地沟式污水生态处理系统除磷效果和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了地沟式污水生态处理系统除磷效果以及其除磷的主要机理。
     在动态小试的基础上,确定了系统有关的试验设计参数。系统共运行21个月,获得15400多个数据。试验结果表明,地沟式污水生态处理系统对TP具有很高的去除率,出水TP的平均浓度为0.305mg/L,去除率平均为96.60%,并且季节的变化不会影响该系统对TP的去除效果。各级净化床中第一净化床对TP的去除起主要作用,有70.55%的TP将会在第一净化床中被去除。该系统在处理低浓度生活污水时,系统进水的BOD_5/TP与CODcr/TP值对除磷效果影响不大,该系统还具有一定的抗有机冲击负荷和水力冲击负荷能力。
     地沟式污水生态处理系统净化污水的主要基质是填料,而填料是通过吸附沉淀作用来去除污水中的磷的。因此,选择填料对磷的静态和动态等温吸附实验来进行吸附机理的研究。同时,还对植物和生物对磷的去除作用作了一些初步研究。研究结果表明,所选五种填料的最大吸磷量分别为:石灰土为每克土壤吸磷1430.1μg,紫色土为每克土壤吸磷1212.9μg,黄壤为每克土壤吸磷1188.6μg,石灰石为每克石灰石吸磷1383.75μg,粉煤灰为每克灰样吸磷1154.04μg,五种填料的静态等温吸附曲线与三种吸附方程的吻合性都很好。填料对磷的吸附过程一般有两个阶段:第一阶段是表面吸附,第二阶段是由表面向内部的进一步转移与转化,前者进行得快,后者较慢。研究中还发现,填料对磷的去除率在吸附平衡前随时间增加而迅速增大,吸附平衡后随时间增加变化不大;填料对磷的吸附量和吸附速率在反应初期随时间增加而迅速增大,反应后期随时间增加变化不大;在实验供磷溶液浓度范围内(20~160ppm),五种填料的动态等温吸附曲线与四种动力学方程的吻合性也很好;由动力学方程推导出的一些参数可以反映出填料对磷吸附的规律,表观速率常数(Ka)是随供试磷溶液浓度的增加而减小:而相对扩散系数(R)是随供试磷溶液浓度的增加而增加;由Elovich方程得到的a、β值是判断吸附反应速率的可靠因子,a值越大,吸附速率越大,
    
    B值越大,吸附速率越小。从植物对TP去除研究的盆栽实验中发现,
    各种植物对磷的去除率只占磷的总去除率的0.35一2.38%。系统采用
    的何歇布水装置使得系统处于厌氧和好氧交替状态,这样系统中的
    聚麟菌在厌氧条件下释放磷,吸收污水中的有机物获得能量并以
    PHB的形式贮存在菌体内;在好氧条件下,可将积贮的PHB好氧分
    解,释放能量并且吸磷,整个过程表现为PHB的合成与分解。
The effect and mechanism of dephosphorization of Under-Ground-Ditch-Pattern sewage zoology treatment system were studied by auther in this paper.
    The design parameters with test system were confirmed on the base of the dynamic small examination. The system had ran for 21 months and 15400 datas were got. According to the experimental results, the system had a high dephosphorization rate which was 96.60%. The average concentration of the discharged water was 0.305mg/L. Furthermore the dephosphorization effect of this system wasn't effected by the different seasons. The first disposal bed acted primary action for dephosphorization in all disposal beds and its dephosphorization efficiency was 70.55%. The ratio of BOD5/TP and CODcr/TP didn't effect the dephosphorization effect for disposing the low concentration sewage. This system also had the ability of resisting water power and organic concussion load.
    The main substance for purifying polluted water is the fillings which dephosphorized the sewage through the function of adsorption and deposition. So that the phosphoric static and dynamic isothermal adsorption experiments were elected for studying the mechanism of adsorption. At the same time the dephosphorization effect of plants and biology were also studied simply. From the results the calcareous soil's maximal adsorbent phosphor quantity is 1430.1ug per gram soil, the purple soil's maximal adsorbent phosphor quantity is 1212.9ug per gram soil, the yellow soil's maximal adsorbent phosphor quantity is 1188.6ug per gram soil, the limestone's maximal adsorbent phosphor quantity is 1383.75ug per gram limestone and the Coal Ash maximal adsorbent phosphor quantity is 1154.04 ug per gram Coal Ash. The static isothermal adsorption curves anastomose well with three adsorption equations. The phosphoric adsorption process by the fillings has two phasesrone phase is a superficial adsorption process, the other phase
    is a farther transfer from surface to inside. The former progress is fast and the latter progress is slow. The dephosphorization rates of the fillings
    
