一种12位高精度数模转换器的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数模转换器是数字电子系统和模拟电子系统之间的常用接口电路。在现代先进的电子系统前端和后端都要用到模数转换器和数模转换器,以改善数字处理技术的性能。在D/A转换器的众多转换网络中,梯形电阻网络在提高精度的同时,又节省了芯片的面积;同时电压型的梯形电阻网络可以实现输出电压与带隙电压同极性,因此得到了广泛的应用。
     本文设计了工作在4.5V-5.5V单电源电压下,12位高精度、低功耗的R-2R梯形电阻网络D/A转换器。由于输出运算放大器电路和带隙基准电路的性能对D/A转换器的性能影响很大,因此,本文主要研究运算放大器电路和带隙基准电路的设计。
     设计的运算放大器采用了两级结构放大,达到了109dB的开环放大倍数;带隙基准电路采用了指数型曲线补偿技术、反馈网络以及缓冲输出结构,达到了较低的温度系数、高的电源抑制比和较强的带负载能力。温度系数可以达到13.7ppm/℃;电源抑制比可达到163μV/V。
     仿真结果表明,设计的输出运算放大器和带隙基准电路满足12位D/A转换器的要求,该D/A转换器可以正常工作,积分非线性不超过0.5LSB,微分非线性不超过1LSB。
The DAC is often used as the input/output circuit of digital electronic system and analog electronic system. In the front and the end of the advanced electronics system, digital to analog converters (D/A converters) are applied to improve the performance of the digital processing technique. Of all kinds of converter networks in D/A converters, the trapeziform resistor network not only advance the accuracy of the D/A converter but also save the area of the whole chip, the voltage type of the trapeziform resistor network is used widely for giving the output the same polarity as the input bandgap voltage.
     A 12-Bit high accuracy ,low power R-2R trapeziform resistor network D/A converter was designed, which operates from a single 4.5 to 5.5V power supply. Performances of output operational amplifier and the bandgap reference circuit have a very deep influence on the D/A converter, so the research of the two parts’design is focused on.
     The op amp with two stage circuit is designed, which can obtain 109dB open gain. For the design of the bandgap reference ,the architecture of exponential curvature-compensat- ed、the feedback circuit and the buffer output is employed, which satisfies the requirement of the low temperature coefficient and high power-supply rejection ratio and enhance the source and sink current. The TC is 13.7ppm/℃,and the psrr is 163μV/V.
     The simulation shows that the output op amp and the bandgap reference circuit meet the requirements of the 12-bit D/A converter, and the D/A converter can work well, the INL is not more than 0.5LSB, the DNL is not more than 1LSB.
引文
[1] 徐振英.数模转换器应用技术.北京:科学出版社,2000
    [2] 许巨衍,徐世六.关于 A/D 与 D/A 转换器发展方向的一些思考.微电子学,1998,28(4):217-223
    [3] 郭树田.数据转换器发展近况.微电子学,1998,28(4):224-232
    [4] 郭树田.A/D 和 D/A 转换器发展动态.世界电子元器件,2000,6:53-55
    [5] Van den Bosch A, Marc A R Borremans, Michel S J Styaert. A 10-bit 1G Samples Nyquist Current-Steering CMOS D/A Converter, IEEE J. Solid-State Circuits, 2001, 36(7): 315-323
    [6] Allen P E, Holberg D R. CMOS Analog Circuit Design(第二版).北京:电子工业出版社,2005
    [7] 于继州.集成 A/D 和 D/A 转换器应用技术.北京:国防工业出版社,1989
    [8] KUSH DARIKH. A/D、D/A 转换器使用性能与分辨率.今日电子,1998,10:38-41
    [9] 耿学阳.十二位 300MHz 高速数模转换器设计.中国科学院半导体研究所,硕   士学位论文,2004
    [10] 王汉义. 数-模与模-数转换技术基础. 哈尔滨:哈尔滨船舶工程学院出版社,1986
    [11] Behzad Razavi. Design of Analog CMOS Integrated Circuits. 西安:西安交通大学出版社,2003
    [12] 刘韬,徐志伟,程君侠. 一种高电源抑制比 CMOS 能隙基准电压源.微电子学,1999,29(2),128-131
    [13] Jiri Dostal. Operational Amplifiers. 北京:中国计量出版社,1987
    [14] 李联. MOS 运算放大器-原理、设计与应用(第一版).上海:复旦大学出版社,1988
    [15] Subhajit Sen, Bosco Leung. A Class-AB High-Speed Low-Power Operational Amplifier in BiCMOS Technology.IEEE J.Solid-State Circuit, 1996, 31(9): 1325-1330
    [16] Gray P R. 模拟集成电路的分析与设计.北京:高等教育出版社,2003
    [17] Kazuya sone, Michio Yotsuyanagi. Design Techniques for Analog BiCMOS Circuits. Bipolar/BiCMOS Circuits & Technology Meeting, 1994
