电离辐射粒子在人体组织中能量沉积的微剂量学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1946年D.E.Lea指出辐射粒子的能量沉积微观分布在生物效应研究中的重要性以来,世界上许多国家都相继开展了这方面的研究。美国、德国和日本等许多国家从20世纪60年代起,就开始了电离辐射粒子(γ射线、中子、质子和电子)在μm尺度上的能量沉积研究,一开始它就和生物学密切结合,同时采用理论与实验方法进行,应用各种数学模型将物理测量与生物学效应联系起来,并解释了一些细胞失活现象。70年代以后,随着计算机技术的发展以及实验测量手段的创新和完善,对电离辐射能量沉积的研究范围又逐渐从μm量级深入到nm量级。以后伴随着航天事业的发展和各种大型重离子加速器运行,研究的范围逐步又扩展到各种类型的重离子在人体组织中产生能量沉积的微观行为和方式。
     在人体组织物质中,电离辐射产生的瞬时(或永久)变化与电离辐射作用事件在靶物质中发生的能量沉积、能量转移等过程的空间分布有着非常密切的关系。在这种情况下,一些宏观(或微观)剂量学量,如传能线密度(LET)、阻止本领和平均授与能等,将不能很好地描述辐射的物理、化学过程以及生物学效应,必须进一步对受照射物质中的电离辐射粒子能量沉积方式和能量沉积分布进行研究。所以,有关电离辐射粒子在物质中射程、截面以及沿其径迹周围径向剂量分布等相关物理量的研究,无论在理论上还是在实验中都受到广泛的关注。通过这些研究,深刻认识电离辐射在人体物质中的能量沉积微观物理基础,以解释各种电离辐射的生物学效应,并建立电离辐射作用模型与相应的物理作用机制。在电离辐射微剂量学研究领域内,到目前为止,无论在理论计算还是在实验测量手段上,国内在这方面开展的工作非常有限,基于国内目前研究状况和当前实验设备乏缺的情况,作为本课题的立足点,首先拟从理论计算入手,研究电离辐射在人体组织内能量沉积的微观分布,以填补国内在该研究领域的空白。
     在本课题研究的前期,进行了广泛的资料调研工作,由于国内资料非常有限,比较深入的相关研究工作还没有见到文献报导,因此,主要通过网上的国外文献资源,比较系统地了解了本学科前沿领域的研究状况,在此基础上逐渐形成了本课题工作的研究思路。由于利用Monte Carlo方法不用对介质内发生的物理过程做这样或那样的假设,能够真实模拟带电粒子能量沉积的微观过程和电离辐射粒子的空间行为,并能够对能量损失歧离、δ射线的产生及其它各种分叉径迹(forked track)等物理现象进行详细描述,所以,在课题研究方法的选择上,撇开了传统的数值计算方法,而首选了Monte Carlo计算
The world wide research on biological effects had been spread in many countries since L.E.Lea recognized the importance of the micro-distribution of radiation energy deposition in biological material in 1946. The researches about these kinds of energy deposition events including photon, neutron, proton and electron on the scale of micron were begun in the 60's of the last century in some foreign countries such as U.S.A, German, Japan etc. These researches were related tightly to biology since beginning. Both of experiment and theory method were used, and the relationship between physical measurement and biological effects was related through various mathematical models, with which the phenomena of cell-death could be explained. The investigation of the micro-distribution of radiation energy deposition has been extended largely from micron level to nanometer level with the development of computer technology and the perfection of the measuring methods since 1970. The research region was enlarged to heavy ions accompanied by the development of space-flight and the running of many large heavy ion accelerator after then.The instantaneous or permanent changes in tissue were close depended on the spatial micro-distribution of energy deposition and energy transfer process of radiation. In this case, some dosimetry concepts such as LET, stopping power and mean energy imparted would not be capable to describe the progress of physics, chemistry and biological effects. New concepts must be established, so the energy deposition fashion and the energy deposition distribution of various particles in tissue must be studied. The ranges, cross sections of ionizing particles and radial dose distributions along particles' trace in targets should be given much more attention both in theory and in experiment. The physics basement of energy deposition micro-distribution in tissue will be recognized deeply after these research, and the biological effects of all sort of ionizing particles will be explained correctly, then the ionizing radiation action model and according physics action mechanism will be established also. Little has been done in our country in the region, no matter in theory calculation or in experiment