尿素合成塔用15MnVR板的断裂与疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尿素合成塔是尿素合成装置的关键设备。但是焊接残余应力、制造缺陷、应力腐蚀等因素的存在致使尿塔层板开裂,严重的甚至导致爆破事故。尿塔无疑成了一个存在严重安全隐患的设备。为杜绝事故再次发生,对尿塔材料行为的测试研究十分必要。
     作者从山东峄山某报废尿塔取样,进行了层板材料15MnVR的室温拉伸、中温拉伸、室温摆锤冲击试验。并与齐鲁一化尿塔、平阴尿塔的材料性能进行了对比分析。结果表明,材料的下屈服强度等各项力学性能指标均在标准要求范围之内。邹城尿塔材料的室温拉伸、中温拉伸以及室温摆锤冲击性能均与齐鲁一化尿塔相当;其室温拉伸性能优于平阴尿塔,抗脆断性能不如平阴尿塔。
     采用带有预裂纹的C(T)试样进行了中温疲劳裂纹扩展试验。利用试验机自带的电炉加热和保温,并由柔度法反算裂纹长度。分别用Paris公式、Forman公式以及王泓公式对试验数据进行了描述,获得了Paris公式和Forman公式的指数和系数。结果表明,Paris公式对稳定扩展区的裂纹扩展速率进行了很好的描述,但部分Forman公式拟合数据的相关系数不高。服役后材料的裂纹扩展速率未见明显升高,且与取样位置关系不大。它随平均应力的增加而增加,但在裂纹稳定扩展区的影响不明显。而王泓公式对试验数据的估算值与试验数据差别较大,不适宜用来分析本试验数据。
     按标准推荐的多试样法、采用带有整体刀口的SE(B)试样进行了裂纹尖端张开位移试验。获得了室温下材料的裂纹扩展阻力曲线,确定了CTOD特征值δ_(0.05)=0.088mm,δ_i=0.191mm。验证了厚度B≥5mm即可获得稳定临界CTOD值这一结论。并以汽轮机材料20Cr3MoWV钢的断裂韧度与温度的关系作为参照,给出了180℃时15MnVR钢的断裂韧度估算值。
     在补充、积累层板包扎高压容器材料的疲劳裂纹扩展及断裂韧度性能数据的同时,也为评价层板包扎高压容器的剩余寿命提供了基础数据和理论基础。
Urea reactors are the key equipments of urea synthesis devices. However, cracking of layers was induced because of residual welding stress, manufacturing defect and stress corrosion. Series cracking may lead to serious urea reactor blasting accidents. Urea reactors are equipments with security risks definitely. It's necessary to test and study the mechanics behavior of the urea reactor layers.
     The author took samples in a disabled urea reactor from a factory of Shandong Province. Tensile tests were carried out under room temperature and medium temperature, as well as impact test under room temperature. The material properties are compared with other urea reactors. The results indicate that, the material properties including tensile strength and toughness still satisfy the standard after service. They are quite close to the value of urea reactor from Qilu. The tensile strength is higher than urea reactor from Pingyin, but the toughness is lower.
     Fatigue crack propagation test under 180℃was carried out by using compact tension specimens. The crack length was caculated by compliance measurement method. The test data are described by Paris formula, Forman formula and Wang's formula separately. The parameters of Paris formula and Forman formula are got from the test. The results reveal that the data are described quite well by Paris formula. The fatigue crack propagation rate hasn't increased obviously after srevice. And it is independent of the position where the specimens taken. The average stress doesn't affect the crack propagation rate much in the stable crack growth area. But data estimated by Wang's formula are marked different from the test results.
     CTOD test was carried out according to resistance curve method by using SE(B) specimens. The resistance curves of the material are obtained by the test, as well as CTOD characteristic value. The results validate the conclusion that steadyδ_c can be obtained when the thickness of specimens is bigger than 5mm. Referring to the relationship between fracture toughness and temperature of 20Cr3MoWV steel, the fracture toughness of 15MnVR under 180℃is also discussed in the paper.
     The fatigue crack propagation data of urea reator material are supplied by the test. The fracture toughness data are accumulated at the same time. Basic data for estimating the residual life of urea reators are also provided here.
引文
[1]陈宪禧,王威强,朱衍勇,等.鲁西化工第三化肥厂尿素合成塔失效分析报告[R].北京钢铁研究院,2005.
    [2]国家质量监督检验检疫总局.关于进一步加强尿素合成塔生产使用检验工作的通知(国质检特函[2005]689号),2005.
    [3]宋明大,王威强,陈鹭滨,等.多层包扎尿素合成塔应力腐蚀裂纹成因分析[J].石油化工高等学校学报,2007,20(2):73-76.
    [4]王威强,李梦丽,徐书根,等.尿素合成塔爆炸及层板严重腐蚀开裂原因分析[J].金属热处理,2007,32(S1):197-205.
