柴油车尾气四效催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于良好的动力性和经济性,柴油车正赢得越来越多的轻型车市场份额。但是,其排放的四种污染物—包括碳烟(PM),氮氧化物(NOx),一氧化碳(CO)和未燃碳氢化合物(HC)—正损害着自然环境和人类健康,而且不能满足日益严格的排放法规。利用催化后处理技术可以控制柴油车污染物的排放,其中同时控制四种污染物排放的技术称为四效催化技术,所采用的催化剂为四效催化剂。
     基于Toyota公司提出的DPNR (Diesel Particulate NOx Reduction system)概念,耦合催化碳烟燃烧和NOx存储-还原两类技术研究和发展了一种新型柴油车四效催化剂。该催化剂以Mg-A1水滑石复合氧化物(MgAlO)为载体,以碱金属K和贵金属Pd为活性组分。其中,K催化碳烟燃烧和NOx存储,贵金属催化NOx还原以及CO和HC氧化。在柴油车排放的模拟实验以及台架试验中发现,该催化剂可以实现四种污染物的去除。同时对该催化剂及催化反应进行了详细表征,探讨了碳烟燃烧和NOx存储-还原的机理。
     本论文的主要工作和发现有:
     (1)将K负载到Mg-A1水滑石复合氧化物(MgAlO)上,得到K/MgAlO催化剂。结构表征发现,K增加了MgAlO的碱性和表面晶格氧的浓度。当K负载量≤8wt.%时,K高度分散在MgAlO表面,并与载体作用形成新的Lewis碱位,包括:①K取代MgAlO弱碱位OH上的质子形成弱碱性的Mg(Al)-O-K;②K与强碱位表面02-结合形成强碱性的Mg-O-K;③当K负载量≥5wt.%时,存在与载体作用较弱并具有更强碱性的准自由KOx。K增强MgAlO碱性的本质是K的电荷转移到了表面氧负离子上
     (2)测试了O2气氛中K/MgAlO催化碳烟燃烧的活性,发现K可以显著降低碳烟的起燃温度,并减弱催化剂对碳烟接触方式的依赖。其中,K的最佳负载量低于8wt.%。用离线红外技术发现了碳烟燃烧反应过程中出现的碳氧络合物—烯酮物种。结合其他表征手段,确定了K催化碳烟燃烧的“氧溢流”机理。K位上的表面活性氧溢流到碳烟表面的自由碳位上,形成烯酮物种。烯酮物种与另外的表面活性氧结合生成CO2。在碳烟被消耗的同时,大量的自由碳位被暴露。副产物CO则源于自由碳位与气相O2之间的反应。事实上,溢流的活性氧延展了催化剂的作用范围,弱化了催化剂对碳烟接触方式的依赖。此外,K/MgAlO在催化碳烟燃烧过程中具有相对较高的可重复性,这是因为载体中A1与K之间的作用可以稳定K的存在。
     (3)测试了在NO+02气氛中K/MgAlO催化碳烟燃烧的活性,发现K同时促进了碳烟燃烧和NOx还原。另外,NOx的引入有利于低温的碳烟燃烧(<300℃),而对高温的碳烟燃烧(>300℃)有所抑制,但伴随有NOx还原。从原位红外实验中发现,反应中存在的两个中间物—烯酮物种和异氰酸根物种,确认除“氧溢流”机理外,碳烟燃烧还存在另外2个反应路径:①NO反应路径:NO与K位上表面活性氧结合形成亚硝酸盐,亚硝酸盐与自由碳位作用形成烯酮物种,烯酮物种进一步被临近的亚硝酸盐氧化为CO2,并生成NO(低温)或N2(高温);②NO2反应路径:NO2与自由碳位直接作用,生成烯酮物种或异氰酸根物种,后者进一步被O2或NO2氧化为CO2和N2。
     由于NO,与碳烟的反应受限于自由碳位的数量,而只有碳烟与O2在高温的反应才会产生大量的自由碳位。因此,NOx对低温碳烟燃烧的促进作用有限。此外,NOx吸附K位上形成硝酸盐,对K的催化作用有所钝化。
     (4)将Pd和K同时负载到MgAlO上得到了Pd-K/MgAlO催化剂。结构表征发现,K+与Pd紧密接触,覆盖了部分Pd位,降低了Pd的分散度。两者相互作用形成了Pd-O-K物种,减弱了Pd的氧化还原特性。尽管如此,这种相互作用使得表面的准自由KOx颗粒分散成了小粒径的颗粒,提高了K的分散度。活性测试发现,Pd-K/MgAlO保持了K/MgAlO的活性,可以同时促进碳烟燃烧和NOx去除。另外,在Pd和K协同作用下,NOx的最大去除效率达45%左右,高于Pd/MgAlO和K/MgAlO的去除效率。这是因为除了部分NOx被碳烟还原外,还有部分NOx发生了分解反应。
     (5)测试了Pd-K/MgAlO的Nq存储-还原性能。Pd-K/MgAlO表现出优异的NOx存储能力,在300℃时的存储量为890.4μmol/g,高于Pd/MgAlO和K/MgAlO.这是因为Pd和K间的作用提高了K的分散度,提供了更多的K存储位。原位红外表征发现,NOx在Pd-K/MgAlO上的存储存在三个路径:①亚硝酸盐路径:NO吸附在表面K物种上形成了亚硝酸盐;②亚硝酸盐-硝酸盐路径:靠近Pd的K位(即Pd-O-K位)上的亚硝酸盐逐渐被氧化为硝酸盐;③硝酸盐路径:NO2吸附在K位上直接形成了硝酸盐。在Pd的催化作用下,存储的NOx可被H2还原,起始还原温度为250℃。
     (6)将Pd-K/MgAlO催化剂涂覆到壁流式蜂窝陶瓷上,得到四效催化剂产品。将该产品封装后匹配到柴油发动机上,进行了台架实验。稳态工况下,碳烟去除率在90%以上;排气温度在400℃以上时,可部分去除NO,去除率为6%;排气温度在300℃以上时,CO去除效果明显,去除率最高可达95%左右,但易受碳烟影响;HC去除效果不佳,去除率在10%以内。基于NOx存储-还原机理,在稀燃/浓燃瞬变工况下可以实现对NOx的部分去除,浓燃阶段去除率在20%左右,整体去除率为7.0%,同时CO和HC的去除率分别为81.9%和36.9%。
In recent years, the diesel vehicles have achieved a growing share of the light-duty vehicle market due to their high efficiency and low operating costs. However, the emission of their pollutants have caused severe environmental and health problems and cannot meet the demands of the more and more stringent legislation. The four main pollutants from diesel vehicles, including soot particulates, nitrogen oxides (NOx), carbon monoxide (CO) and unburned hydrocarbonates (HC), can be simultaneously controlled using aftertreatment catalytic technologies, i.e. four-way catalysis (FWC).
     On the base of the concept of DPNR (Diesel Particulate NOx Reduction system) proposed by Toyota Corporation, a new four-way catalyst for diesel exhaust was investigated and developed, in which both technologies of catalytic soot combustion and NOx storage and reduction (NSR) were coupled. For the catalyst, alkaline metal K and noble metal Pd were employed as the catalytic components, which were supported by the Mg-Al hydrotalcite-based mixed oxide (MgAlO). The K plays the roles of catalyzing soot combustion and storing NOx, while the noble metal acts as the roles of catalyzing reduction of NOx and oxidation of CO and HC. In the experiments of simulated diesel emission and the bench test of diesel engine, the four pollutants can be reduced under the roles of the catalyst. Furthermore, the catalyst and the catalytic reaction were characterized in details, and thus the reaction mechanism of soot combustion and NOx storage and reduction were expolored.