aspects now. In our research we will do some theory calculations first, and give some results of energy deposition micro-distribution in tissue. This study will be the first step in our national research.we have done a lot of investigation to do the work. There is little clue about this research, so we find no papers in Chinese. We have obtained lots of knowledge on this study main from worldwide web, and formed ourselves framework doing the research. If the Monte Carlo method was accepted, charged particles energy deposition micro-progress and ionizing radiation spatial action will be simulated, then many physics phenomena such as energy loss fluctuation, delta ray produced and all of other forked track will be scribed particularly. The important thing is that some supposes about physics progress
    happened in target will not be done. We give up mathematical calculation method and choice Monte Carlo method as our research means in this work.In our research progress, these problems have been resolved in turn: first, the tissue component was analyzed, and the rationality that liquid water (or water vapor-density is 1g/cm3) is the substitute of tissue equivalent material was made sure. Second, various cross section data on proton, alpha particles, electron and photon in water vapor were obtained, and these data were optimized. Third, the ESLOW3.1 code has been improved, and the new cross section data were adopted. The electron energy spectra from different energy photon (10keV~1.6MeV) in tissue equivalent materials were acquainted, and the electron mean energy was obtainted by this code also. Fourth, we acquainted energy deposition event position distribution, energy distribution from different energy electron (20eV~1.0MeV) in tissue equivalent material by the usage of ESLOW3.1 electron sub-code, and all sort of event type were analyzed. At the same time, according to DNA molecule diameter, the energy deposition cluster events were defined; the frequency distribution and energy distribution of cluster events were calculated. Fifth, neutron reaction types in body tissue were analyzed, and productions in these reactions were estimated. Sixth, using the latest code M0CA15 written by Wilson and Paretzke, we calculated track section of proton and alpha particle in the tissue equivalent material, and the energy deposition distribution, position distribution, energy distribution and radial dose distribution for second electron were all acquainted. The code-MOCA15 can dispose any proton and alpha particle with the energy region between 0.3MeV/u~5MeV/u. the wide particle energy region covers all energy proton and alpha particle we care about.Some energy deposition micro-distribution styles for different ionizing particles in tissue equivalent materials have been known thorough these researches. We have acquainted these particles energy deposition event distribution and dose distribution at nano-level also, and can recognized origin physics mechanism when various biological effects happen. This research will help us evaluated ionizing radiation latent physics injures in tissue at low dose. Meanwhile we can forecast the serious degree and happen probability of biological effects, and recognize ionizing radiation injure at molecule level. All these research are the physics base of ionizing radiation molecule biology.
