通信辐射源非线性个体识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在通信对抗领域,通信侦察的两个基本任务是定位和识别。定位技术作为阵列信号处理的一个主要研究方向,已得到了广泛应用。而对通信辐射源识别的研究则相对薄弱。如果说定位解决了“在哪里”的问题,那么识别要解决“是什么”的问题,两者只有有机结合才能达到有效侦察。随着定位技术的实际应用,通信目标识别的需求也将变得越来越迫切。在通信侦察中运用细微特征分析识别重要的通信辐射源个体目标,掌握使用者的身份和性质,并通过监视跟踪对敌方的战术、战略动向做出预测,有利于在复杂的信息战环境下掌握军事行动的主动权。
     本论文以通信辐射源稳态信号为研究对象,通过研究信号的预处理、模式分割以及特征提取方法,获取通信信号的个体特征。通过MATLAB软件建立了无意调制信号验证模型以产生仿真信号用于验证模式分割和特征提取算法。并用这些算法从实际采集的调频手持机信号中提取了个体特征量,最后用成熟的ECOC分类识别器对个体特征量进行了分类识别,证明这些算法对通信信号个体识别是有效的。取得的研究成果为:
     1.对振荡器产生的无意调制进行了研究。根据振荡器噪声的统计特性,在MATLAB中建立了振荡器噪声源模型,仿真分析了单独存在闪烁噪声以及闪烁噪声混合高斯白噪声情况下的时域波形和频域特性。同时还分析了从健伍手持对讲机功放输出的未调射频信号解调恢复的无意调制信号,表明信号的功率谱密度具有幂律的特点,呈现出了闪烁噪声的特点。
     2.对射频功率放大器产生的无意调制进行了研究。根据射频功放的非线性分析理论,在MATLAB软件中建立了记忆多项式功放模型,并用这个模型仿真了QPSK、WCDMA两种信号的放大,分析计算了因功放引起的信号失真量ACPR(相邻信道功率比)。此外,还对真实射频采样数据的ACPR值进行了计算和分析,结果表明信号带宽越宽,ACPR值越低。从时域上看,射频功率放大器的非线性对信号的影响引起信号幅度以及相位相对于原信号的变化,并且这类变化反映了功率放大器的特征,可以用于通信辐射源的分类识别。
     3.对信号预处理算法进行了研究。改进了Wornell与Oppenheim提出的噪声分离方法,使其能够用于混合无意调制信号与噪声的分离。首先使用多目标进化优化算法求解非线性方程,得到分形信号的参数估计,然后使用这些估计参数构建分形滤波器,对小波系数进行滤波处理,最后将处理以后的小波系数进行逆变换,得到混合的分形信号。仿真对不同的混合成分、不同信噪比、不同的数据长度的情况进行了分析比较,证明在一定的信噪比条件下,采用足够长度的采样数据进行处理,恢复的混合分形信号具有较小的均方根误差。
     4.对三种特征提取方法进行了研究。(1)基于多重分形维的特征提取方法:将一维信号变换为二维信号矩阵后得到信号的纹理特性。利用这一特性,通过计算数据阵列的分形维谱而获得了特征矢量。算法仿真表明在提取特征之前进行去噪处理能够获得稳定的信号特征量;(2)基于顺序统计的方法:根据在弱非线性系统中,窄带功率放大器的输入-输出是单调函数的原理,将接收信号做白化处理以后进行顺序统计,通过最小二乘法对顺序统计结果做线性回归而估计出特征参数作为射频信号个体特征;(3)基于高阶累积张量的特征提取方法:推导了接收信号的3阶、4阶累积量与电台个体特征的关系,提出了一种将4阶累积量视为3阶张量、用Kernel PCA方法提取个体特征量的方法。最后用ECOC分类器将这些特征量进行了分类,证明这些方法都是有效的。
     本文进一步扩展了对通信辐射源个体特征识别的研究,探索和验证了无意调制中提取特征量的新方法。这些方法能用于非合作条件下识别通信辐射源的身份,使识别通信辐射源的手段更为丰富。
In the field of communications countermeasure, there are two tasks known as positionand recognition. As a main research direction, position technology been used widely. But theresearch on recognition technology is not enough relatively. Position can solve the problem of“where”, whereas recognition will resolve the problem of “what”. A more effectivecommunications reconnaissance must be the combination of these two technologies. Now theresearch on recognition technology is more urgent because position has been widely applied.The military initiative position would be taken in the complicated electronic warfareenvironment, if an important communications radiation source is recognized with its tinyfeatures and its identity is known.
