高LET辐射致DNA和生物体损伤的机制及其防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱氧核糖核酸(DNA)是辐射生物学效应的最重要和灵敏的靶分子。电离辐射通过直接作用和自由基的间接作用可引起DNA分子多种类型的损伤,如碱基损伤、糖基损伤、单链和双链断裂以及DNA交联等。其中双链断裂(DSBs)是最关键的损伤类型,它的正确和完全修复可保证细胞的存活,而错误修复和残余DNA损伤将导致细胞的死亡、突变和转化。
     重离子和质子是具有高传能线密度(LET)的辐射。与低LET辐射相比,其能量沉积密集,通过物质时有着完全不同结构的电离径迹,径迹结构复杂,能引起较高的相对生物学效应(RBE)。在辐射生物学实验中,具有高LET的粒子的使用,为研究不同离子密度和生物学系统之间的相互关系及证实模型和理论的物理基础提供了基本和良好的工具。研究高LET辐射与生物物质的相互作用对于重离子和质子在放射治癌中的应用具有十分重要的意义,同时对于暴露于高LET辐射情形下,如太空辐射及核辐射环境下人员的危险性评估和辐射防护也是十分必要的。
     本研究利用原子力显微镜(AFM)技术和凝胶电泳方法,在分子水平上研究了具有高LET的重离子辐射中直接和间接作用致DNA链断裂的物理化学机理及自由基清除剂的辐射防护作用。利用光学显微镜手段,在细胞水平上观测了质子辐射诱发的一些生物学效应。以期为重离子和质子治癌、太空辐射和核辐射的危险性评估及其防护等提供有价值的实验依据。
     选用HI-13串列加速器加速的具有不同LET值的~7Li和~(12)C重离子,以不同的剂量分别对干状及不含和含自由基清除剂的水溶液pUC19质粒DNA进行了辐照。使用AFM在纳米尺度上直接观测了辐射诱发的DNA碎片及分子形态的变化。得到了DNA碎片长度的分布和双链断裂数目随辐射剂量的变化规律,评估了自由基清除剂甘露醇和维生素C的抗辐射能力。同时,使用凝胶电泳方法分析了实验样品,对AFM的结果进行了验证和补充。研究结果表明:
     对于水溶液pUC19质粒DNA,具有110keV/μm左右LET值的~7Li离子诱发的生物效应最为严重。与具有低LET的电子和高LET的中子(55keV/μm)相比,在相近剂量下,具有较高LET的~7Li离子可诱发DNA分子发生集团损伤,即形成更多和更短的DNA小碎片,从而使DSB的分布更局部和更密集;干状DNA及DNA水溶液浓度和自由基清除剂对DNA链断裂产额的影响均暗示,在水溶液环境下,~7Li离子辐射诱发的DNA链断裂是直接作用和自由基的间接作用的共同结果,而自由基的作用为主导因素;
     在~7Li和~(12)C重离子辐射中,自由基清除剂甘露醇和维生素C均能与DNA分子竞争自由基,清除辐射过程中产生的自由基,有效地减少重离子诱发的DNA链断裂的产生,具有一定的重离子辐射防护能力:与γ辐射相比,自由基清除剂对重离子辐射诱发产生的DSB的清除能力略小,表明重离子辐射可诱发更多的不能清除的DSB,这些DSB主要由直接作用和局部多重损伤位点(LMDS)所引起;
     质子辐射诱发ICR小鼠的皮肤及心肌、肝和肺等深层组织发生了病理性改变。这些结果为进一步深入研究质子辐射致生物体损伤机理提出了挑战。
     总之,传统的核物理实验技术与先进的AFM技术和现代分子生物学技术的成功结合,为辐射生物损伤机制及其防护的研究提供了一种重要和有力的研究手段,可实现在分子水平上获得高LET辐射致DNA损伤及其防护的更为精细的信息和丰富的实验数据。
It is widely accepted that DNA is the crucial sensitive target of radiation. Numerous lesions including sugar alteration, base damage, single- and double-strand breaks together with cross-links have been identified in irradiated DNA. The DNA double strand breaks (DSBs) are considered as the most critical type of lesions. Correct and complete repair of DSBs guarantees cellular survival, while incorrect repair and residual DNA damage may lead to cell killing, mutation or transformation.