引文
1 刘树铮.医学放射生物学.北京:原子能出版社,1998
    2 Biological Effects of Radiation and Chemical. Environment, safety and health systems, http://www.pnl.gov/
    3 郭勇,金冈年,梁德明等.电离辐射与人类生活.北京:原子能出版社,1990
    4 电离辐射生物学效应.http://www.37c.com.cn/literature/library/theory/017/01703026.html
    5 电离辐射的生物学效应.http://203.68.219.13/nm-research/
    6 BO Stenerl W, Kecke Elmroth, Karin Karlsson. DNA, Damage and Repair. 1999
    7 夏寿萱.放射生物学.北京:军事医学科学出版社,1998
    8 李玮博.吸入氡及其子体所致人呼吸道上皮靶细胞活存份额的微剂量学研究(硕士论文).北京:中国人民解放军军事医学科学院,1994
    9 Biological effects at low radiation doses, http://www.lbl.gov/abc/wallchart/chapters/appendix/appendixf.html
    10 Radiation Biological Effects. http://www.jlab.org/div_dept/train/rad_guide/effects.html
    11 H. H. Rossi. Microdosimetry and Radiobiology. Radiation Protection Dosimetry Vol. 13 No. 1-4, pp. 259-265(1985)
    12 Biological Effects of Radiation. http://www.cehs.siu.edu/radiological/Training%20Modules/biological.htm
    13 李士骏.电离辐射剂量学.北京:原子能出版社,1986
    14 佐洛图欣.人体中子组织剂量(译著).北京:原子能出版社,1979
    15 毛秉智,陈家佩.急性放射病基础与临床.北京:军事医学科学出版社,2002
    16 Microdosimetry-Proceedings of the Ninth symposium on Microdosimetry, held in Toulouse, France. Radiation Protection dosimetry 1985; 13(1~4)
    17 沈恂.微剂量学概论(原始书稿).北京:中国科学院生物物理研究所,1978
    18 T. Goodhead, peter O'Neill and G. menzel, microdosimetry (An interdisciplinary approach). Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 4WF, 1997
    19 M. Zaider, H. H. Rossi. On the application of Microdosimetry to Radiobiology. RADIATION RESEARCH 113, 15-24(1998)
    20 Microdosimetry-Proceedings of the Eleventh symposium on Microdosimetry, held in Gatlinburg, TN USA. Radiation Protection dosimetry 1994; 52(1~4)
    21 Harald H. Rossi. microscopic energy distribution in irradiated matter.
    22 D. Blanc and M. Terrissol. Microdosimetry: a tool for radiation research. Radiation Protection Dosimetry Vol. 13 No. 1-4, pp. 387-393(1985)
    23 田志恒.辐射剂量学.北京:原子能出版社,1992
    24 Radiation, DNA and the Cell. http://www.cea.fr,2002
    25 依万诺夫,雷佐夫.微剂量学基础(译著).北京:原子能出版社,1991
    26 薛良琰,刘呈详,张仲纶.中子和γ射线微观能量沉积谱的测量.中华放射医学与防护杂志,1982;2(5)
    27 李开宝.放射治疗中的微剂量学.中华放射医学与防护杂志,1986;6(2)
    28 W. ROSENZWEIG, H. H. Rossi. determination of the quality of the absorbed dose delivered by monoenergetic neutrons. RADIATION RESEARCH 10, 532-544(1998)
    29 Literature Review and Background for microdosimetry study.
    30 Ivo L. petr. Radiation dose assessment: principles and applications. National Nuclear Regulator South Africa
    31 L. E. Feinendegen, J. Booz and V. P. Bond. Microdosimetric approach to the analysis of cell responses at low dose and low dose rate. Radiation Protection Dosimetry Vol. 13 No. 1-4, pp. 299-306(1985)
    32 李德平,潘自强.辐射防护手册(第5分册).北京:原子能出版社,1991
    33 Robert D. Stewart. The Nature of a Fatal DNA Lesion. http://www.pnl.gov/,PNNL(Pacific Northwest National Laboratory)-SA-20810,2001
    34 卓益忠,曹天光,马云志.DNA辐射损伤理论模型(研究报告).北京:中国原子能科学研究院,2002
    35 Robert D. Stewart. What's a DNA lesion, http://www.pnl.gov/,PNNL-SA-30809, 1997
    36 M. Bardash and M. Zaider. A Stochastic Treatment of Radiation Damage to DNA from Indirect Effects. Radiat. Prot. Dosim. 52(1-4), pp 171-176(1994)
    37 Richard D. Wood, Michael Mitchell, John Sgouros, Tomas Lindahl Human DNA Repair Genes. http://www.biosino.org/hgp/1284.pdf0
    38 冯宁远等.实用放射治疗物理学.北京:北京医科大学、中国协和医科大学联合出版社,1998
    39 K. Morstin, B. Kawecka and J. Booz. Combined Primary and Secondary Particle Transport Calculations of Microdosimetric Distributions in Tissues and Tissue Substitutes. Radiat. Prot. Dosim. 13(1-4), pp 103-110(1985)