     In this paper, pre-processing, pattern separation and feature extraction forcommunications steady signals have been studied. With MATLAB, Models of unintentionalmodulation signals are built to generate simulating signals used to verified algorithms ofpattern separation and feature extraction. Then these algorithms were used to extract thefeatures of10Kenwood FM tow-way radio signals, which were labeled by ECOC multiclassfier. The results showed these algorithms can extract identity feature. The author’s majorcontributions are outlined as follows:
     1. Unintentional modulation introduced by oscillator has been studied. According to thestatistic characteristic of oscillator noise, a noise model was built with MATLAB. Generationsof not only flicker noise, but also flicker noise plus Gaussian white noise were simulated forresearch on time waveform and frequency spectrum. Then real signals acquired from aKenwood tow-way radio were analysised, which show its spectrum is obeyed power lawwhich indicated there was flicker noise.
     2. Unintentional modulation induced by RF power amplifier has been studied. Accordingto the nonlinear theory of RF power amplifier, a memory polynomial model was constructedand simulated for QPSK and WCDMA signals in MATLAB. ACPR values of simulating datawere computed. It can be seen that the wider the bandwidth was, the lower the ACPR was.The effects caused by amplifier on signals were variations of amplitude and phase. Becausethese variations carried information of power amplifier, so they can be used to recognizecommunications radiate source.
     3. Algorithm of pre-processing signals has been studied. The algorithm of noiseseperation proposed by Wornell and Oppenheim was improved for filtering hybridunintentional modulation signals from noise combined signals. Multi objects optimizationalgorithm was used to solve nonlinear equations to acquire parameters of fractal signals. Then these parameters were used to construct a fractal filter. After wavelet coefficients processed bythe fractal filter and were transformed to time domain, white noises were removed fromsignals. Cases of different SNR, data length were simulated that indicated recovered signalshad low RMS error if length of data was enough.
     4. Three feature extraction methods have been studied.(1) Fractal method changed1-Ddata into2-D to expose texture of signals. Then fractal dimension spectrum of2-D data arraycan be computed and used as feature vectors. The simulation showed that nearly samefeatures can be acquired if data were pre-processed before features were extracted.(2) Orderstatistic method sorted data that have been whited. Then processed data were a line which wasthe monotone function about power amplifier input-output. Features can be extracted withfunction fitting.(3) Research on high order cumulants tensor method derived the relationbetween3,4order cumulants and identity features. By kernel PCA method, features can beextracted from3order tensors transformed from4order cumulants. At last, ECOC classifierwas used to recognize these features. Results declared that these methods can extract featureseffectivly.
     This paper improved the research on the recogniztion of communications radiate source.Methods of extracting features from steady communications signals were explored andverified. These methods may be used to recognize identity of communications radiate sourcein the non-cooperative communication environment and enrich current available methods.
引文
[1] K. Ellis and N. Serinken. Characteristics of radio transmitter fingerprints. Journal ofRadio Science, April2001,36(4), pp.585–597.
    [2] O. Tekbas, N. Serinken, and O. Ureten. An experimental performance evaluation of anovel radio-transmitter identification system under diverse environmental conditions.Canadian Journal Computer Engineering, July2004,29(3), pp.203-209.
    [3] J. Hall, J. Barbeau, E. Kranakis. Detection of Transientin Radio FrequencyFingerprinting using Signal Phase. Proceedings Wireless and Optical Communications,Banff, Alberta,2003, pp.1-6.
    [4] J. Hall, M. Barbeau, and E. Kranakis. Detecting rogue devices in Bluetooth networksusing Radio Frequency Fingerprinting. Proceedings of the International Conference onCommunications and Computer Networks,2006, pp.108-113.
    [5] Irwin O. Kennedy, Milind M. Buddhikot, Keith E. Nolan. Radio TransmitterFingerprinting: A Steady State Frequency Domain Approach. IEEE VehicularTechnology Conference,2008, pp1-5.
    [6] D. Shaw, W. Kinsner. Multi-fractal Modeling of Radio Transmitter Transients forClassification. Proceedings Conference on Communications, Power and Computing,1997, pp.306–312.
    [7] O. Ureten, N. Serinken. Bayesian detection of transmitter turn-on transients.Proceedings Nonlinear Signal and Image Processing,1999, pp.830–834.
    [8] O. Ureten, N. Serinken. Detections of radio transmitter turn-on transients. ElectronicLetters, November1999,35(23), pp.1996–1997.
    [9] O. Ureten and N. Serinken. Bayesian detection of Wi-Fi transmitter RF fingerprints.Electronics Letters, March2005,41(6), pp.373-374.
    [10] Toonstra, W Kinsner. A Radio Transmitter Fingerprinting System ODO-I. CanadianConference on Electrical and Computer Engineering,1996, vol.1, pp.60-63.
    [11] J. Toonstra, W. Kinsner. Transient Analysis and Genetic Algorithms for Classification.IEEE WESCANEX'95Proceedings, May1995, vol.2, pp.432-437.
    [12] Ralph D. Hippenstiel, Yalcin Payal. Wavelet Based Transmitter Identification.International Symposium on Signal Processing and its Applications, ISSPA, GoldCoast, Australia, August1996, pp.740-742.