     The main works and findings are as following.
     (1) The K supported MgAlO (K/MgAlO) were obtained and characterized by several techniques. The results show that K was highly dispersed on the surface of MgAlO when the loading amount is below8wt.%. New Lewis basic sites were formed through the interaction between K and MgAlO. Amongst, Mg(Al)-O-K species with the weak basicity were converted from Mg(Al)-OH by the substitution of the proton. While the Mg-O-K species were obtained by the combination with the strongly basic O2-sites. When the loading of K was between5wt.%and8wt.%, the quasi free KOx species, which interact weakly with the support and show stronger basicity than Mg-O-K species, were formed. The increase in the basicity for K/MgAlO can be attributed to the charge transfer from K to the surface oxygen anions, which increased the negative charge of the strongly basic sites.
     (2) The catalytic activity of K/MgAlO for soot combustion with O2was tested. It was found that presence of K significantly improved soot combustion and depressed the sensitivity to the contact between soot and catalyst. The optimum amount of potassium was below8 wt.%of the supporting amount. Furthermore, a carbon-oxygen complex, ketene group, was observed as a reaction intermediate of soot combustion using ex situ IR. Combined with other characterization, an oxygen spillover mechanism for soot combustion with O2on K supported samples was determined. First, the surface-activated oxygen on K sites spill over to free carbon sites on soot to form the ketene group, which combined with another active oxygen species to give out CO2. Thus, more amount of free carbon sites were exposed, resulting in the depletion of soot. The byproduction CO came from the direct reaction of free carbon sites and gas phase O2. The spillover oxygen may have acted as the spreading of catalysts, which ameliorated loose contact activity. Additionally, the high repeated activity of K/MgAlO was found. This is because the stability of K is greatly improved through the interaction with Al.
     (3) The catalytic activity of K/MgAlO for soot combustion with NO+O2were also tested. The presence of K improved both soot combustion and NOX reduction. The presence of NOx in O2favors the soot combustion at lower temperature (<300℃). However, a little suppression was observed at higher temperature (>300℃), which was accompanied by a substantial NOx reduction. The reaction intermediates, the ketene group and the isocyanate ions, were observed using the in situ IR technique and thus the reaction mechanism was determined. In the combustion with NO+O2, in addition to the oxygen spillover mechanism mentioned above, two other pathways exist. i) The nitrite route:the NO first combines with surface oxygen on K sites forming nitrites. Then, the nitrites interact with the free carbon sites on soot to produce the ketene group. Finally, the ketene group is further oxidized to CO2by adjacent nitrites, regenerating NO at lower temperatures and/or producing N2at higher temperatures. ii) The NO2route:the NO2forming from NO oxidation directly reacts with the free carbon sites producing the ketene group and isocyanate ion. The latter is further oxidized into N2and CO2by O2or NO2. However, the reactions of NOx with soot are limited by the amount of free carbon sites, which can be provide by the oxidation of soot by O2at higher temperature. Additionally, the formation of nitrates from NOx adsorption might poison the active K sites to a certain extent.
