脉冲激光模拟试验数字器件单粒子效应的机理与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字器件包括SRAM、FLASH、FPGA、ASIC、PROM、EEPROM、CPU等,是构成航天器电子系统的主要部分,实现数据的获取、写入、存储等工作。空间粒子辐射环境容易引发数字器件的单粒子效应,它是导致航天器故障或异常的主要原因之一。在单粒子效应中,单粒子翻转(Single Event Upset, SEU)效应和单粒子闩锁(Single Event Latchup, SEL)效应是对器件影响最多且被广泛关注的两种效应。随着半导体工艺减小到深亚微米、超深亚微米,数字器件表现出对单粒子效应的极端敏感性。
     为了保障航天器的安全可靠飞行,需要对航天器电子系统中的数字器件进行地面模拟试验以判定单粒子效应特性。本文首先对脉冲激光模拟试验单粒子效应的机理进行了研究,提出激光试验中应该解决的包括等效LET值转换、扫描覆盖性、多位翻转等问题的试验解决思路,同时分析了激光的准确定位的优势在试验中的应用。对所选取的SRAM、ASIC、FPGA三种器件进行了激光单粒子效应试验,测试了翻转阈值、闩锁阈值以及翻转截面,分析了不同的工作状态对单粒子效应现象的影响。以这三种数字器件为基础,进一步试验探讨了扫描覆盖性和多位翻转问题的办法,与重离子试验结果进行了比对以验证有效性。最后,发挥了激光的可准确定位优势,研究了多次闩锁效应、微闩锁效应、以及闩锁效应对翻转效应造成的影响。
     本文给出了脉冲激光模拟试验单粒子效应存在的多位翻转的修正思路和方法,发挥了激光的可准确定位优势在数字器件测试中的应用,本试验结果对相似类型的数字器件的单粒子效应测试及空间应用有一定借鉴意义。
Digital device including SRAM, FLASH, FPGA, ASIC, PROM, EEPROM, CPU and so on are the most important parts of space electronic systems. As a whole part they can easily get, write, save datum. Space particle radiation environment can easily induce single event effects (SEE) so they can damage electronic system. As a result of semiconductor process is reducing into deep-micron, even super deep-micron, digital device are becoming more susceptible to out space environment. Among SEE, single event upset (SEU) and single event latch-up (SEL) are the most common and have been widely researched.
     To protect safety of space aircrafts, SEE characters of digital device should be researched and simulated on earth. First, this article look into mechanisms of pulsed laser single event effects (PLSEE) facility on SEE and put forward methods of how equal laser energy to LET, then introduce covering and multiple bites upset (MBU) problems of PLSEE and advantages of PLSEE in SEE test. SRAM, FPGA, ASIC have been put into practice of how to solve problems of PLSEE. By testing this device we got their threshold of SEU and SEL, cross section of SEU and their relationships with the configuration datum. Also discuss way of solving problems mentioned above of PLSEE and compare results with heavy ion tests. We learned times of SEL, micro-SEL and SEL’effects on SEU by using advantages of PLSEE.
     This article solved the problems of PLSEE and made use of its advantages. It has some useful references to SEE test of digital device.
引文
[1]韩建伟,张振龙,封国强,马英起,单粒子锁定极端敏感器件的试验及对我国航天安全的警示。航天器环境工程,2008,25(3):263-268。
    [2]杨兆铭,单粒子效应对航天器的威胁及空间飞行试验评论(一)。真空与低温,1995, 3 (1):46-58。
    [3]邵永哲,杨健,李小将,石磊,航天器近地空间环境效应综述,航天器环境与工程,2010,26(5): 421。
    [4]王长河.单粒子效应对卫星空间运行可靠性影响.半导体情报,1998,35(1): 1-8.
    [5] Bacelt Alpat, Laser System for Single Event Effects Testing and Radiation Sensitivity Mapping of IC. INFN, (5-36).
    [6] THOMAS E, JOSEPH M, Extreme latchup susceptibility in modern Commercial-off-the-Shelf (COTS) monolithic 1M and 4M CMOS Static Random-Access memory (SRAM) devices. Radiation effects data workshop, 2005, IEEE
    [7] Jake Tausch, David Sleeter, Daniele Radaelli, and Helmut Puchner, Neutron Induced Micro SEL Events in COTSSRAM Devices, IEEE, 2007 ( 1-4244- 1464-4): 187.
