inverse dose-rate effects for mutagensis by sparsely ionizing radiation. International Journal of Radiation Biology. (1996) 447-458 70
    [109] Brenner D.J., Hlatky L.R., Hahnfeldt P., Hall E.J., and sachs R.K. A convenient extension of linear-quardratic model to include redistribution and reoxygenation. International Journal of Radiation Oncology, Biology and Physics (1995) 379-390 32
    [110] Brenner D.J., Hlatky L.R., Hahnfeldt P., Huang Y., and sachs R.K. Dose-response and frac-tionation/protraction relations: common biological models make similar predictions. Radiat. Res. (1997) 334-350 34
    [111] Brenner D.J. and sachs R.K. Generalized microdosimetric calculations of cell-to-cell variance. Radiation Protection Dosimetry. (1994) 21-24 52
    [112] Brenner D.J., and Ward J.F. Constraints on energy deposition and target size multiply damaged sites associated with DNA double strand breaks. International Journal of Radiation Biology (1992) 737-748 61
    [113] Bryant P.E. Rejoining and expression of radiation-induced DNA double strand breaks in mammalian cells. Radiation Research 1895-1995 (1995) 368-371 2
    [114] Chatterjee A. and Holley W.R. Energy deposition mechanisms and siological espects of DNA strand breaks by ionizing radiation. International Journal of Quantum Chemistry (1991) 709-727 39
    [115] Jan Osterreicher, KM Prise Radiation-Induced Bystander Effects Strahlentherapie und Onkologie (179) 69-77 (2002)
    [116] Rossi HH, Zaider M Microdosimetry and Its Application, Speringer (1997)
    [117] Stewart RD, Wilson WE Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system, Phys. Med. Biol. (2002) 47:79-88
    [118] CS Agostinelli, J Allison, K Amako Geant4-A simulation toolkit, Nuclear instruments and methods in physics research A 506:250-303 (2003)
    [119] Salvat F, et. al. PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron-photon showers, University of Barcelona preprint (1996)
    [120] J.H. Miller, M Sowa Resat, NF Metting Monte carlo simulation of single-cell irradiation by an electron microbeam, Radiat Environ Biophys (2000) 39:173-177
    [121] J Apotolakis, S Giani, M Maire Geant4 low energy electromaganetic models for electrons and photons, CERN-OPEN-99-034 (1999)
    [122] Jinitana M, Jean-paul JG, Abdelali FM low-energy electron penetration range in liquid water, Radiat Res (2002) 158:657-658
    [123] Y.Z. Ma, H.Y. Zhou, Y.Z. Zhuo Modelling of Radiation Response of V79 Cell using the new Concept of Clustering Cluster, International Journal of Modern Physics B in press
    [124] Y.Z. Ma, H.Y. Zhou, Y.Z. Zhuo Theoretical Study on Sullying Fraction for V79 Cell Irradiated by 40 keV/μm Deuteron Ion: A Case of Clustering Damages, International Journal of Modern Physics B in press
    [125] Y.Z. Ma, H.Y. Zhou, Y.Z. Zhuo Condensed-history Monte-Carlo simulation of the dosimetric distribution of electron microbeam, (submitted to Radiat. Environ. Biophys.)
    [126] Y.Z. Ma, H.Y. Zhou, Y.Z. Zhuo The Dose Calculation of Electron Microbeam using the Condensed-History Monte-Carlo Algorithm with Point Source, (submitted to Nucl. Instr. and Meth. B)
    [127] 马云志,曹天光,卓益忠 低能电子在水介质中的输运过程 高能物理与核物理 2003,27(4):319-323
    [128] 曹天光,马云志,卓益忠.质子,α粒子在水中的径迹结构,高能物理与核物理,2004,28(4):377-381
    [129] 曹天光,马云志,卓益忠,DNA损伤谱的模拟和分析,生物物理学报,2004,20(6):489-495

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700