    40 S. Jonas. fast neutron absorbed dose distribution characteristics in the energy range 10-80MeV. ISRN Uli-RAD-R-87(report 87), 1998
    41 A. Taymaz, T. Armagan, B. Akkus, M. I. Bostan, M. H. Khalil. A track structure model for radial dose distributions of energetic heavy ions. P-3b-S11, 1998
    42 A. E. Schach et. Source Description and Sampling Techniques in PEREGRINE Monte Carlo Calculations of Dose Distributions for Radiation Oncology. UCRL-JC-128879, 1997
    43 S. Uehara, L. H. Toburen, H. Nikjoo. Development of a Monte Carlo track structure code for low-energy protons in water. INT. J. RADIAT. BIOL 2001, VOL. 77, NO. 2, 139-154
    44 H. Nikjoo, S. Uehara I. G. Khvostunov. Monte Carlo structure for radiation biology and space application. First international workshop on space radiation research and 11th annual NASA space radiation health investigators' workshop arona(Italy), May 27-31, 2000
    45 W. E. Wilson. Positive ion track simulation(a monte carlo code for positive ion track simulation). Radiat. Environ. Biophysics(1999) 38: 97-104
    46 H. Nikjoo, M. Terrissol, R. N. Hamm, J. E. Turner, S. Uehara, H. G. Paretzke and D. T. Goodhead. Comparison of Energy Deposition in Small Cylindrical Volumes by Electrons Generated by Monte Carlo Track Structure Codes for Gaseous and Liquid Water. Radiat. Prot. Dosim. 52(1-4), pp 165-169(1994)
    47 复旦大学,清华大学,北京大学.原子核物理实验方法.北京:原子能出版社,1985
    48 乔登江.核爆炸物理学.北京:原子能出版社,1982
    49 T. M. Evans. The Measurement and Calculation of Nanodosimetric Energy Distributions for Electrons and Photons. NE/HP Program, Georgia Institute of Technology Neely Nuclear Research Center Atlanta, GA 30332, 2001
    50 H. P. Leenhouts and K. H. Chadwick. Radiation energy deposition in water: calculation of DNA damage and Its association with RBE. Radiation Protection Dosimetry Vol. 13 No. 1-4, pp. 267-270(1985)
    51 H. Nikjoo, M. Terrissol and R. N. Hamm et. Comparison of energy deposition in small cylindrical volumes by electrons generated by monte carlo track structure codes for gaseous and liquid water. Radiation Protection Dosimetry Vol. 52 No. 1-4, pp. 165-169(1994)
    52 M. Zaider, M. G. Vracko, A. Y. C. Fung and J. L. Fry. Electron Transport in Condensed Water. Radiat. Prot. Dosim. 52(1-4), pp 139-146(1994)
    53 S. Uehara, L. H. Toburen, W. E. Wilson. Calculations of electronic stopping cross sections for low-energy protons in water. Radiation Physics and Chemistry 59(2000)1-11
    54 D. Combecher and J. Kollerbauer. The Measurement of Electron Spectra in the Track of Protons in Water Vapour. Radiat. Prot. Dosim. 13(1-4), pp 23-26(1985)
    55 W. E. Wilson, D. J. Lynch, K. Wei and J. H. Miller. Microdosimetry of a 25keV electron Microbeam. Washington State University Tri-Cities Richland, WA99352
    56 microdosimetric properties of ionizing electrons in water, http//www.pnl.gov/berc/staff/rds/epub/abstracts/st01_udos
    57 KENDALL RUSSELL DEPRIEST. ENERGY DEPOSITION SPECTRA OF SIMULTANEOUS ELECTRON EMISSIONS FROM LOWENERGY PROTONS(THESIS). Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE. 1998
    58 普罗菲奥.实验反应堆物理学.北京:原子能出版社,1980
    59 核物理学.http://www.ikepu.com.cn/physics/physics_branch/nuclear_physics.htm
    60 西北核技术研究所.核爆炸效应参数手册(秘密).1981
    61 李强.荷能重离子在等效生物组织-液态水中的径迹结构及能量沉积分布研究(硕士论文).兰州:中国科学院近代物理研究所,1995
    62 H. Roos, R. Gerlach, A. M. kellerer. Heavy-Ion RBE and Microdosimetric Spectra. Radiobiological Institute, University of Munich Schillerstrasse 42
    63 Li Qiang, Wei Zengquan. Calculations of heavy ion track structure and energy deposition distribution in liquid water, Nuclear Instruments and Methods in Physics Research B 122(1997)657-662