    [8]薛玉雄,曹州,杨世宇,激光模拟单粒子效应试验研究,航天器环境与工程,2006,23(2):98-101。
    [9]黄建国韩建伟,脉冲激光诱发单粒子效应的机理,中国科学G辑物理学力学天文学2004,34(2):121-130。
    [10]曹洲,薛玉雄,杨世宇,达道安,单粒子效应激光模拟试验技术研究,真空与低温,2006,12(3):169。
    [11]韩建伟,张振龙,封国强,马英起,利用脉冲激光开展的卫星用器件和电路单粒子效应试验,航天器环境工程,2009年,26卷2期,125-130。
    [12] GBJ/Z 24—1991,地球辐射带[S], 1991
    [13]郭红霞,韩福斌,陈雨生等。几种半导体器件的硬X射线剂量增强效应研究。核技术,2002,Vol.25(10):811
    [14] Johnson G H, Hohl J H.Simulating Single Event Burnout of N-Channel Power MOSFET. IEEE Trans Nucl Sci. 1993, NS-40(5):1001
    [15]黄建国,韩建伟,脉冲激光模拟单粒子效应的等效LET计算[J]。中国科学G辑物理学力学天文学2004,34(6): 601-609。
    [16] SHINDOU H, KUBOYAMA S, HIRAO T, and MATSUDA S, Local and pseudo SELs observed in digital LSIs and their implication to SEL test method [J]. IEEE Trans Nucl Sci, 2005 56: 2639.
    [17] MELINGER J, BUCHNER S, MCMORROW D, et al. Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies [J]. IEEE Trans Nucl Sci, 1994, 41: 2575.
    [18] MCMORROW D, STEPHEN B, Laser induced latchup screening mitigation in CMOS devices, IEEE Trans Nucl Sci, 2006 53: 1821.
    [19] DARRACQ F, LAPUYADE H, BUARD N, et al. Backside SEU laser testing for Commercial-Off-The-Shelf SRAMs [J]. IEEE Trans Nucl Sci, 2002, 49:2777.
    [20] PUCHNER H, KAPRER S, SHARIFZADEH J, et al. Elimination of single event latchup in 90nm SRAM technologies [J]. Reliability physics symposium proceedings, 2006. 44th Annual IEEE International.
    [21]封国强,马英起,张振龙,等,光电耦合器的单粒子瞬态脉冲效应研究[J]。原子能科学技术,2008,42(增刊): 36-42。
    [22] P McNulty, W. Beauvais, and D.R. Roth, Determination of SEU parameters of NMOS and CMOS SRAMs, IEEE Trans Nucl Sci, 1991 38: 1464.
    [23]张庆祥,杨兆铭,李志常,李淑媛,江华,静态存储器同一字节多位翻转实验研究。原子能科学技术,2001,35(6): 485-487。
    [24] Koga R , Pinkerton SD , Lie TJ , et al. Single 2 word Multiple 2bit Upsets in Static Random Access Devices[J ]. IEEE Trans Nucl Sci, 1993, NS240 : 1 491-1 504.
    [25] JOHNSTON A H, SWIFT G M, et al. Single Event Upset effects in Optocouplers [J]. IEEE Trans Nucl Sci, 1998, 45(6) :2867.
    [26]马英起,封国强,安广朋,张振龙,黄建国,韩建伟,光电耦合器4N49单粒子瞬态脉冲效应的试验研究。原子能科学技术,2010,44(6): 765。
    [27]唐本奇,王艳萍,耿斌,等.用252Cf裂片源研究单粒子烧毁和栅穿效应的方法.原子能科学技术,2000, 34 (4) : 339-343.
    [28] Dressendor fer P V. Basic Mechanisms for the New Millenium. IEEE NSREC Short Course, 1998.
    [29]贺朝会.单粒子效应研究的现状和动态.中国科技论文在线http://www.paper. edu.cn
    [30]贺朝会,耿斌,李永宏,惠卫东,大规模集成电路单粒子闭锁辐射效应测试系统。核电子学与探测技术,2005,25(6): 724-728。
    [31]冯彦君,华更新,刘淑芬.航天电子抗辐射研究综述,宇航学报,2007,28 (5): 1071-1080.
    [32]贺朝会,李国政,罗晋生,刘恩科.CMOS SRAM单粒子翻转效应的解析分析.半导体学报, 2000,21(2): 174-178。
    [33]陈盘训,半导体器件和集成电路的辐射效应,2005,236-238。
    [34] S. T. Liu, H. Y. Liu, D. Anthony, et al. Proton-Induced Upset in SOI CMOS SRAMS, IEEE Trans Nucl Sci, 2004,51(6):3475-3478.