    [5]丁伯民,蔡仁良.压力容器设计--原理及工程应用[M].北京:中国石化出版社,1992:358.
    [6]Masounave J,Bailon J P,Dickson J I.Les Lois de la Fissuration par Fatigue[J].Les Presses DeL'Universite De Montreal,1981:201-236.
    [7]Yokobori T.High Temperature Creep,Fatigue and Creep-fatigue Interaction in Engineering Materials[J].Int.J.Pres.Ves.& Piping,2001,78(11):903-911.
    [8]Suresh S.材料的疲劳[M].王中光,译.北京:国防工业出版社,1993:52-58.
    [9]Walker E K.Effect of Environments and Complex Load History on Fatigue Life [M].ASTM STP462,1970:1-14.
    [10]陈篪.da/dN与K_I间关系的探讨[J].金属学报,1978,14(2):111-116.
    [11]王莺.典型钢种高温疲劳裂纹扩展的规律研究[D].杭州:浙江工业大学机电学院,2004:24-36.
    [12]高庆.工程断裂力学[M].重庆:重庆大学出版社,1986:144-149.
    [13]李小刚,李广铎.16MnR钢焊接接头疲劳裂纹扩展行为及裂纹闭合效应的研究[J].大连铁道学院学报,1993,14(3):156-161.
    [14]庄力健,高增梁,王效贵,等.16MnR钢在不同应力比下的疲劳裂纹扩展的试验研究及模拟[J].压力容器,2007,24(3):1-7.
    [15]上海交通大学《金属断口分析》编写组.金属断口分析[M].北京:国防工业出版社,1979:168-170.
    [16]Merrick H F,Floreen S.The Effects of Microstructure on Elevated Temperature Crack Growth in Nickel-base Alloys[J].Metall.Mater.Trans.A,1978,9A(2):231-236.
    [17]Nirbhay S,Ram K,Mathur G N.Effect of Stress Ratio and Frequency on Fatigue Crack Growth Rate of 2618 Aluminium Alloy Silicon Carbide Metal Matrix Composite[J].Bull.Mater.Sci.(India),2001,24(2):169-171.
    [18]范志超,蒋家羚.16MnR中温环境下应力控制的低周疲劳行为研究(一)[J].压力容器,2002,19(11):1-3.
    [19]范志超,蒋家羚.16MnR钢中温低周疲劳行为研究[J].浙江大学学报,2004,38(9):1190-1195.
    [20]张萍,张芳,王莺.16MnR钢高温疲劳裂纹扩展行为试验研究[J].化工设备与管道,2005,42(6):48-49.
    [21]李梦丽.层板包扎尿素合成塔爆破和开裂原因及机理研究[D].济南:山东大学机械工程学院,2008:46-53.
    [22]王政富,李劲,柯伟,等.热处理、轧制方向与腐蚀介质对A537钢疲劳裂纹扩展中声发射规律的影响研究[C]//中国力学学会,中国机械工程学会等.第六届全国疲劳学术会议论文集(下),厦门,1993:476-480.
    [23]张明锋,陈学东.15MnVR与16MnR钢在氢氧化钠溶液中的抗应力腐蚀试验研究[J].压力容器,2008,25(8):1-5.
    [24]Zheng G P,WANG Z G.Fatigue Crack Growth of Ni_3Al Single Crystals at Ambient and Elevated Temperatures[J].Acta mater,1997,45(4):1705-1714.
    [25]王威强,王家贤,琚定一.超载处理对16Mn钢疲劳裂纹扩展速率的影响[J].华东化工学院学报,1985,11(2):147-166.
    [26]赵少汴,王忠保.国产机械材料疲劳设计数据与设计方法的试验研究[C]//中国力学学会,中国机械工程学会等.第六届全国疲劳学术会议论文集(上),厦门,1993:4-13.
    [27]李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,2004:137-145,95-97.
    [28]邓增杰,周敬恩.工程材料的断裂与疲劳[M].北京:机械工业出版社,1995:122.29-31,124.
    [29]Barson J M.Fatigue-crack propagation in stress of various yield strengths[J].Trans.ASME,Series B,1971,(4):1190.
    [30]纪遵义,王印培,张勇,等.压力容器用钢的疲劳裂纹扩展速率[J].压力容器,1984,4(5):24-28.
    [31]任伟,张康达.常用的16MnR等压力容器用钢疲劳裂纹扩展速率[J].压力容器,1996,13(3):25-28.
    [32]《机械工程材料性能数据手册》编委会.机械工程材料性能数据手册[M].北京:机械工业出版社,1995:105-117.
    [33]张芳.典型钢种高温疲劳裂纹扩展规律的试验研究与计算机模拟[D].杭州:浙江工业大学机电学院,2004:24-25.
    [34]王莺,高增梁,张芳,等.316L钢高温疲劳裂纹扩展的规律研究[J].化工设备与管道,2005,42(2):49-51.