    64 R. Schulte, V. Bashkirov, Ion-Counting nanodosimetry: current status and future applications.
    65 M. Scholz and G. Kraft. Calculation of Heavy Ion Inactivation Probabilities Based on Track Structure, X Ray Sensitivity and Target Size. Radiat. Prot. Dosim. 52(1-4), pp 29-33(1994)
    66 E. A. Bigildeev and A. V. Lappa. Determination of Energy Deposited in Nanometre Sites from Ionisation Data. Radiat. Prot. Dosim. 52(1-4), pp 73-76(1994)
    67 C. X. Zhang, X. W. Liu, M. F. Li and D. L. Luo. Numerical Calculation of the Radial Distribution of Dose Around the Path of a Heavy Ion. Radiat. Prot. Dosim. 52(1-4), pp 93-96(1994)
    68 W. E. Wilson and H. G. Paretzke. A Stochastic Model of IonTrack Structure. Radiat. Prot. Dosim. 52(1-4), pp 249-253(1994)
    69 G. Leuthold and G. Burger. Structure and Microdosimetric Classification of Computer Simulated Ion Tracks. Radiat. Prot. Dosim. 13(1-4), pp 37-40(1985)
    70 M. Marshall, G. P. Stonell and P. D. Holt. Ionisation Distributions from Proton and Other Tracks in Water Vapour. Radiat. Prot. Dosim. 13(1-4), pp 41-44 (1985)
    71 The special interaction of ionizing radiation with living tissue, http://www.ratical.org/radiation/CNR/RIC/chp19F.html
    72 李文建,周光明,梁克等.重离子与X射线辐照细胞的敏感性比较.中华放射医学与防护杂志,2001;21(4)
    73 吴李君,Tom.K.Hei,余增亮.微束单细胞照射的研究和发展.国家自然科学基金资助项目(19875054)
    74 吴李君.单细胞微束照射的研究(博士论文).合肥:中国科学院等离子体所,1999年7月
    75 杜严华,谭铮等.低能重离子对DNA单链断裂的定量测定及注量效应曲线的分析.武汉大学生命科学学院.http://www.scichina.com/kz/kzjb/9901/k0056.htm
    76 王运来,张良安.多细胞、细胞以及亚细胞水平的吸收剂量研究近况.国外医学放射医学核医学分册.http://www.37c.com.cn/development/progress/2000076848.html,1999;23(6).