     Heavy ions and protons with high linear energy transfer (LET) values can depose more energies and have different ionizing track structure while through the matter comparing with the low-LET radiation. Their complex ionizing tracks lead to multiple ionization events within nanometer regions of the target, resulting in the induction of complex damage and higher relative biological effectiveness (RBE). The use of high LET particles in radiobiological experiments provides a fundamental and powerful tool to study the relationship between different ionization densities and biological system as well as to prove the physical basis of models and theories. The knowledge of the interaction of high LET radiation with biological matter is of great importance for the application of heavier ions and protons therapy. It is also essential in radioprotection for estimation of risk to crews and patients in case of exposure to high LET radiation, such as space or nuclear radiation environment.
     The goal of this study is to investigate the physical and chemical mechanism of DNA strand breaks induced by direct and indirect effect of heavy ions radiation with high LET and corresponding radioprotection action of free radical scavenger by means of atomic force microscopy (AFM) and gel electrophoresis at the molecular level. In addition, the biological effects induced by protons are observed using the optical microscopy at the cellular level.
     Choosing ~7Li and ~(12)C heavy ions with different LET accelerated by HI-13 tandem accelerator respectively, the dry and aqueous pUC19 plasmid DNA with or without free radical scavenger are irradiated with different doses in air. AFM is used to directly visualize the DNA fragments and the change of DNA form resulting from exposure to heavy ions radiation at the nanometer scale. The distributions of DNA fragment lengths and the changes of number of DSBs as the dose increase are obtained. The radioprotective capability of scavenger, mannitol and vitamin C is estimated. At the same time, the irradiated DNA samples are also analyzed by gel electrophoresis technique in order to prove and supplement experimental results obtained by AFM. The results are as follows,
     There is a maximum biological effectiveness when the pUC19 plasmid DNA in aqueous solution is irradiated by ~7Li ions at a LET around 110keV/μm. Comparing with the low LET electron and high LET neutron irradiation, the higher LET ~7Li ions induce the cluster DSB lesions that is formation of much larger and much shorter small DNA fragments, and then the distribution of DSB more locally and more densely at comparable dose. The influence of dry DNA, the concentration of DNA solution and free radical scavenger on yielding DNA strand breaks suggest that the DNA strand breaks induced by ~7Li ions as the corporate result of direct effect and indirect effect of free radical, and the free radical effect may be the main factor.
     In ~7Li and ~(12)C ions radiation, the scavenger, mannitol and vitamin C can compete free radical with DNA molecule and scavenge the free radical generated during radiolysis, then reduce the yields of DNA strand breaks induced by heavy ions efficiently, which suggest that they have stronger radioprotective capability against heavy ions radiation. The scavenging capacity of scavenger for heavy ions radiation induces DSB is lower than that one induced byγ-rays, namely the heavy ions radiation may induce a much number of DSBs that can not be scavenged, those DSBs mainly are produced by mechanism of direct effect and are induced by the locally multiply damaged sites (LMDS).
     The protons radiation induces the ICR mouse' tissue, such as skin, cardiac muscle, lung and liver appear pathologic change, which results bring forward a challenge to further study of organism damage induced by protons radiation.
     In conclusion, combined traditional nuclear physical experimental technique with advanced AFM and modern molecular biological technology successfully, an important and powerful means is provided for study of the mechanism of biological damage induced by radiation and corresponding radioprotection. Using of those means, the more delicate information and more abundant experimental data of DNA damage and its protection induced by high LET radiation can be obtained at molecular level.