     (4) The Pd and K co-supported Mg-A1hydrotalcite oxides (Pd-K/MgAlO) were prepared by impregnation method. The results of structure characterization shows that there is a intimated contact between Pd and K+, resulting in that the Pd particles were partly covered by K+and thus the Pd dispersion decreased. A strong chemical interaction exists between K+and Pd, which leads to the formation of Pd-O-K species and suppresses the redox properties of Pd. Furthermore, the interaction disperses the quasi free KOx species into the smaller particle, improving the dispersion of K. The results of activity tests for soot combustion with NO+O2show that Pd-K/MgAlO kept the activity of K/MgAlO for simultaneous catalytic removal of soot and NOx. Due to the existence of the synergism between Pd and K, furthermore, the maximum conversion of NOx reached to45%, which is superior to Pd/MgAlO or K/MgAlO. The higher conversion of NOx during soot combustion is ascribed not only to the reduction of NOx with soot but also to the decomposition of NOx.
     (5) The activities of Pd-K/MgAlO were tested for NOx storage and reduction. It was found that Pd-K/MgAlO behaves superior capacity for NOx storage, which was evaluated as890.4μmol/g, which is higher than those of both Pd/MgAlO and K/MgAlO. This is because the improvement on K dispersion due to the interaction between Pd and K provides more available K sites to NO storage. Accordingly to results of in situ IR, three pathways were distinguished for NOx storage. ⅰ) The nitrite route:NO is stored on surface K species in the form of nitrites, ⅱ) The nitrite-nitrate route:NO is adsorbed on surface Pd-O-K sites in the form of nitrites, which are progressively transformed into nitrates. ⅲ) The nitrate route:the thermodynamically produced NO2is directly adsorbed to form nitrates. Under the catalytic riles of Pd, the stored NOx on Pd-K/MgAlO can be reduced by H2, in which the initial reduction temperature is250℃.
     (6) The Pd-K/MgAlO catalyst was coated onto the ceramic honeycomb wall-flow filter and then was packed into a converter. Then, the converter was connected to a diesel engine, and the bench tests were performed to test the activity of the catalyst. Under the static condition, the four pollutants can be eliminated in different degree:ⅰ) the soot was converted by more than90%; ⅱ) the NO was partly converted by about6%when the exhaust temperature was above400℃; ⅲ) the elimination of CO occurred when the exhaust temperature was beyond300℃and the maximum conversion can be reached to95%, but the elimination tent to be suppressed by the presence of soot; iv) the elimination of HC was not significant and the conversion was within10%. In the term of NSR principle, furthermore, the lean/rich transient condition was operated. During the rich stage, the conversion of NO was about20%. In the whole process, the conversion of NO was7.0%while the conversion of CO and HC were81.9%and36.9%, respectively.
引文
[1]International Energy Agency. World energy outlook 2008 [R]. Paris:OECD-IEA,2008.
    [2]He K, Huo H, Zhang Q, et al. Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications [J]. Energy Policy,2005,33(12):1499-1507.
    [3]World Health Organization. Health costs due to road traffic-related air pollution [R]. London: WHO,1999.
    [4]Walsh M P. Motor vehicle pollution and fuel consumption in China:the long-term challenges [J]. Energy for Sustainable Development,2003,7(4):28-39.
    [5]Wu Y, Wang R, Zhou Y, et al. On-Road Vehicle Emission Control in Beijing:Past, Present, and Future [J]. Environmental Science & Technology,2010,45(1):147-153.
    [6]李勤.现代内燃机排气污染物的测量与控制[M].北京:机械工业出版社,1998.
    [7]U.S. Energy Information Administration. Light-Duty Diesel Vehicles:Market Issues and Potential Energy and Emissions Impacts [R]. Washington, DC:U.S. Department of Energy,2009.
    [8]聂彦鑫,徐俊芳.我国柴油轿车的发展前景[J].汽车工程师,2009,(9):12-14.
    [9]刘巽俊.内燃机的排放与控制[M].北京:机械工业出版社,2003.
    [10]Pyne S. AIR POLLUTION:Small Particles Add Up to Big Disease Risk [J]. Science,2002, 295(5562):1994-1994.
    [11]Lucking A J, Lundback M, Barath S L, et al. Particle Traps Prevent Adverse Vascular and Prothrombotic Effects of Diesel Engine Exhaust Inhalation in Men [J]. Circulation,2011,123: 1721-1728.
    [12]Twigg M V, Phillips P R. Cleaning the Air We Breathe-Controlling Diesel Particulate Emissions from Passenger Cars [J]. Platinum Metals Review,2009,53(1):27-34.