    [13]陆满君,詹毅,司锡才,杨小牛.通信辐射源瞬态特征提取和个体识别方法.西安电子科技大学学报,2009年,8月,36(4),pp.736-740.
    [14] L. Sun, K Kinsner. Fractal Segmentation of Signal from Noise for Radio TransmitterFingerprinting. Canadian Conference on Electrical and Computer Engineering,1998,vol.2, pp.561-564.
    [15] Ren Chunhui, Wei Ping, Lou Zhiyou, Xiao Xianci. Individual communicationtransmitter identification based on multifractal analysis. Journal of Electronics (China),July2005,22(4), pp.409-415.
    [16] O. H. Tekbas, N. Serinken, O. Ureten. An experimental performance evaluation of anovel radio-transmitter identification system under diverse environmental conditions.Canadian Journal of Electrical and Computer Engineering, July2004,29(3),pp.203-209.
    [17] L. sun, W. Kinsner, N. Serinken. Characterization and feature extraction of transientsignal using multifactal measures. Proceeding of the1999IEEE Canadian Conferenceon Electrical and Computer Engineering, May1999, pp.781-785.
    [18] N. Scrinken and O. Uretcn. Generalised dimension characterisation of radiotransmitter turn-on transients. Electronics Letters, June2000,36(12), pp.1064-1066.
    [19] O. H. Tekbas, O. Ureten, N. Serinken. Improvement of transmitter identificationsystem for low SNR transients. Electronics Letters, February2004,40(3), pp.182-183.
    [20]许丹,徐海源,卢启中,周一宇.基于自激振荡器模型的辐射源个体识别方法.信号处理,2008年2月,24(1),pp.122-126.
    [21]许丹,柳征,姜文利,周一宇.一种基于交叉关联积分的功放无意调制识别方法.国防科技大学学报,2008年3月,30(3),pp.116-121.
    [22]许丹,柳征,姜文利,周一宇.窄带信号中的放大器“指纹”特征提取:原理分析及FM广播实测实验.电子学报,2005年5月,36(5),pp.927-932.
    [23] Ming-Wei Liu, John F. Doherty. Specific Emitter Identification using NonlinearDevice Estimation. IEEE Sarnoff Symposium,2008, pp.1-5.
    [24] Shuhua Xu, Benxiong Huang, Zhengguang Xu, Yuchun Huang. A new feature vectorusing local surrounding-line integral bispectra for identifying radio transmitters. IEEE9thInternational Symposium on Signal Processing and Its Appplication,2007, pp.1-4.
    [25] Shuhua Xu, Benxiong Huang, Yuchun Huang, Zhengguang Xu. Identification ofIndividual Radio Transmitters Based on Selected Surrounding-line Integral Bispectra.IEEE9thInternational Conference on Advanced Communication Technology, Feb.2007, vol.2, pp.1147-1150.
    [26]徐书华,黄本雄,徐丽娜.基于SIBPCA的通信辐射源个体识别.华中科技大学学报,2008年7月,36(7),pp.14-17.
    [27] Shuhua Xu, Benxiong Huang, Lina Xu, Zhengguang Xu. Radio TransmitterClassification Using a New Method of Stray Features Analysis Combined with PCA.MILCOM2007, pp.1-5.
    [28]蔡忠伟,李建东.基于双谱的通信辐射源个体识别.通信学报,2007年2月,28(2),pp.75-79.
    [29] T. L. Carroll. A nonlinear dynamics method for signal identification. CHAOS,2007,17,023109.
    [30] Richard J. Povinelli, Michael T. Johnson, Andrew C. Lindgren, Felice M. Roberts,Jinjin Ye. Statistical Models of Reconstructed Phase Spaces for Signal Classification.IEEE Transactions on Signal Processing, June2006,54(6), pp.2178-2186.
    [31] Christos K., Papadopoulos, Chrysostomos L. Nikial. Bispectrum Estimation ofTransient Signals. IEEE ICASSP,1988, vol.4, pp.2404-2407.
    [32]陈慧贤,吴彦华,钟子发.分形在电台细微特征识别中的应用.数据采集与处理,2009年9月,24(5),pp.686-693.
    [33]张旻,钟子发,王若冰.通信电台个体识别技术研究.电子学报,2009年10月,37(10),pp:2165-2129.
    [34] T. C. Weigandt, B. Kim, P. R. Gray. Analysis of timing jitter incmos ring-oscillators.IEEE International Symposium on Circuits and Systems,1994, June1994, pp.27-30.
    [35] J. A. McNeill. Jitter in ring oscillators. Ph.D. dissertation, BostonUniversity,1994.
    [36] A. A. Abidi, R. G. Meyer. Noise in relaxation oscillators. IEEE Journal of Solid-StateCircuits, Dec.1983,18(6), pp.794-802.