    
    add fast with the time increasing before adsorption balance and add slow with the time increasing after adsorption balance. In the former reaction the quantity and velocity of absorption add fast with the time increasing and add slow in the latter reaction. The dynamic isothermal adsorption curves of five fillings also anastomose well with four kinetics equations within experimental phosphor solution concentrations (20~160ppm) . Some parameters that were concluded from kinetics equations can reflect the rule of adsorbing phosphor by the fillings. The apparent velocity constant (Ka) minishes and the relative diffuse coefficient (R) adds with experimental phosphor solution concentrations' increasing. The value of a, B from Elovich equation are dependable genes for judging adsorption reaction speed . The value of a is bigger and the adsorption velocity is faster .The value of B is bigger and the adsorption velocity is slower. From plants' potted experiment we could find the removed rates, of phosphor of the pla
    nts only occupied 0.35-238% in total removed rates of phosphor of the system . The interim distributing equipment of this system makes the system in the alternant anaerobic and aerobic state. The combined phosphorus bacterium in this system releases phosphor in anaerobic condition and absorb the organic substance of the sewage to get energy and reserve energy in the form of PHB in the thalli. In aerobic condition the combined phosphorus bacterium can decompose PHB to release energy and absorb phosphor. The whole process represent the synthesization and decomposability of PHB.
引文
[1]金相灿,等。中国湖泊富营养化调查中国环境科学出版社,1990。
    [2]谢维民。污水除磷技术。环境科学,1989,10(5),63~68。
    [3]顾小红,黄种买,虞启义。污水除磷技术的现状及发展趋势。再生资源研究,2002,(3):33-35。
    [4]K.S.Rajmeder, WWE, Vol.14(8),1997
    [5]水上克一,月刊下水道,Vol.3(11),1980。
    [6]杜冬云,等.含磷废水的处理.化学工程师,1997,61(4),34—39。
    [7]北京市环境保护科学研究所编水污染防治手册,上海科学技术出版社。
    [8]华中师范大学、东北师范大学和陕西师范大学编。分析化学。2001,北京:高等教育出版社:195。
    [9]杨宝林。污水除磷技术的应用。西南给排水,1990,(4):15-19。
    [10]宗宫功[日]编著。污水除磷脱氮技术。中国环境科学出版社,1987,10。
    [11]郝小地等。欧洲水环境控磷策略与污水除磷技术(上)。给水排水,1998,24(8):69-73。
    [12]孙家寿等,天然沸石复合吸附剂处理含磷废水。离子交换与吸附,1992,8(1):20。
    [13]Xie, W.M.et al., Environ. Tech. Lett., 8(11),589(1987).
    [14]Levin, G.V.R.et al., J WPCF, 44(10), 1940(1972).
    [15]董泽琴,Eckenfelder生物滤池模式在土壤地下渗滤净化沟工艺中的应用研究。贵阳,2003,5。
    [16]城市污水土地处理技术指南。国家环境保护局科技标准司编。北京:中国环境科学出版社,1997。
    [17]钱易,米祥友。现代废水处理新技术,1993。
    [18]何江涛,陈鸿汉等。污水土地处理技术与污水资源化。地学前缘,2001,8(1):155-162。
    [19]成徐洲,吴天宝,陈天柱等。土壤渗滤处理技术研究现状与进展。环境科学研究,1999,12(4):33-36。
    [20]地沟式污水生态工程处理与回用技术研究技术总报告。地沟式污水生态工程处理与回用技术研究课题组,贵阳:贵州省环境科学研究设计院,2003年8月:27-31。
    [21]Dietfried Donnert and Manfred Salecker, Elimination of phosphorus from municipal and industrial waste water, Wat. Sci. Tech. Vol. 40. No4-5,195-202,1999.
    
    
    [22]贾宏宇,孙铁珩,李培军等。污水土地处理技术研究的最新进展。环境污染治理技术与设备,2001,2(1):62-65。
    [23]当前我国城市污水资源化存在的问题与对策,中宏数据库。2003,8,1。
    [24]城市节水技术与实践综述,邱慎初。国家城市给水排水工程技术研究中心。
    [25]沈耀良,王宝贞编。废水生物处理新技术理论与应用,北京:中国环境科学出版社,1999:178-179,275-276。
    [26]董泽琴,土壤地下渗滤净化沟污水除磷脱氮工艺及影响因素初探。中日湖泊富营养化会议报告 8,2002,3。
    [27]彭润芝,地沟式土地处理技术净化污水的机理及其在贵州的应用,中日湖泊富营养化会议报告 7,2002,3。
    [28]陈玉成。土壤净化功能的原理及其利用,四川环境,1994,13(4):60-64。
    [29]陆文龙,张福锁,曹一平。磷土壤化学行为研究进展,天津农业科学,1998,4(4):1—7。
    [30]李韵珠,李保国。土壤溶质运移,1998。
    [31]涂从。土壤体系中的化学动力学方程及其应用。热带亚热带土壤科学,1994,3(3):175-182。
    [32]韩德刚等。化学动力学基础。北京:北京大学出版社,1987:1-8。
    [33]曹志洪,李庆逵。黄土性土壤对磷的吸附与解吸。土壤学报,1988,25(3):218-226。
    [34]陆文龙,张福锁,曹一平。磷土壤化学行为研究进展。天津农业科学,1998,4(4):1-7。
    [35]Olsen S R, et al. A method to determing a phosphorus adsorption maxium of soil as measured by the Langmuir isothem. Soil Sci Soc Am Proc, 1957; 21: 144-145.
    [36]晋艳,尉庆丰。土壤基质组成与磷吸附动力学的关系。土壤通报,25(2):74-77,1994。
    [37]Barrow N J. On the Displacement of Adsorbed Anions from Soil Ⅱ. Displacement of Phosphate by Arsenate. Soil Sci,1974,117(1):28-33.
    [38]陆文龙,潘洁,薛家骅。土壤锌吸附动力学。华北农学报,1995,11(1):81-86。
    [39]Sparks D L. Soil Physical Chemistry. Florida:CRC Press,1986.
    [40]Chien S H et al. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Sci Soc Am J.1980,44(2):265-268.
    [41]Martin H W et al.Knetics of Nonexchangeable Potassium Release From Two Coastal Plain Soils.Soil Sci Soc Am J,1983,47(5):883-887.
    