    [35]Jojima T.Urea Reactor Failure[J].Ammonia Plant Safety(and Related Facilities),1979,21:111-119.
    [36]Paris P C,Gomez M P,Anderson W E.A Rational Analysis Theory of Fatigue [J].The Trend in Engineering,1961,13(7):9-14.
    [37]褚武扬,王枨.断裂韧性测试[M].北京:科学技术出版社,1979:107.
    [38]崔振源.断裂韧性测试原理及方法[M].上海:科学技术出版社,1981:7094-108.
    [39]曹军,李小巍,温志刚.CTOD断裂韧度试验在海洋平台建造中的应用[J].中国海上油气,2004,16(21:129-131.
    [40]苗张木,蒋军,王志坚,等.用裂纹尖端张开位移法评价焊接接头韧性[J].焊管,2003,26(6):17-21.
    [41]Rice J R,Rosengren G F.Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material[J].J.Mech.Phys.Solids,1968,16(1):1-12.
    [42]Dugdale D S.Yielding of Steel Sheets Containing Slits[J].J.Mech.Phys.Solids,1960,8(2):100-108.
    [43]王元清,武延民,石永久,等.温度对结构钢材裂纹尖端张开位移(CTOD)的影响分析[J].工程力学,2006,23(4):74-78.
    [44]合肥通用机械研究所断裂韧性课题组.氨合成塔筒体材料断裂韧性的试验研究[J].化工与通用机械,1976,1(3):16-21.
    [45]合肥通用机械研究所断裂韧性课题组.COD测试技术中一些问题的进一步探讨[C]//北京断裂力学交流会第二次会议秘书处.北京断裂力学交流会第二次会议文集,北京,1976.科学出版社,1977:141-153.
    [46]Burdekin F M.Proposed Assessment Methods for Flaws with Respect to Failure by Brittle Fracture[J].Welding in the World,1975,13(1/2):43.
    [47]李恩勤,谢奎龙,赵义,等.高压釜用钢裂纹尖端张开位移(CTOD)的试验研究[J].理化检验-物理分册,1995,30(3):33-34.
    [48]王任甫,吉嘉龙.连铸10GrNi3MoV钢裂纹尖端张开位移(CTOD)试验研究[J].材料开发与应用,2003,18(4):23-26.
    [49]张瑜,吴国运,张桂芳.多试样法测定16MnR钢焊接接头的断裂韧性[J].武钢技术,1986,24(5):38-44.
    [50]刘渭祈,李守新.金相剖面法测定启裂COD值(δ_i)[J].太原重型机械学院学报,1984,5(S1):93-97.
    [51]章小浒,王印培.金相剖面法测试技术的研究[J].物理测试,1987,5(3):18-20.
    [52]何庆芝,郦正能.工程断裂力学[M].北京:北京航空航天大学出版社,1993:155.
    [53]陆毅中.工程断裂力学[M].西安:西安交通大学出版社,1987:131-143.
    [54]武延民,王元清,石永久,等.低温对结构钢材断裂韧度J_(1C)影响的试验研究[J].铁道科学与工程学报,2005,2(1):10-13.
    [55]李红英,张希旺,丁常伟.热处理对16MnR钢断裂韧度的影响[J].材料科学与工程学报,2008,26(4):599-601.
    [56]刘新佳.热处理工艺对16Mn钢性能的影响[J].江南大学学报,1996,11(2):74-78.
    [57]方德明,高增梁,张康达.服役多年的16MnR材料性能退化研究[J].化工机械,1997,24(4):205-207.
    [58]王威强,崔好选,徐书根,等.尿素合成塔层板材料力学性能测试分析报告[R].2008.
    [59]Bulloch J H.An Inspection of Elevated Temperature Fatigue Crack Extension Data in Low Alloy Steels[J].Int.J.Pres.Ves.& Piping,1998,75:805-818.
    [60]赵建国.尿毒合成塔多层包扎厚壁筒节的检漏管孔结构比较[J].中国特种设备安全,2005,22(6):24-25.
    [61]陈凌.典型压力容器用钢中高温环境低周疲劳和疲劳-蠕变交互作用的行为及寿命评估技术研究[D].杭州:浙江大学材化学院,2007:27-28.
    [62]Paris P C,Erdogan F.A Critical Analysis of Crack Propagation Laws[J].J.Basic Eng.,1963,85:528-534.
    [63]Forman R G,Kearney V E,Engle R M.Numerical Analysis of Crack Propagation in Cyclic-loaded Structures[J].J.Basic Eng.,1967,89:459-464.
    [64]王泓.材料疲劳裂纹扩展和断裂定量规律的研究[D].西安:西北工业大学材料学院,2002:53-55.
    [65]中国金属学会《断裂》编辑部.断裂分析与断裂韧性测试研究[M].长沙:湖南科学技术出版社,1980:307-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700