    [13]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002.
    [14]刘坚,赵震,徐春明.柴油车排放碳黑颗粒消除催化剂的研究进展[J].催化学报,2004,25(8):673-680.
    [15]Koebel M, Elsener M, Madia G. Recent advances in the development of urea-SCR for automotive applications [J]. SAE Technical Papers,2001,2001-01-3625.
    [16]高松,曲金玉,路传国,等.国外柴油机排放法规与排放控制技术发展现状[J].山东工程学院学报,2001,15(3):38-42.
    [17]Fang M, Chan C K, Yao X. Managing air quality in a rapidly developing nation:China [J]. Atmospheric Environment,2009,43(1):79-86.
    [18]汪卫东.国内外汽车排放法规对比分析[J].商用汽车,2004,(11):86-89.
    [19]陶云飞,尹德魁,王振峰,等.中国汽车产品满足未来排放法规登陆欧盟市场的可行性研究[J].汽车技术,2011(1):34-41.
    [20]Trichard J M. Current tasks and challenges for exhaust after-treatment research:An industrial viewpoint [J]. Studies in Surface Science and Catalysis,2007,171:211-233.
    [21]贺泓,翁端,资新运.柴油车尾气排放污染控制技术综述[J].环境科学,2007,28(6):1169-1177.
    [22]刘忠长,朱昌吉,张振东.车用柴油机排气再循环控制系统[J].吉林大学学报(工学版),2004,(3):337-341.
    [23]Johnson T V. Diesel emission control in review [J]. SAE Technical Papers,2006,2006-01-0030.
    [24]Johnson T. Diesel engine emissions and their control [J]. Platinum metals review,2008,52(1): 23-37.
    [25]Bosteels D, Searles R A. Exhaust emission catalyst technology [J]. Platinum metals review,2002, 46(1):27-36.
    [26]康守方,於俊杰,郝郑平,等.柴油车氧化催化剂在抑制硫酸盐颗粒物形成方面的研究进展[J].环境污染治理技术与设备,2003,4(12):1-5.
    [27]张业新.柴油车尾气氧化催化剂的制备和性能[D].济南:济南大学,2007.
    [28]Luo J-Y, Kisinger D, Abedi A, et al. Sulfur release from a model Pt/AlO3 diesel oxidation catalyst:Temperature-programmed and step-response techniques characterization [J]. Applied Catalysis A:General,2010,383(1-2):182-191.
    [29]Morlang A, Neuhausen U, Klementiev K V, et al. Bimetallic Pt/Pd diesel oxidation catalysts: Structural characterisation and catalytic behaviour [J]. Applied Catalysis B:Environmental,2005, 60(3-4):191-199.
    [30]Heck R M, Farrauto R J. Automobile exhaust catalysts [J]. Applied Catalysis A:General,2001, 221(1-2):443-457.
    [31]Kim M R, Kim D H, Woo S I. Effect of V2O5 on the catalytic activity of Pt-based diesel oxidation catalyst [J]. Applied Catalysis B:Environmental,2003,45(4):269-279.
    [32]Farrauto R J, Voss K E. Monolithic diesel oxidation catalysts [J]. Applied Catalysis B: Environmental,1996,10(1-3):29-51.
    [33]张业新,张昭良,于鹏飞,等.铈锆固溶体的合成及对SOF的催化氧化[J].中国稀土学报,2005(S1):55-58.
    [34]Zhang Z, Zhang Y, Mu Z, et al. Synthesis and catalytic properties of Ce0.6Zr0.4O2 solid solutions in the oxidation of soluble organic fraction from diesel engines [J]. Applied Catalysis B: Environmental,2007,76(3-4):335-347.
    [35]郭国胜.柴油汽车排放控制技术[J].内燃机,2006,(2):33-36.
    [36]傅昕,魏众,李佩珩,等.用于柴油机排放控制的微粒捕集器技术[J].北京工业大学学报,2002,28(2):163-167.
    [37]吴晓东,翁端,陈华鹏,等.柴油车微粒捕集器过滤材料研究进展[J].材料导报,2002,16(006):28-31.
    [38]Van Setten B a a L, Makkee M, Moulijn J A. Science and technology of catalytic diesel particulate filters [J]. Catalysis Reviews:Science and Engineering,2001,43(4):489-564.
    [39]Adler J. Ceramic Diesel Particulate Filters [J]. International Journal of Applied Ceramic Technology,2005,2(6):429-439.
    [40]龚金科,赖天贵,刘孟祥,等.柴油机微粒捕集器过滤材料与再生方法分析与研究[J].内燃机,2004,(4):1-4.
    [41]高希彦,王宪成,许晓光,等.柴油机排放微粒后处理技术试验研究[J].大连理工大学学报,2000,40(S1):55-60.
    [42]王宪成,孙坦,高希彦.柴油机红外再生微粒捕集系统试验研究[J].大连理工大学学报,2007,(2):180-184.
    [43]杨曦,张昭良,王仲鹏.柴油车燃料添加型催化剂研究进展[J].环境科学与技术,2010,33(7):68-70,78.