    [37] G. Foschini. Characterizing filtered light waves corrupted by phase noise. IEEETransanctions on Information Theory, Nov.1988,34(6), pp.1437-1448.
    [38] V. C. Vannicola, P. K. Varshney. Spectral dispersion of modulated signals due tooscillator phase instability: White and random walk phase model. IEEE Transanctionson Communications, July1983,31(7), pp.886-895.
    [39] F. K. K rtner. Analysis of white and f-a noise in oscillators. International Journal ofCircuit Theory and Appllication, Dec.1990,18(5), pp.485–519.
    [40] A. Hajimiri, T. H. Lee. A state-space approach to phase noise in oscillators. LucentTechnologies, Tech. Memo., July1997, pp.134-125.
    [41] A. Hajimiri, T. H. Lee. A general theory of phase noise in electrical oscillators. IEEEJournal of Solid-State Circuits, Feb.1998,33(2), pp.179–194.
    [42] С.М.Рытов. Флуктуации в автоколебательных системах томсоновского типа.ЖЭТФ,1955,29(3), pp.304-326.
    [43] М.Е.Жаботинский, П.Е.Зильберман. О флуктуациях в кварцевых генераторах.ДАН СССРб,1958,119б(5), pp.918-921.
    [44] А.Н.Малахов. О флуктуациях в кварцевом генераторе. Изв. вузов. Радиофизика,1966,9(3), pp.622-624.
    [45] D.B.Leeson. A simple model of feedback oscillator noise spectrum. Proceedings ofIEEE, Feb.1966, vol.54, pp.329-330,
    [46] R.Brendel, M.Olivier, G.Marianneau. Analysis of internal noise in quartz crystaloscillators. IEEE Transanctions on Instrumentation and Measurement,1974,24(2),pp.160-170.
    [47] В.Жалуд, В.Н.Кулешов. Шумы в полупроводниковых устройствах. М.: Сов.радио,1977–SNTL,1980.
    [48] S.Galliou, F.Stahl, M.Mourey. New phase noise model for crystal oscillators:application to the Clapp oscillator. IEEE Transanctions on Ultrasonics Ferroelectricsand Frequency Control,2003,50(11), pp.1422-1426.
    [49] S.Galliou, F.Stahl, N.Guffet, M.Mourey. Predicting phase noise in crystal oscillators.IEEE Transanctions on Ultrasonics Ferroelectrics and Frequency Control,2005,52(1),pp.27-30.
    [50] V.N.Kuleshov. New development of PM and AM noise analysis in crystal oscillators:aninfluence of wide-band noise sources. Proceeding of19th EFTF, Besancon, France,2005.
    [51] T.I.Boldyreva. New development of PM and AM noise analysis in crystal oscillators:an influence of1/f noise sources. Proceeding of19th EFTF, Besancon, France,2005.
    [52] Alper Demir, Amit Mehrotra, Jaijeet Roychowdhury. Phase Noise in Oscillators: AUnifying Theory and Numerical Methods for Characterization. IEEE Transactions onCircuits and Systems-I: Fundamental Theory and Applications, May2000,47(5),pp.655-674.
    [53] M. Farkas. Periodic Motions. Berlin, Germany: Springer-Verlag,1994, pp.56-70.
    [54] R. Grimshaw. Nonlinear Ordinary Differential Equations. New York: BlackwellScientific,1990, pp.23-35.
    [55] A. Hajimiri, S. Limotyrakis, T. H. Lee. Jitter and Phase Noise in Ring Oscillators.IEEE Journal of Solid-State Circuits, June1999,34(6), pp.790–804.
    [56] F. Herzel. An Analytical Model for the Power Spectral Density of a Voltage-ControlledOscillator and Its Analogy to the Laser Linewidth Theory. IEEE Transactions onCircuits and Systems–I: Fundamental Theory and Applications, Sept.1998,45(9), pp.904–908,
    [57] G. V. Klimovitch. Near-Carrier Oscillator Spectrum Due to Flicker and White Noise.Proceeding of IEEE International Symposium on Circuits and Systems,2000, Geneva,pp. I-703-706.
    [58] G. V. Klimovitch. A Nonlinear Theory of Near-Carrier Phase Noise in Free-RunningOscillators. Proceeding of Third IEEE International Conference on Circuits andSystems, Caracas,2000, pp.T80/1–6.
    [59] A. Demir. Phase Noise in Oscillators: DAEs and Colored Noise Sources. Proceedingof ICCAD,1998, pp.170–177.
    [60] A. Zanchi, A. Bonfanti, S. Levantino, C. Samori. General SSCR vs. Cycle-to-CycleJitter Relationship with Application to the Phase Noise in PLL. Proceeding of2001Southwest Symposium on Mixed Signal Design,2001, pp.32–37.