    77 王菊芳,周光明,李文建等.不同LET碳离子对哺乳动物细胞的生物学效应.中华放射医学与防护杂志,2001;21(5)
    78 R. Rechenmann, E. Wittendorp-Rechenmann and B. Senger. Various Aspects of Heavy Charged Particle Track Structures in Nuclear Emulsion: A Starting Point for the Description of Track Patterns in Tissue-Like Media. Radiat. Prot. Dosim. 13(1-4), pp 53-59 (1985)
    79 R. N. Hamm, J. E. Turner and H. A. Wright. Statistical Fluctuations in Heavy Charged Particle Tracks. Radiat. Prot. Dosim. 13(1-4), pp 83-86 (1985)
    80 M. J. Berger. Energy Loss Straggling of Protons in Water Vapour. Radiat. Prot. Dosim. 13(1-4), pp 87-90 (1985)
    81 H. Bichsel. Monte Carlo Calculation of Energy Deposition by Fast Protons in a Rossi Counter. Radiat. Prot. Dosim. 13(1-4), pp 91-94 (1985)
    82 蒙特卡罗方法.http://166.111.32.2/egs4/introduction/history/mchome.htm
    83 G.Bengtsson.微剂量学中的方差和协方差分析.中华放射医学与防护杂志,1986;6(2)
    84 E. R. Bartels and D. Harder. the Microdosimetric regularities of Nanometre Regions. Radiation Protection Dosimetry Vol. 31 No. 1-4, pp. 211-215(1990)
    85 D. T. Goodhead and D. E. Charlton. Analysis of high-LET radiation effects in terms of local energy deposition. Radiation Protection Dosimetry Vol. 13 No. 1-4, pp. 253-258(1985)
    86 K. Morstin and P. Olko. Calculation of neutron energy deposition in nanometric sites. Radiation Protection Dosimetry Vol. 52 No. 1-4, pp. 89-92(1994)
    87 V. Michalik. Distance Distributions for Energy Deposition Clusters in Different Particle Tracks. Radiat. Prot. Dosim. 52(1-4), pp 245-248 (1994)
    88 W. E. Wilson, D. J. Lynch, J. H. Miller. Monte Carlo Track-Structure Simulations LOW-LET Selected Cell Radiation Studies(Progress Report, January, 2001). Department of Energy, Grant NO. DE-FGO3-99ER62860
    89 K. Morstin and P. Olko. Calculation of Neutron Energy Deposition in Nanometric Sites. Radiat. Prot. Dosim. 52(1-4), pp 89-92 (1994)
    90 INTEERACTION OF RADIATION WITH MATTER(RCT SYUDY GUIDE).
    91 D. T. Goodhead, H. P. Leenhouts, H. G. Paretzke, M. Terrissol, H. Nikjoo and R. Blaauboer. Track Structure Approaches to the Interpretation of Radiation Effects on DNA. Radiat. Prot. Dosim. 52(1-4), pp 217-223 (1994)
    92 W. E. Wilson, D. J. Lynch, K. Wei and J. H. Miller. Microdosimetry for LOW-dose LOW-LET Selected Cell Radiation. Washington State University Tri-Cities 2710 University Drive Richland, WA99352
    93 D. E. Charlton, D. T. Goodhead, W. E. Wilson and H. G. Paretzke. The Deposition of Energy in Small Cylindrical Targets by High LET Radiations. Radiat. Prot. Dosim. 13(1-4), pp 123-125 (1985)
    94 Daid Brenner, Chengshiun Leu, John F Beatty. Clinical relative biological effectiveness of low-energy x-rays emitted by miniature x-ray devices, phys. med. Biol. 44(1999)323-333. Printed in the UK, 1999
    95 L. Le Cam. Stochastic Models of Lesions Induction and Repair in Yeast.
    96 A. A. Broyles. The effect of dose on radiation injury to man. UCRL-98266, 1987
    97 L. Le Cam. Stochastic Models of Lesions Induction and Repair in Yeast. University of California, Berkeley
    98 小剂量外照射的生物效应.http://www.37c.com.cn/literature/library/theory/017/01703026.html
    99 W. Koehnlein. Chronic low-dose radioactive exposure: false alarm or public health harzad? Director of the institute for radiation biology, University of Muenster