    [44]Joshi A. Development of an Actively Regenerating DPF System for Retrofit Applications [J]. SAE Technical Papers,2006,2006-01-3553.
    [45]苏庆运,刘卫国,陈觉先,等.NO2连续再生柴油机微粒过滤器的试验研究[J].内燃机学报,2001,19(05):443-446.
    [46]Matsuoka K, Orikasa H, Itoh Y, et al. Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen [J]. Applied Catalysis B:Environmental,2000,26(2):89-99.
    [47]Sri Rahayu W, Monceaux L, Taouk B, et al. Catalytic combustion of diesel soot on perovskite type oxides [J]. Studies in Surface Science and Catalysis,1995,96:563-574.
    [48]Sanchez B S, Querini C A, Miro E E. NOx adsorption and diesel soot combustion over La2O3 supported catalysts containing K, Rh and Pt [J]. Applied Catalysis A:General,2009,366(1): 166-175.
    [49]Wei Y, Liu J, Zhao Z, et al. Highly Active Catalysts of Gold Nanoparticles Supported on Three-Dimensionally Ordered Macroporous LaFeO3 for Soot Oxidation [J]. Angewandte Chemie International Edition,2011,50(10):2326-2329.
    [50]Zhu R, Guo M, Ouyang F. Simultaneous removal of soot and NOx over Ir-based catalysts in the presence of oxygen [J]. Catalysis Today,2008,139(1-2):146-151.
    [51]Reichert D, Bockhorn H, Kureti S. Study of the reaction of NOx and soot on Fe2O3 catalyst in excess of O2 [J]. Applied Catalysis B:Environmental,2008,80(3-4):248-259.
    [52]Xiao S, Ma K, Tang X, et al. The lean catalytic reduction of nitric oxide by solid carbonaceous materials [J]. Applied Catalysis B:Environmental,2001,32(1-2):107-122.
    [53]Leocadio I C L, Braun S, Schmal M. Diesel soot combustion on Mo/AlO3 and V/Al2O3 catalysts: investigation of the active catalytic species [J]. Journal of Catalysis,2004,223(1):114-121.
    [54]Harrison P G, Ball I K, Daniell W, et al. Cobalt catalysts for the oxidation of diesel soot particulate [J]. Chemical Engineering Journal,2003,95(1-3):47-55.
    [55]Wang S, Haynes B S. Catalytic combustion of soot on metal oxides and their supported metal chlorides [J]. Catalysis Communications,2003,4(11):591-596.
    [56]Lopez-Fonseca R, Elizundia U, Landa I, et al. Kinetic analysis of non-catalytic and Mn-catalysed combustion of diesel soot surrogates [J]. Applied Catalysis B:Environmental,2005,61(1-2): 150-158.
    [57]Krishna K, Bueno-Lopez A, Makkee M, et al. Potential rare earth modified CeO2 catalysts for soot oxidation:I. Characterisation and catalytic activity with O2 [J]. Applied Catalysis B: Environmental,2007,75(3-4):189-200.
    [58]Atribak I, Such-Basanez I, Bueno-Lopez A, et al. Catalytic activity of La-modified TiO2 for soot oxidation by O2 [J]. Catalysis Communications,2007,8(3):478-482.
    [59]Jimenez R, Garcia X, Cellier C, et al. Soot combustion with K/MgO as catalyst:II. Effect of K-precursor [J]. Applied Catalysis A:General,2006,314(1):81-88.
    [60]Castoldi L, Matarrese R, Lietti L, et al. Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot [J]. Applied Catalysis B:Environmental,2009,90(1-2): 278-285.
    [61]Ogura M, Morozumi K, Elangovan S P, et al. Potassium-doped sodalite:A tectoaluminosilicate for the catalytic material towards continuous combustion of carbonaceous matters [J]. Applied Catalysis B:Environmental,2008,77(3-4):294-299.
    [62]Kimura R, Wakabayashi J, Elangovan S P, et al. Nepheline from K2CO3/Nanosized Sodalite as a Prospective Candidate for Diesel Soot Combustion [J]. Journal of the American Chemical Society,2008,130(39):12844-12845.
    [63]Serra V, Saracco G, Badini C, et al. Combustion of carbonaceous materials by CuKV based catalysts:II. Reaction mechanism [J]. Applied Catalysis B:Environmental,1997,11(3-4): 329-346.
    [64]Miro E E, Ravelli F, Ulla M A, et al. Catalytic combustion of diesel soot on Co, K supported catalysts [J]. Catalysis Today,1999,53(4):631-638.
    [65]Jimenez R, Garcia X, Cellier C, et al. Soot combustion with K/MgO as catalyst [J]. Applied Catalysis A:General,2006,297(2):125-134.
    [66]Jimenez R, Garcia X, Lopez T, et al. Catalytic combustion of soot. Effects of added alkali metals on CaO-MgO physical mixtures [J]. Fuel Processing Technology 2008,89(11):1160-1168.
    [67]Fino D, Russo N, Saracco G, et al. The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot [J]. Journal of Catalysis,2003,217(2):367-375.