    [18] James H Atherton , Simmonds H Thomas. An Offset Reduction Technique for Use with CMOS Integrated Comparators and Amplifiers. IEEE J.Solid -State Circuits, 1992, 21(8):1435-1451
    [19] Pardoen M D, Mark G Degrauwe. A Rail-to-Rail Input/Output CMOS Power Amplifier. IEEE J. Solid-Stated Circuits, 1990, 25(2): 501-504
    [20] Ramirez-Angulo J, Carvajal R G, Tombs J, Torralba A. Low-Voltage CMOS OP-Amp with Rail-to-Rail Input and Output Signal Swing for Continuous-Time Signal Processing Using Multiple-Input Floating-Gate Transistors. IEEE Transcations and Systems, 2001, 48(1): 111-116
    [21] Gabriel A, Rincon-Mora, Richard Stair. A Low Voltage Rail-to-Rail Class AB CMOS Amplifier With High Drive and Low Output Impedance Characteristics. IEEE Transcations and Systems, 2001, 48(8): 753-761
    [22] Jeroen Fonderie, Marinus M Maris, Erik J Schnitger, etc. 1-V Operational Amplifier with Rail-to-Rail Input and Output Ranges. IEEE J. Solid State circuit, 1989, 24(6): 1551-1558
    [23] Francisco Duque-Carrillo J, Jose L Ausin, Jose M.Valverde, etc. 1-V Rail-to-Rail Operational Amplifiers in Standard CMOS Technology. IEEE J. Solid-State Circuits, 2000, 35(1): 33-44
    [24] Kuijk K E. New developments in IC voltage source. IEEE J. Solid-State Circuits, 1973, 8(5): 222-226
    [25] Brokaw A P. A simple three-terminal IC bandgap reference. IEEE J. Solid-State Circuits, 1974, 9(12): 388-393
    [26] Tsividis Y P, Ulmer R W. A CMOS voltage reference. IEEE J.Solid-State Circuits, 1978, 13(12): 774-778
    [27] Vittoz E A, Neyrund O. A low voltage CMOS bandgap reference. IEEE J. Solid-State Circuits, 1980, 14(12): 573-577
    [28] Tsividis Y P, Accurate analysis of temperature effects in IC-VBE characteristics with application to bandgap reference sources. IEEE J. Solid-State Circuits, 1980, 15(11): 1076-1084
    [29] Palmer C R, Dobkin R C. A curvature-corrected micropower voltage reference. ISSCC Dig, Tech Papers, 1981: 58-59
    [30] Meijer G CM, Schmale P C, van Zalinge K. A new curvature-corrected bandgap reference. IEEE J. Solid-state Circuits, 1982, 17(11): 1139-1143
    [31] Song B S, Gray P R. A precision curvature-compensated CMOS bandgap reference. IEEE J. Solid-State Circuits, 1983, 18(12): 634-643
    [32] Lin S L, Salama C A T. A VBE(T) model with application to bandgap reference design. IEEE J. Solid-State Circuits, 1985, 20(12): 1283-1285
    [33] Michejda J, Kim S K. A precision CMOS bandgap reference. IEEE J. Solid-State Circuits, 1984, 19(12): 1014-1021
    [34] Ferro M, Salemo F, Castello R. A floating CMOS bandgap voltage reference for differential applications. IEEE J. Solid-State Circuits, 1989, 24(6): 696-697
    [35] Buhanan D. Investigation of current-gain temperature dependence in silicon transistors. IEEE Trans. Electron Devices, 1969, 16(7): 117-124
    [36] Rein H M, Rohr H V, Wennekers P. A contribution to the current gain temperature dependence of bipolar transistors. Solid-State Electron, 1978: 439- 442
    [37] Dillard W C, Jaeger R C. The temperature dependence of the amplification factor of bipolar-junction transistors. IEEE Trans. Electron Devices, 1987, 34(7): 139- 142
    [38] Inyeol Lee, Gyudong Kim, Wonchan Kim. Exponential Curvature-Com pensated BICMOS Bandgap References. IEEE J. Solid-State Circuits, 1994, 29(11): 1396- 1403
    [39] Michael Peter Kennedy. On the Robustness of R-2R Ladder DAC’S. IEEE Transactions on Circuit and Systems, 2000, 47(2): 109-116
    [40] Prazak P, Wang T. Superposition: The hidden DAC linearity error. Electronics Test, 1982: 70-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700