    100 Reinhard W. Schulte. Development of Nanodosimetry for Biomedical Applications (Semi-annual report year 2000).
    101 K. Miaskiewicz and R. Osman. Molecular Dynamics Simulation of DNA with a Primary Radiation Damage. Radiat. Prot. Dosim. 52(1-4), pp 149-153 (1994)
    102 G. W. Barendsen. RBE-LET Relationships for DNA Lesions and Different Types of Cellular Damage. Radiat. Prot. Dosim. 52(1-4), pp 359-362 (1994)
    103 郑文忠.用于内照射随机微剂量实验研究的园柱型无壁组织等效正比计数器(内部资料).北京:军事医学科学院放射医学研究所,1985
    104 邢桂平,王树华.实用医学放射剂量学.济南:黄河出版社,1995
    105 F. Spurny, J. Bednar, F. Bottollier, A. G. Molokanov, B. Vlcek. Experimental Microdosimetry in High Energy Radiation Fields. P-3b-164, 1998
    106 J. W. Wilson, F. A. Cucinotta, W. Schimmerling et. Impact of Structure Effects on Shielding and Dosimetry. 1983; 65: 23—27
    107 B. R. L. Siebert, J. E. Grindborg, B. Grosswendt and H. Schuhmacher. New Analytical Representation of W Values for Protons in Methane-Based Tissue-Equivalent Gas. Radiat. Prot. Dosim. 52(1-4), pp 123-127 (1994)
    108 Physical tools for studying radio-induced lesions. http://www.cea.fr,2002
    109 P. Colautti, M. Cutaia, M. Makarewicz, H. Schraube, G. Talpo and G. Tornielli. Neutron Microdosimetry in Simulated Volumes less than 1μm in Diameter. Radiat. Prof. Dosim. 13(1-4), pp 117-121 (1985)
    110 K. H. Folkerts, H. G. Menzel, H. Schuhmacher and E. Arend. TEPC Radiation Protection Dosimetry in the Environment of Accelerators and at Nuclear Facilities. Radiat. Prot. Dosim. 23(1-4), pp 261-264 (1988)
    111 E. B. Saion and D. E. Watt. Microdosimetry of Intermediate Energy Neutrons in Fast Neutron Fields. Radiat. Prot. Dosim. 23(1-4), pp 265-268 (1988)
    112 李德平,孙世荃等译.国际放射防护委员会1990年建议书,(国际放射防护委员会第60号出版物).北京:原子能出版社,1993
    113 B. Zanzonico. Internal radionuclide radiation dosimetry: a review of basic concepts and recent developments. Nuclear medicine service, Memorial sloan-kettering cancer center, New York, 1999
    114 刘幕台,林招膨,林桂华.微剂量之理论及其应用发展.Chin J Radiol 1999:24(2)
    115 J. E. Turner, R. N. Hamm, G. S. Hurst, H. A. Wright and M. M. Chiles. Digital Characterisation of Particle Tracks for Microdosimetry. Radiat. Prot. Dosim. 13(1-4), pp 45-48 (1985)
    116 J. Booz, L. E. Feinendegen. Applications of microdosimetry. Paper for the 8th International Congress on Radiation Research
    117 A. M. Kellerer. Microdosimetry: Recent Trends and Applications to Radiation Biology and Radiation Chemistry. Paper for the 8th International Congress on Radiation Research
    118 H. G. Menzel. Applications of Microdosimetry in Radiation Protection. Paper for the 8th International Congress on Radiation Research
    119 Andre Wambersie. Applications of Microdosimetry in Radiation Therapy. Paper for the 8th International Congress on Radiation Research
    120 Radiation Biophysics: Energy Transfer. http://icarus.csrri.iit.edu/~ahoward/radbio/energytransfer.html
    121 Low Dose Radiation. http://www.er.doe.gov/production/ober/lowdose.html
    122 T. M. EVANS AND C-K. CHRIS WANG, MEASUREMENT OF DISTRIBUTIONS OF SMALL-SCALE ENERGY DEPOSITIONS FROM LOW LINEAR ENERGY TRANSFER PARTICLES USING THE SUPERHEATED DROP DETECTOR
    123 A. B. Chilton, J. K. Shultis, and R. E. Faw. Principles of Radiation Shielding. Prentice Hall, New York, 1984
    124 CRU Repot 36. Microdosimetry. International Commission on Radiation Limits and Measurements, Bethesda MD 1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700