    [68]Teraoka Y, Kanada K, Kagawa S. Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates [J]. Applied Catalysis B:Environmental,2001,34(1):73-78.
    [69]姚文生.镧钴钙钛矿催化剂制备及去除氮氧化物和碳烟性能研究[D].天津:天津大学,2009.
    [70]Hong S-S, Lee G-D. Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts [J]. Catalysis Today,2000,63(2-4):397-404.
    [71]Russo N, Fino D, Saracco G, et al. Promotion effect of Au on perovskite catalysts for the regeneration of diesel particulate filters [C].AWPA Symposiu 2007.2008. St Louis, MO: Elsevier Science Bv,306-311.
    [72]Fino D, Russo N, Saracco G, et al. Catalytic removal of NOx and diesel soot over nanostructured spinel-type oxides [J]. Journal of Catalysis,2006,242(1):38-47.
    [73]Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NOX and diesel soot particulates over ternary AB2O4 spinel-type oxides [J]. Applied Catalysis B:Environmental,1996, 8(2):217-227.
    [74]Zawadzki M, Staszak W, Lopez-Suarez F E, et al. Preparation, characterisation and catalytic performance for soot oxidation of copper-containing ZnAl2O4 spinels [J]. Applied Catalysis A: General,2009,371(1-2):92-98.
    [75]Shangguan W F, Teraoka Y, Kagawa S. Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot paniculate [J]. Applied Catalysis B:Environmental,1998,16(2):149-154.
    [76]Cavani F, Trifir F, Vaccari A. Hydrotalcite-type anionic clays:Preparation, properties and applications [J]. Catalysis Today,1991,11(2):173-301.
    [77]Li Q, Meng M, Tsubaki N, et al. Performance of K-promoted hydrotalcite-derived CoMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal [J]. Applied Catalysis B:Environmental,2009,91(1-2):406-415.
    [78]Li Q, Meng M, Xian H, et al. Hydrotalcite-Derived MnxMg3-xAlO Catalysts Used for Soot Combustion, NOx Storage and Simultaneous Soot-NOx Removal [J]. Environmental Science & Technology,2010,44(12):4747-4752.
    [79]於俊杰,蒋政,康守方,等.Cu-Mg/Al复合氧化物催化碳颗粒物燃烧性能的研究[J].物理化学学报,2004,20(12):1459-1464.
    [80]Wang Z, Jiang Z, Shangguan W. Simultaneous catalytic removal of NOx and soot particulate over Co-Al mixed oxide catalysts derived from hydrotalcites [J]. Catalysis Communications,2007, 8(11):1659-1664.
    [81]Wang Z, Shangguan W, Su J, et al. Catalytic oxidation of diesel soot on mixed oxides derived from hydrotalcites [J]. Catalysis Letters,2006,112(3):149-154.
    [82]Zhang Z, Mou Z, Yu P, et al. Diesel soot combustion on potassium promoted hydrotalcite-based mixed oxide catalysts [J]. Catalysis Communications,2007,8(11):1621-1624.
    [83]Krocher O. Aspects Of Catalyst Development For Mobile Urea-Scr Systems:From Vanadia-Titania Catalysts To Metal-Exchanged Zeolites [J]. Studies in Surface Science and Catalysis,171:261-289.
    [84]Parvulescu V I, Grange P, Delmon B. Catalytic removal of NO [J]. Catalysis Today,1998,46(4): 233-316.
    [85]薛红丹,董国君,龚凡,等.选择性催化还原(SCR)法脱除NOx的研究进展[J].化学工程师,2005(11):29-31.
    [86]Burch R. Knowledge and Know-How in Emission Control for Mobile Applications [J]. Catalysis Reviews:Science and Engineering,2004,46(3):271-334.
    [87]Liu Z, Woo S I. Recent Advances in Catalytic DeNOx Science and Technology [J]. Catalysis Reviews:Science and Engineering,2006,48(1):43-89.
    [88]Miyoshi N, Matsumoto S, Katoh K, et al. Development of new concept three-way catalyst for automotive lean-burn engines [J]. SAE Technical Papers,1995,950809
    [89]Matsumoto S. DeNOx catalyst for automotive lean-burn engine [J]. Catalysis Today,1996, 29(1-4):43-45.
    [90]Takahashi N, Shinjoh H, Iijima T, et al. The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst [J]. Catalysis Today,1996,27(1-2):63-69.
    [91]Roy S, Baiker A. NOx Storage-Reduction Catalysis:From Mechanism and Materials Properties to Storage-Reduction Performance [J]. Chemical Reviews,2009,109(9):4054-4091.
    [92]Matsumoto S I. Catalytic Reduction of Nitrogen Oxides in Automotive Exhaust Containing Excess Oxygen by NO, Storage-Reduction Catalyst [J]. CATTECH,2000,4(2):102-109.
    [93]Yu J J, Jiang Z, Zhu L, et al. Adsorption/Desorption Studies of NOx on Well-Mixed Oxides Derived from Co-Mg/Al Hydrotalcite-like Compounds [J]. Journal of Physical Chemistry B, 2006,110(9):4291-4300.