    
    [42]Aharoni C et al.Relationships between Empirical Equations and Diffusion Modles. Soil Sci Soc Am J,1991,55(5):1307-1312.
    [43]Sparks D L et al. Comparison of Kinetic Equation to Desorption Potassium-Calcium Exchange in Pure and in mixed System. Soil Sci,1984,138(2):115-122.
    [44]Sikora F J et al. Phosphorus Dissolution Kintics and Bioavailability of Water-Insoluble Fractions from Monoammonium Phosphate Fertilizers. Soil Sci Soc Am J,1991,55(2):362-368.
    [45]Chien S H et al.Kinetics of Dissolution of Phosphate Rocks in Soils.Soil Sci Soc Am J,1980,44(2):260-264.
    [46]涂从等。四川紫色土对铜的吸附特性及其与铜中毒临界值的关系。重庆环境科学,1989,11(4):52-57。
    [47]史吉平等。紫色土对铬的吸附-解吸及吸附动力学。河北农业大学学报,1993,16(3):15-19。
    [48]Crank J. The mathematics of diffusion. Oxford:Clarendon Press,1975.
    [49]Courchesene F et al.Kinetics of Sulfare Desorption from Two Spodosols of the Laorentians,Quebec.Soil Sci,1990,150(6):858-866.
    [50]Boyd G E et al. The Exchange Adsorption of Ions from Aqueous Solution by Organic Zeolires 2. Kinetics. J Am Chem Soc,1947,69:2836-2848.
    [51]Chute J H et al.Diffusion of Potassium from Mica-Like Clay Minerals.Nature,1967,213(5081):1156-1157.
    [52]Elkhatib E A et al.Kinetics of Phosphorus Desorption from Appalachian Soil. Soil Sci,1988,145(3):222-229.
    [53]Cooke I J. A Kinetic of Approach to the Description of Soil Phosphate Status.J Soil Sci,1966,17(1):56-64.
    [54]Chien S H, Clayton W R. Application of elovich equation to the kinetics of phosphate release and sorption in soil, Soil Sci Am J,1980;44:260-264.
    [55]Toylor H A et al. Kinetics of Chemisorption. J Am Chem Soc,1952,74(4):4169-4174.
    [56]Low M J D. Kinetics of Chemisorption of Gases on Solids. Chem Rev, 1960,60(3):267-312.
    [57]Parravano G et al. Advances in Catalysis. New York: Academic Press, 1955,47.
    [58]Hingston F J. A Review of Anion Adsorption, M..A. et al eds. Adsorption of Inorganics at Solid,Liquid Surface. Ann Arbor Science,1981.51-90.
    
    
    [59]Atkinson R J et al. Elovich Equztion for the Kinetics of Isotope Exchange Reaction at Solid-Liquid Interfacess. Nature,1970,226:148-149.
    [60]Kuo S et al. Kinetic of Phosphate Adsorption and Desorption by Hematite and Gibbsite. Soil Sci,1974,116(6):400-406.
    [61]Elkhatib E A et al. Kinetic of Arsenite Sorption in Soils. Soil Sci Soc Am J,1984,48(4):758-762.
    [62]国家环保局《水和废水监测分析方法》委员会编。水和废水监测分析方法。北京:中国环境科学出版社,1989。
    [63]张甲耀,林清华,夏盛林等。不同植物构成的潜流型人工湿地处理系统的净化能力极其异养细菌数量的研究。环境工程,1998,16(3):17—20。
    [64]徐亚同。废水的生物除磷。环境科学研究,1994,7(5):1-6。
    [65]成水平,吴振斌,况琪军。人工湿地植物研究。湖泊科学,2002,14(2)。
    [66]邓春玲。稀土吸附剂废水深度脱磷,硕士研究生学位论文。昆明理工大学,2002,3。
    [67]高拯民,李宪法。城市污水土地处理利用设计手册。北京:中国标准出版社,1991。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700