引文
[1]夏寿萱主编,放射生物学,第一版,北京,军事医学科学出版社,1998:22-77
    [2][美]E.J.霍尔著,王顺宝等译,放射生物学(供放射治疗、放射诊断和核医学用),第一版,北京,原子能出版社,1987:6-19
    [3]方允中,郑荣梁主编,自由基生物学的理论与应用,第一版,北京,科学出版社,2002:15-42
    [4]阎隆飞,张玉麟主编,分子生物学,第二版,北京,中国农业大学出版社,1997:26-39
    [5]E.Hoglund,E.Blomquist,J.Carlsson et al.,DNA damage induced by radiation of different linear energy transfer:initial fragmentation,Int.J.Radiat.Biol,2000,76(4):539-547
    [6]H.C.Newman,K.M.Prise,M.Folkard et al.,DNA double-strand break distribution in X-ray and α-particle irradiation V79 cells:evidence for non-random breakage,Int.J.Radiat.Biol.,1997,71(4):347-363
    [7]G.Kraft,G.Taucher-Scholz,J.Heilmann,LET-Effect in DNA,Battelle Press,1994:203-214
    [8]H.Nikjoo,P.0’Neill,M.Terrissol et al.,Modeling of radiation induced DNA damage:the early physical and chemical event,Int.J.Radiat.Biol.,1994,66:453-457
    [9][美]杨垂绪,[中]梅曼彤编著,太空放射生物学,第一版,广州,中山大学出版社,1995:23-32
    [10]袁雄,叶常青,周平坤,重离子辐射的DNA链断裂效应,航天医学与医学工程,1997,10(4):309-312
    [11]J.Kiefer,U.Stoll and E.Schneider,Mutation induction in yeast by very heavy ions,Adv.Space Res.,1994,14(10):331-338
    [12]TC Yang,LM Craise,MT Mei et al.,Neoplastic cell transformation by heavy charged particles,Radiat.Res Suppl.,1985,8:S177-S187
    [13]J.Heimann,G.Taucher-Scholz and G.Kraft,Induction of DNA double-strand breaks in CHO-Kl cells by carbon ions,Int.J.Radiat.Biol.,1995,68(2):153-162
    [14]叶常青主编,辐射危害与评价,第一版,北京,军事医学科学出版社,1999:300-356
    [15]叶常青,载人航天飞行中的放射医学与防护问题,中华放射医学与防护杂志,1999,19(2):143-144
    [16]徐冰心,岳茂兴,航天辐射危害及其防护剂研究进展,中华航空航天医学,2005,16(1):72-74
    [17]刘树铮主编,医学放射生物学,第二版,北京,原子能出版社,1998:5-8
    [18]李强,卫增泉,重离子束用于肿瘤放射治疗的基础理论,原子能物理评论,1999,16(4),262-266。
    [19]李强,卫增泉,党秉荣等,重离子Bragg峰的研究及其应用,高能物理与核物理,1997,21(6),571-575
    [20]D.D.Leavitt,Analysis of primate head irradiation with 55-MeV protons,Radiat.Res.,1991,126(2),127-131
    [21]N.K.Clapp,E.B.Darden Jr,and M.C.Jemigan,Relative effects of wholebody sublethal dose of 60 MeV protons and 300 kVp X rays on disease incidences in RF mice,Radiat.Res.,1974,57(1):158-186
    [22]F.J.Bums,R.E.Albert,M.Vanderlaan et al.,The dose response curve for tumor induction with single and splite doses of 10MeV protons,Radiat.Res.,1975,62:598
    [23]A.Chatterjee and W.R.Holley,Biochemical mechanisms and clusters of damage for high-LET radiation,Adv.Space Res 1992,12(2):33-43
    [24]D.Frankenberg,D.T.Goodhead,M.Frankenberg-Schwager et al.,Effectiveness of 1.5 keV aluminum K and 0.3 keV carbon K characteristic X-rays at inducing DNA double-strand breaks in yeast cells,Int.J.Radiat.Biol.,1986,50(4):727-741
    [25]M.O.Bradley and K.W.Kohn,X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution,Nucleic Acids.Res.,1979,7:793-804
    [26]T.D.Stamato and N.Denko,Asymmetric field inversion gel electrophiresis:a new method for detecting DNA double-strand breaks in mammalian cells,Radiat.Res.,1990,121(2):196-205
    [27]R.Roots G.Kraft and E Gosschalk,The formation of radiation-induced DNA breaks:the ratio of double-strand breaks to single-strand breaks,Int.J.Radiat.Biol.,1985,11(2):259-265
    [28]C.Herskind,Single-strand breaks can lead to complex configuration of plasmid DNA in vitro,Int.J.Radiat.Biol.,1987,52(4):565-575
    [29]D.Pang,G.Popescu,J.Rodgers et al.,Atomic force microscopy investigation of radiation-induced DNA double strand breaks,Scanning Microscopy,1996,1O(4):1105-1110
    [30]D.pang,B.L.Berman,S.Chasovskikh et al.,Investigation of neutron-induced damage in DNA by atomic force microscopy:experiment evidence of clustered,Radiat.Res.,1998,150:612-618