    [94]Vijay R, Hendershot R J, Rivera-Jimenez S M, et al. Noble metal free NO, storage catalysts using cobalt discovered via high-throughput experimentation [J]. Catalysis Communications,2005, 6(2):167-171.
    [95]Olsson L, Persson H, Fridell E, et al. A Kinetic Study of NO Oxidation and NOx Storage on Pt/Al2O3 and Pt/BaO/Al2O3 [J]. The Journal of Physical Chemistry B,2001,105(29):6895-6906.
    [96]Crocoll M, Kureti S, Weisweiler W. Mean field modeling of NO oxidation over Pt/Al2O3 catalyst under oxygen-rich conditions [J]. Journal of Catalysis,2005,229(2):480-489.
    [97]Graham G W, Jen H W, Chun W, et al. Coarsening of Pt Particles in a Model NO, Trap [J]. Catalysis Letters,2004,93(3):129-134.
    [98]程昊,陈光文,吴迪镛,等Pt/MgO催化剂上NOx存储-还原反应性能[J].环境污染治理技术与设备,2005,6(4):7-10.
    [99]Basile F, Fornasari G, Grimandi A, et al. Effect of Mg, Ca and Ba on the Pt-catalyst for NOx storage reduction [J]. Applied Catalysis B:Environmental,2006,69(1-2):58-64.
    [100]Castoldi L, Lietti L, Nova I, et al. Alkaline-and alkaline-earth oxides based Lean NOx Traps: Effect of the storage component on the catalytic reactivity [J]. Chemical Engineering Journal, 2010,161(3):416-423.
    [101]Lietti L, Forzatti P, Nova I, et al. NOx Storage Reduction over Pt-Ba/y-Al2O3 Catalyst [J]. Journal of Catalysis,2001,204(1):175-191.
    [102]Engstrom P, Amberntsson A, Skoglundh M, et al. Sulphur dioxide interaction with NOx storage catalysts [J]. Applied Catalysis B:Environmental,1999,22(4):L241-L248.
    [103]Lesage T, Verrier C, Bazin P, et al. Comparison between a Pt-Rh/Ba/Al2O3 and a newly formulated NOx-trap catalysts under alternate lean-rich flows [J]. Topics in Catalysis,2004, 30-31(1):31-36.
    [104]Fridell E, Persson H, Westerberg B, et al. The mechanism for NOx storage [J]. Catalysis Letters, 2000,66(1):71-74.
    [105]Nova I, Castoldi L, Lietti L, et al. NOx adsorption study over Pt-Ba/alumina catalysts:FT-IR and pulse experiments [J]. Journal of Catalysis,2004,222(2):377-388.
    [106]Al-Harbi M, Radtke D, Epling W S. Regeneration of a model NOx storage/reduction catalyst using hydrocarbons as the reductant [J]. Applied Catalysis B:Environmental,2010,96(3-4): 524-532.
    [107]Epling W S, Campbell L E, Yezerets A, et al. Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts [J]. Catalysis Reviews-Science and Engineering,2004,46(2):163-245.
    [108]Nova I, Lietti L, Castoldi L, et al. New insights in the NOx reduction mechanism with H2 over Pt-Ba/γ-Al2O3 lean NOx trap catalysts under near-isothermal conditions [J]. Journal of Catalysis, 2006,239(1):244-254.
    [109]Clayton R D, Harold M P, Balakotaiah V. NOx storage and reduction with H2 on Pt/BaO/Al2O3 monolith:Spatio-temporal resolution of product distribution [J]. Applied Catalysis B: Environmental,2008,84(3-4):616-630.
    [110]Cumaranatunge L, Mulla S S, Yezerets A, et al. Ammonia is a hydrogen carrier in the regeneration of Pt/BaO/Al2O3 NOx traps with H2 [J]. Journal of Catalysis,2007,246(1):29-34.
    [111]Nova I, Lietti L, Forzatti P, et al. Experimental investigation of the reduction of NOx species by CO and H2 over Pt-Ba/Al2O3 lean NOx trap systems [J]. Catalysis Today,2010,151(3-4): 330-337.
    [112]Costa C N, Efstathiou A M. Mechanistic Aspects of the H2-SCR of NO on a Novel Pt/MgO-CeO2 Catalyst [J]. The Journal of Physical Chemistry C,2007,111(7):3010-3020.
    [113]Piacentini M, Maciejewski M, Baiker A. NOx storage-reduction behavior of Pt-Ba/MO2 (MO2=SiO2, CeO2, ZrO2) catalysts [J]. Applied Catalysis B:Environmental,2007,72(1-2): 105-117.
    [114]Yamamoto K, Kikuchi R, Takeguchi T, et al. Development of NO sorbents tolerant to sulfur oxides [J]. Journal of Catalysis,2006,238(2):449-457.
    [115]Vijay R, Snively C M, Lauterbach J. Performance of Co-containing NOx storage and reduction catalysts as a function of cycling condition [J]. Journal of Catalysis,2006,243(2):368-375.
    [116]Rohr F, Gobel U, Kattwinkel P, et al. New insight into the interaction of sulfur with diesel NO^ storage catalysts [J]. Applied Catalysis B:Environmental,2007,70(1-4):189-197.