    [35] J. Baggio, , V. Ferlet-Cavroisr, et al.Neutron and Proton-Induced Single Event Upsets inAdvanced Commercial Fully Depleted SOI SRAMs. , IEEE Trans Nucl Sci, 2005, 52(6): 2319-2320.
    [36]封国强,马英起,参加欧洲RADECS2010国际会议的工作汇报,2010,9
    [37]赖鑫.高可靠8051设计与实现及可靠性评估.硕士毕业论文.2007, 15.
    [38]陈微,戴葵,刘芳.可靠性微处理器设计关键技术研究.2005,华中科技大学学报(自然科学版),33(增刊): 111-113.
    [39]曾媛.铷原子频标光谱灯及量子系统小型化研究[D].北京:中国科学院, 2004.
    [40] VOLK C H, FRURHOLZ R P, RILEY W J, et al. Lifetime and reliability of rubidium spectral lamps for use in atomic frequency standards[C]. Proceedings of the 38th Symposium on Frequency Control, 1984.
    [41] McMorrow D. , Melinger J.S. , Buchner S. , Scott T. , Brown R.D. , Haddad N.F. , Application of a Pulsed Laser for Evaluation and Optimization of SEU-Hard Designs, IEEE Trans. Nucl. Sci., vol. 47(3), p559-565, 2000.
    [42] MELINGER J S, MCMORROW DALE. Pulsed laser- Induced Single Event upset and Charge Collection Measurements as a Function of Optical Penetration Depth[J]. J Appl Phys, 1998, 84( 2) :690~703.
    [43] V. Pouget1, A. Douin1, G. Foucard2, P. Peronnard2, D. Lewis1, P. Fouillat1, R. Velazco2, Dynamic Testing of an SRAM-Based FPGA by Time-Resolved Laser Fault Injection, 14th IEEE International On-Line Testing Symposium 2008, p295-301.
    [44] Buchner S, Knudson A, Kang K, et al. Charge collection from focused picosecond laser pulses. IEEE Trans Nucl Sci, 1988, 35(6): 1517~1522
    [45] Pantelides S, Selloni A, Car R. Energy gap reduction in heavily doped silicon: causes and consequences. Solid State Elect, 1985, 28: 17~27
    [46] Brews J R. Generalized guide for MOSFET miniaturization. IEEE Elect Dev Lett, 1980, EDL-1: 2~10.
    [47] A M Chugg, et al. A New Approach to Measuring the Sensitive Volume Using a Pulsed Laser System; Radecs: 2001, 7.
    [48] A. Douin, V. Pouget, F. Darracq, D. Lewis, P. Fouillat, and P. Perdu; Influence of Laser Pulse Duration in Single Event Upset Testing. EEE Trans Nucl Sci,2006, 53(4):1799-1805.
    [49] Boggess T. et al. Nonlinear optical energy regulation by nonlinear refraction and absorption in silicon. Optics Lett, 1984, 9: 291~391.
    [50] Van Stryland W. et al. Two photon absorption, nonlinear absorption, and optical limiting in semiconductors. Opt Eng, 1985, 24: 613~623.
    [51] Pankove L. Optical Processes in Semiconductors. New Jersey: Prentice Hall, 1971.
    [52] Dale McMorrow, Stephen Buchner, Mark Baze, et al. Laser-Induced latchup screening and mitigation in CMOS devices. IEEE Trans Nucl Sci, VOL. 53, 2006:1819-1824.
    [53] E. H. Cannon, M. Cabanas-Holmen, Heavy Ion, High-Energy, and Low-Energy Proton SEE Sensitivity of 90-nm RHBD SRAMs, IEEE Trans Nucl Sci, VOL. 57, NO. 6, 2010:3493-3496.
    [54]贺兴华,薛挺,肖山竹,卢焕章,深亚微米CMOS SRAM SEE特性及加固技术研究。计算机工程与设计2009,30(12):2821-2825。
    [55] Christian Poivey, Hak Kim, Melanie D. Berg , Jim Forney, etc. Radiation Characteristics of a 0.11 um Modified Commercial CMOS Process, IEEE 2006, 1-4244-0638: 150-152.
    [56]郭红霞,罗尹虹,姚志斌等,亚微米特征工艺尺寸静态随机存储器单粒子效应实验研究,原子能科学技术,2010,44: 1498-1504。
    [57]于庆奎,张大宇,张海明,唐民,文亮,施蕾,SRAM FPGA电离辐射效应试验研究。航天器环境工程2009,26(3):229-231。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700