    [61] В.Жалуд и В.Н.Кулешов. Шумы в полупроводниковых устройствах. М.:Сов.радио,1977–SNTL,1980
    [62] T.I.Boldyreva. New Development of PM and AM Noise Analysis in CrystalOscillators: an Influence of1/f Noise Sources.19th European Frequency and TimeForum, Besancon, France,2005, pp.432-437.
    [63] N.J. Kasdin. Discrete simulation of colored noise and stochastic processes and1/fpower law noise generation. Proceedings of the IEEE, May1995,83(5), pp.802–827.
    [64] J. M. Golio. Microwave MESFETs and HEMTs, Boston: Artech House,1991,pp.124-132.
    [65] James Brinkhoff, Anthony Edward Parker. Effect of Baseband Impedance on FETIntermodulation. IEEE Transanctions on Microwave Theory and Techniques, March2003,51(3), pp.1045-1051.
    [66] Nuno Borges de Carvalho, José Carlos Pedro. A Comprehensive Explanation ofDistortion Sideband Asymmetries. IEEE Transanctions on Microwave Theory andTechniques, Sep.2002,50(9), pp.2090-2101.
    [67] Martins J.P., Cabral P.M., Carvalho N.B., Pedro J.C.. A Metric for the Quantificationof Memory Effects in Power Amplifiers. IEEE Transactions on Microwave Theory andTechniques,54(12), pp.4432–4439.
    [68] J. A. Garcia, A. Mediavilla, J. C. Pedro, N. Borges de Carvalho, A. Tazón, and J. L.Garcia. Characterizing the gate to source nonlinear capacitor role on GaAs FET IMDperformance. IEEE Transactions on Microwave Theory and Techniques, Dec.1998,46(12), pp.2344–2355.
    [69] J. C. Pedro and J. Perez. A novel nonlinear GaAs FET model for intermodulationanalysis in general purpose harmonic balance simulators. Proceeding of23rdEuropean Microwave Conference, Madrid, Spain, Sept.1993, pp.714-716.
    [70] José Carlos Pedro, Nuno Borges Carvalho, Pedro Miguel Lavrador. ModelingNonlinear Behavior of Band-Pass Memoryless and Dynamic Systems. IEEE MTT-SInternational Symposium, June2003, vol.3, pp.2133-2136.
    [71] Anthony E. Parker and James G. Rathmell. Contribution of Self Heating toIntermodulation in FETs. IEEE MTT-S International Symposium,2004, vol.2, pp.803-806.
    [72] Anthony Edward Parker, James Grantley Rathmell. Broad-Band Characterization ofFET Self-Heating. IEEE Transanctions on Microwave Theory and Techniques, July2005,53(7), pp2424-2429.
    [73] K. M. McNally. Dynamic Optical Thermal Modeling of Laser Tissue Soldering with aScanning Source. IEEE Journal of Selected Topics in Quantum Electronics, July1999,5(4), pp.1072–1082.
    [74] C. Rapp. Effects of HPA‐N onlinearity on a4-DPSK/OFDM-Signal for a DigitalSound Broadcasting System. Proceedings of the Second European Conference onSatellite Communications, Oct1991, pp.179‐184.
    [75] Saleh, A.A.M.. Frequency‐i ndependent and frequency-dependent nonlinear modelsof TWT amplifiers. IEEE Transanctions on Communications,29(11), November1981,pp.1715‐1720.
    [76] M. S. O’Droma, N. Mgebrishvili, A. Goacher. New percentage linearization measuresof the degree of linearisation of HPA nonlinearity. IEEE Communications Letter, April2004,8(4), pp.214–216.
    [77] M. S. O’Droma. Dynamic range and other fundamentals of the complex Besselfunction series approximation model for memoryless nonlinear devices. IEEETransanctions on Communications, April1989,37(4), pp.397–398.
    [78] P. Hetrakul and D. P. Taylor,“Compensators for bandpass nonlinearities in satellitecommunications,” IEEE Trans. Communications, vol.24, pp.546–553, May1976.
    [79] A. L. Berman, C. H. Mahle. Nonlinear phase shift in travelling-wave tubes as appliedto multiple access communication satellites. IEEE Transanctions Communications,February1970,18(1), pp.37–48.
    [80] Ding L. Digital Predistortion of Power Amplifiers for Wireless Applications. Ph.Dthesis, Georgia Institute of Technology, March2004.
    [81] Magnus Isaksson, David Wisell, Daniel R nnow. A Comparative Analysis ofBehavioral Models for RF Power Amplifiers. IEEE Transanctions on MicrowaveTheory And Techniques, January2006,54(1), pp.348-359.
    [82] Hyunchul Ku, J. Stevenson Kenney. Behavioral Modeling of Nonlinear RF PowerAmplifiers Considering Memory Effects. IEEE Transanctions on Microwave Theoryand Techniques, December2003,51(12), pp.2495-2504.