    [31]M.Murakami,H.Hirokawa and I.Hayata,Analysis of radiation damage of DNA by atomic force microscopy in comparison with agarose gel electrophoresis studies,J.Biochem.Biophys.Methods,2000,44(1-2):31-40
    [32]S.Boichot,M.Fromm,S.Cunniffe et al.,Investigation of radiation damage in DNA by using atomic force microscopy,Radiation Protection Dosimetry,2002,99(1-4):143-145
    [33]D.pang,J.E.Rodgers,B.L.Berman et al.,Spatial distribution of radiation-induced double-strand breaks in plasmid DNA as resolved by atomic force microscopy,Radiat.Res.,2005,164:755-765
    [34]J.F.Ward,Biochemistry of DNA lesions,Radiat.Res Suppl.,1985,8:S103-111
    [35]M.A.Siddiqi and E.Bothe,Single-and double-strand break formation in DNA irradiation in aqueous solution:dependence on dose and OH radical scavenger concentration,Radiat.Res.,1987,112(3):449-463
    [36]G.D.D.Jones,J.R.Milligan,J.F.Ward et al.,Yield of Strand Breaks as a Function of Scavenger Concentration and LET for SV40 Irradiated with 4He Ions,Radiat.Res., 1993,136:190-196
    [37]M.A.Xapsos and W.K.Pogozelski,Modeling the yield of double-strand breaks due to formation of mutiply damaged sites in irradiated plasmid DNA,Radiat.Res.,1996:146(6):668-672
    [38]J.Stanton,G.Taucher-Scholz,M.Schneider et al.,Comparison Between Indirect and Direct Effects for High and Low LET Radiations in SV40 DNA Strand Break Induction Radiat.Prot.Dosim.,1990,31:253-256
    [39]F.A.Robert,J.F.Louisa,H.Yukihiko et al.,Green tea catechins partially protect DNA from OH radical-induced strand breaks and base damage through fast chemical repair of DNA radicals,Carcinogenesis,2001,22(8),1189-1193
    [40]R.Rema,W.Khalida,G.H.Nagaraj et al.,Inhibition if y-radiation induced DNA damage in plasmid pBR322 by TMG,a water-soluble derivative of vitamin E,Radiat.Res.,2002,43:153-159.
    [41]N.M.Gandhi and C.K.Nari,Radiation protection by diethyldithiocarbamate:protection of membrane and DNA In Vitro and In Vivo against y-radiation,Radiat.Res.,2004,45(2):175-180
    [42]周丽君,方允中,章扬培等,质粒pBR322的y辐射损伤效应,辐射研究与辐射工艺学报,1993,11(1),28-30
    [43]杜海彪,丘冠英,杜严华,三种类型辐射对质粒超螺旋DNA损伤的研究,生物物理学报,1997,13(2),261-266
    [44]强亦忠,王崇道,邵源等,几种制剂清除辐射所致自由基的ESR研究,辐射防护,1999,19(5),371-375
    [45]邵春林,齐藤真弘,余增亮,y射线辐射诱导质粒DNA单链断裂:与DNA和自由基清除剂浓度的关系,激光生物学报,1999,8(2),97-101
    [46]邵春林,齐藤真弘,余增亮,y辐射诱导质粒DNA单链断裂的反向氧效应,生物化学与生物物理学报,1999,31(1),67-70
    [47]邵春林,齐藤真弘,余增亮,DNA双链断裂的组成与自由基清除效能的关系,物理化学学报.2000.16(2).184-187
    [48]邵春林等,电离辐射诱导DNA链断裂的动力学研究,生物化学与生物物理学报,2000,32(4),379-382
    [49][荷兰]K.H.查德威克,H.P.莱恩豪特著,张卿西等译,放射生物学分子理论,第一版,北京,原子能出版社,1987:24-30
    [50]K.M.Prise,M.Pinto,H.C.Newman et al.,A review of studies of ionizing radiation-induced double-strand break clustering,Radiation Research,2001,156:572-576
    [51][美]陈成钧著,华中一等译,扫描隧道显微学引论,北京,中国轻工业出版社,1996:306-316
    [52]白春礼,田芳,罗克著,扫描力显微术,第一版,北京,科学出版社,2000:7-15
    [53]H.G.Hansma,D.E.Laney,M.Bezanilla et al.,Application for atomic force microscopy of DNA,Biophysical.Journal,1995,68:1672-1677
    [54]张德添,何昆,张飒等,原子力显微镜发展近况及其应用,现代仪器,2002,3:6-9
    [55]J.R.Milligan,J.A.Aguilera,and J.F.Ward,Variation of single-strand break yield with scavenger concentration for plasmid DNA irradiation in aqueous solution,Radiat.Res.,1993,133(2):151-157
    [56]M.Spotheim-Maurizot,M.Charlier and R.Sabattier,DNA radiolysis by fast neution,Int.J.Radiat.Biol.,1990,57(2):301-313
    [57]T.Ashikage,M.Wadu,H.Kobayashi et al.,Effect of the photocatalytic activity of TiO_2 on plasmid DNA,Mutation Research,2000,466:1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700