    [83] Khaled M. Gharaibeh. Nonlinear Distoration in Wireless Systems Modeling andSimulation with MATLAB. John Wiley&Sons, West Sussex:United Kingdom,2011,pp.157-161.
    [84] E. C. Karvounis, C. Papaloukas, D. I. Fotiadis, L. K. Michails. Fetal heart rateextraction from composite maternal ECG using complex continuous wavelettransform. Proceedings of Computers in Cardiology, September2004, pp.737–740.
    [85] D. Graupe, Y. Zhong, M. H. Graupe. Extraction of fetal from maternal ECG early inpregnancy. International Journal of Bioelectromagnetism,7(1),2005, pp166-168.
    [86] T. Schreiber, M. Richter, D. T. Kaplan. Fetal ECG extraction with nonlinearstate-space projections. IEEE Transactions on Biomedical Engineering, Jan.1998,45(1), pp.133-137.
    [87] H. Kantz and T. Shreiber. Nonlinear projective filtering I: background in chaos theory.Proceedings of the International Symposium on Nonlinear Theory and its Applications,Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland,1998,chaos-dyn/9805024.
    [88] Z. L. Zhang, Z. Yi. Extraction of temporally correlated sources with its application tononinvasive fetal electrocardiogram extraction. Neurocomputing,2006,69(7-9), pp.894–899.
    [89] J. F. Pi′eri, J. A. Crowe, B. R. Hayes-Gill, C. J. Spencer, K. Bhogal, D. K. James.Compact longterm recorder for the transabdominal foetal and maternalelectrocardiogram. Medical and Biological Engineering and Computing, Jan.2001,39(1), pp.118-125.
    [90] G. Camps-Valls, M. Mart′nez-Sober, E. Soria-Olivas, R. Magdalena-Benedito, J.Calpe-Maravilla, J. Guerrero-Mart′nez. Foetal ECG recovery using dynamic neuralnetworks. Artificial Intelligence in Medicine, March2004,31(3), pp.197-209.
    [91] K. Assaleh, H. Al-Nashash. A novel technique for the extraction of fetal ECG usingpolynomial networks. IEEE Transactions on Biomedical Engineering, June2005,52(6), pp.1148-1152.
    [92] K. A. K. Azad. Fetal QRS complex detection from abdominal ECG: a fuzzy approach.Proceedings of the IEEE Nordic Signal Processing Symposium,2000, p.275-288.
    [93] A. K. Barros and A. Cichocki. Extraction of specific signals with temporal structure.Neural Computation, Sep.2001,13(9), pp.1995-2003.
    [94] K. Assaleh. Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inferencesystems. IEEE Transactions on Biomedical Engineering,54(1), Jan.2007, pp.59-68.
    [95] Vigário R., Jousm ki V., H m l inen M., Hari R., Oja E.. Independent componentanalysis for identification of artifacts in magnetoencephalographic recordings.Advances in Neural Information Processing Systems, MIT Press, vol.10, pp.229-235.
    [96] Hyv rinen A. Sparse code shrinkage: Denoising of nongaussian data by maximumlikelihood estimation. Neural Computation, Oct.1999,11(7), pp.1739-1768.
    [97] Ristaniemi T., Joutsensalo J.. On the performance of blind source separation in CDMAdownlink. Proceeding of Intelligent Workshop on Independent Component Analysisand Signal Separation,1999, pp.437-441.
    [98] Vigário R., S rel J., Oja E.. Independent component analysis in wave decompositionof auditory evoked fields. Proceeding of International Conference on Artificial NeuralNetworks,1998, pp.287–292.
    [99] Wan E. A.. Finite Impulse Response neural networks with applications in time seriesprediction. PhD Thesis,1993, Department of Electrical Engineering, StanfordUniversity, USA..
    [100] A.S. Weigend, N.A. Gershenfeld. Time series prediction. Forecasting the future andunderstanding the past. New Mexico-Proceedings Volume XV,1994, Addison Wesley:Proceedings of the NATO Advanced Research Workshop on Comparative Time SeriesAnalysis held in Santa Fe, New Mexico,1992.
    [101] D. A. Rand, L.-S. Young. Dynamical Systems and Turbulence. Lecture Notes inMathematics, Berlin:Springer-Verlag, April1982, vol.898, pp.366–381.
    [102] Gregory W. Wornell, Alan V. Oppenheim. Estimation of Fractal Signals from NoisyMeasurement Using Wavelets. IEEE Transactions on Signal Processing, March1992,40(3), pp.611-623.
    [103] Grosan C, Abraham A. A New Approach for Solving Nonlinear Equations Systems.IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans,March,2008,38(3), pp.698-714.
    [104] Nandi A K, Azzouz E E. Algorithms for automatic modulation recognition ofcommunication signals. IEEE Transactions on Communications, April1998,46(4), pp.431–436.
    [105] Swami A, Sadler B M. Hierarchical digital modulation classification using cumulants.IEEE Transactions on Communications, March2000,48(3), pp.416–429.
    [106] Dobre O A, Bar-Ness Y, Su W. Robust QAM modulation classification algorithmusing cyclic cumulants. Proceedings of the IEEE Wireless Communications andNetworking Conference. Atlanta: IEEE,2004, pp.745–748.
    [107] Prakasam P, Madheswaran M. Modulation identification algorithm for adaptivedemodulator in software defined radios using wavelet transform. International Journalof Signal Processing, Jan.2009,5(1), pp.74–81.
    [108] Jian-Yi Yang, Zhen-Ling Peng, Zu-Guo Yu, Rui-Jie Zhang, Vo Anh, Desheng Wang.Prediction of protein structural classes by recurrence quantification analysis based onchaos game representation. Journal of Theoretical Biology, April2009,257(4),pp.618-626.
    [109] Deng Shan-Hong, Gao Song, Li Yong-Ping, Xu Xue-You, Lin Sheng-Lu.The fractalstructure in the ionization dynamics of Rydberg lithium atoms in a static electric field.Chinese Physics B, April2010,19(4),040511.
    [110] Yuan Yuan, Ye Chao, Huang Hong-Wei, Shi Guo-Feng, Ning Zhao-Yuan. Structuralevolution of silicone oil liquid exposed to Ar plasma. Chinese Physics B, May2010,19(5),650205.
    [111] Han Jia-Jing, Fu Wei-Juan. Wavelet-based multifractal analysis of DNA sequences byusing chaos-game representation. Chinese Physics B, Jan.2010,19(1),10205.
    [112] Falconer K. FRACTAL GEOMETRY: Mathematical Foundations and Applications(Section Edition), West Sussex: John Wiley&Sons,2003, pp.27-58.
    [113] WITOLD Kinsner. A Unified Approach to Fractal Dimensions. Journal of Information TechnologyResearch, Vol.1, Issue4, April2008, pp.62-83.
    [114] Halsey T C, Jensen M H, Kadanoff L P, Procaccia I, Shraiman B I1986Phys. Rev. A331141.
    [115] Chhabra A B, Meneveu C, Jensen R V, Sreenivasan K R. Direct determination of thef(α) singularity spectrum and its application to fully developed turbulence. PhysicalReview A,1989,40, pp.5284-5294.
    [116]调制无线电信号的分形特征研究.物理学报,2011,60(5),056401.
    [117] Schreurs D, Odroma M, Goacher A A, Gadringer M. RF Power Amplifier BehavioralModeling, Cambridge:Cambridge University Press,2009, pp.11-23.
    [118] Rugh W J. Nonlinear System Theory, the Volterra/Wiener Approach. Baltimore: JohnsHopkins University Press,1981, pp.25-42.
    [119] Pearson R K. Selecting nonlinear model structures for computer control. Journal ofProcess Control, Jan.2003,13(1), pp.1–26.
    [120] Vidal J., Fonollosa J A R. Causal AR modeling using a linear combination ofcumulants slices. Signal Processing, March1994,36(3), pp.329-340
    [121] Vidal J, Fonollosa J A R. Adaptive blind system identification using weightedcumulant slices. International Journal of Adaptive control and signal processing, Feb.1996,10(2), pp.213-237
    [122] Pearson R K. Selecting nonlinear model structures for computer control. Journal ofProcess Control, Jan.2003,13(1), pp.1–26.
    [123] Gard K G, Larson L E, Steer M B. The impact of RF front-end characteristics on thespectral regrowth of communications signals. IEEE Transactions on microwave theoryand techniques, June2005,53(6), pp.2179-2186
    [124] Cripps S C. Advanced Techniques in RF Power Amplifier Design. Boston: ArtechHouse Press,2000, pp.93-94.
    [125] Brockwell P J, Davis R A. Time Series: Theory and Methods. New York:Springer-Verlag Press,1987, pp.203-204.
    [126] Kenington P B. High-Linearity RF Amplifier Design. Boston: Artech House Press,2000, pp.76-77.
    [127] Swami A, Giannakis G. Multichannel ARMA Processes. IEEE Transactions on SignalProcessing, April1994,42(4), pp.898-913.
    [128] Leonov V P, Shiryaev A N. On the Technique of Computing Semi-Invariants. Theoryof Probability Applications,1959,4, pp.319-329.
    [129] Marco Signoretto, Lieven De Lathauwer, Johan A.K. Suykens. A kernel-basedframework to tensorialdataanalysis. Neural Networks, October2011,24(8), pp.861–874.
    [130] Lieven D L, Bart D M, Joos V. A Multi-linear Singular Value Decomposition. SIAM J.Matrix Anal. Appl.,2000,21(4), pp.1253–1278.
    [131] J. Hamm, and D. Lee. Grassmann Discriminant Analysis: a Unifying View onSubspace-Based Learning. Proceeding of the25th International Conference onMachine Learning,2008, pp376-383.
    [132] David R. Hardoon, John Shawe-Taylor. Decomposing the tensor kernel support vectormachine for neuroscience data with structured labels. Machine Learning,2010,79(1-2), pp.29-46.
    [133] Bernhard Sch lkopf, Alexander Smola, Klaus-Robert Müller. Kernel principalcomponent analysis. Lecture Notes in Computer Science,1997, vol.1327, pp583-588.
    [134] C.-L. Liu, M. Nakagawa. Evaluation of prototype learning algorithms for nearestneighbor classifier in application to handwritten character recognition. PatternRecognition, March2001,34(3), pp.601-615.
    [135] N. Cristianini, J. Shawe-Taylor. An Introduction to Support Vector Machines.London:Cambridge University Press,2000, pp.55-128.
    [136] Y. Freund, R.E. Schapire. A decision-theoretic generalization of on-line learning andan application to boosting. Journal of Computer and System Sciences, Jan.1997,55(1),pp.119-139.
    [137] B.-H. Juang, S. Katagiri, Discriminative learning for minimum error classification,IEEE Transanctions on Signal Processing, Dec.1992,40(12), pp.3043-3054.
    [138] J.H. Friedman, T. Hastie, T. Tibshirani, Additive logistic regression: a statistical viewof boosting, The Annals of Statistics,38(2):337-374,2000.
    [139] Y.D. Rubenstein, T. Hastie. Discriminative vs informative learning. Proceeding of3rdInternational Conference on Knowledge Discovery and Data Mining, Newport Beach,CA,1997, pp.49-53.
    [140] A.Y. Ng, M.I. Jordan. On discriminative vs. generative classifiers: a comparison oflogistic regression and na ve Bayes. Advances in Neural Information ProcessingSystems, vol.14,2002, pp.841-848.
    [141] I. Ulusoy, C.M. Bishop. Generative versus discriminative methods for objectrecognition. CVPR2005, Vol.2, pp.258-265.
    [142] A. Holub, P. Perona. A discriminative framework for modeling object classes. CVPR2005, Vol.1, pp.664-671.
    [143] C.-L. Liu, H. Sako, H. Fujisawa. Discriminative learning quadratic discriminantfunction for handwriting recognition. IEEE Transanctions on Neural Networks, Feb.2004,15(2), pp.430-444.
    [144] J.A. Lasserre, C.M, Bishop, T.P. Minka. Principled hybrids of generative anddiscriminative models. CVPR2006, New York, Vol.1, pp.87-94.
    [145] D. Grossman, P. Domingos. Learning Bayesian network classifiers by maximizingconditional likelihood. Proceeding of21th ICML, Alberta, Canada,2004, pp.36-44.
    [146] R. Greiner, X. Su, B. Shen, W. Zhou, Structural extension to logistic regression:discriminative parameter learning of belief net classifiers, Machine Learning, March2005,59(3), pp.297-322.
    [147] L. Breiman. Bagging predictors. Machine Learning, Feb.1996,24(2), pp.123-140.
    [148] Y. Freund, R.E. Schapire. A decision-theoretic generalization of on-line learning andan application to boosting. Journal of Computer and System Sciences, Jan.1997,55(1),pp.119-139.
    [149] T.K. Ho. The random subspace method for constructing decision forests, IEEETransanctons on Pattern Analysis and Machine Intelligence, August1998,20(8),pp.832-844.
    [150] D. Opitz. Feature selection for ensembles. Proceeding of American Association forArtificial Intelligence,1999, pp.379-384.
    [151] T.G. Dietterich, G. Baliri. Solving multiclass learning problems via error-correctingoutput codes. Journal of Artificial Intelligence Research, August,1995,2(1), pp.263-286.
    [152] B. Moghaddam, T. Jebara, A. Pentland. Bayesian face recognition. PatternRecognition, Nov.2000,33(11), pp.1771-1782.
    [153] M.A.T. Figueiredo. Adaptive sparseness for supervised learning. IEEE Transanctionson PAMI, Sep.2009,25(9), pp.1150-1159.
    [154] R. Polikar, L. Udpa, A.S. Udpa, V. Honavar. Learn++: an incremental learningalgorithm for supervised neural networks. IEEE Transanctions on SMC—Part C:Applications and Review, March2001,31(4), pp.497-508.
    [155] G. Cauwenberghs, T. Poggio. Incremental and decremental support vector machinelearning. Advances in Neural Information Processing Systems, vol.13,2001,pp.409-415.
    [156] E. Allwein, R. Schapire, Y. Singer. Reducing multiclass to binary: A unifying approachfor margin classifiers. Journal of Machine Learning Research,2002,1(1), pp.113-141.
    [157] S. Escalera, O. Pujol, Petia Radeva. ECOCs Library. Nov.2011,11, Journal ofMachine Learning Research, pp.661-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700