    [117]Corbos E C, Courtois X, Bion N, et al. Impact of the support oxide and Ba loading on the sulfur resistance and regeneration of Pt/Ba/support catalysts [J]. Applied Catalysis B:Environmental, 2008,80(1-2):62-71.
    [118]Yamazaki K, Takahashi N, Shinjoh H, et al. The performance of NOx storage-reduction catalyst containing Fe-compound after thermal aging [J]. Applied Catalysis B:Environmental,2004, 53(1):1-12.
    [119]Shinjoh H, Takahashi N, Yokota K. Synergic effect of Pd/y-alumina and Cu/ZSM-5 on the performance of NOx storage reduction catalyst [J]. Topics in Catalysis,2007,42-43(1):215-219.
    [120]Casapu M, Grunwaldt J-D, Maciejewski M, et al. The fate of platinum in Pt/Ba/CeO2 and Pt/Ba/Al2O3 catalysts during thermal aging [J]. Journal of Catalysis,2007,251(1):28-38.
    [121]Fornasari G, Trifir F, Vaccari A, et al. Novel low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds [J]. Catalysis Today, 2002,75(1-4):421-429.
    [122]Fornasari G, Glockler R, Livi M, et al. Role of the Mg/Al atomic ratio in hydrotalcite-based catalysts for NOx storage/reduction [J]. Applied Clay Science,2005,29(3-4):258-266.
    [123]Silletti B A, Adams R T, Sigmon S M, et al. A novel Pd/MgAlOx catalyst for NOx storage-reduction [J]. Catalysis Today,2006,114(1):64-71.
    [124]Takahashi N, Matsunaga S I, Tanaka T, et al. New approach to enhance the NOx storage performance at high temperature using basic MgAl2O4 spinel support [J]. Applied Catalysis B, Environmental,2007,77(1-2):73-78.
    [125]Park S, Ahn H, Heo I, et al. Hydrotalcite as a Support for NOx Trap Catalyst [J]. Topics in Catalysis,2010,53(1):57-63.
    [126]Roy S, Van Vegten N, Baiker A. Single-step flame-made Pt/MgAl2O4-A NOx storage-reduction catalyst with unprecedented dynamic behavior and high thermal stability [J]. Journal of Catalysis,2010,271(1):125-131.
    [127]程昊,陈光文,王树东,等.Pt/Mg-Al-O催化剂上NOx的存储性能[J].催化学报,2004,25(4):272-276.
    [128]康守方,蒋政,郝郑平.Cu对Pt/Cu-Mg-Al-O催化剂上NOx储存性能的影响[J].物理化学学报,2005,21(3):278-282.
    [129]Centi G, Fornasari G, Gobbi C, et al. NOx storage-reduction catalysts based on hydrotalcite: Effect of Cu in promoting resistance to deactivation [J]. Catalysis Today,2002,73(3-4):287-296.
    [130]Centi G, Arena G E, Perathoner S. Nanostructured catalysts for NOx storage-reduction and N2O decomposition [J]. Journal of Catalysis,2003,216(1-2):443-454.
    [131]Yu J J, Tao Y X, Liu C C, et al. Novel NO Trapping Catalysts Derived from Co-Mg/X-Al (X= Fe, Mn, Zr, La) Hydrotalcite-like Compounds [J]. Environmental Science & Technology,2007, 41(4):1399-1404.
    [132]Yu J J, Wang X P, Li L D, et al. Novel Multi-functional Mixed-oxide Catalysts for Effective NOx Capture, Decomposition, and Reduction [J]. Advanced Functional Materials,2007,17(17): 3598-3606.
    [133]Yu J J, Cheng J, Ma C Y, et al. NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds [J]. Journal of Colloid and Interface Science,2009,333(2):423-430.
    [134]Son G S. Method for processing combustion exhaust gas containing soot particles and NOx:US, 11/213,213 [P].2008,1,8.
    [135]Herrmuth H, Cartus T, Ducellari R, et al. Combined NOx and PM exhaust gas aftertreatment approaches for HSDI diesel engines [J]. SAE Technical Papers,2004,2004-01-1425
    [136]Page D, Macdonald R J, Edgar B L. The QuadCATM Four-Way Catalytic Converter:An Integrated Aftertreatment System for Diesel Engines [J]. SAE Technical Papers,1999, 1999-01-2924.
    [137]Matthey A P W J, Matthey R a J, Matthey P G B J, et al. The Development and Performance of the Compact SCR-Trap System:A 4-Way Diesel Emission Control System [J]. SAE Technical Papers,2003,2007-24-0103
    [138]Huang Y, Lu Q. Thermal Management of a Four-Way Catalyst System With Alternative Combustions for Achieving Future Emissions Standard [J]. SAE Technical Papers,2007, 2007-24-0103.
    [139]Yoshida K. Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust [J]. SAE Technical Papers,1989,892046.
    [140]Teraoka Y, Nakano K, Shangguan W F, et al. Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides [J]. Catalysis Today,1996,27(1-2): 107-113.
    [141]Shangguan W F, Teraoka Y, Kagawa S. Kinetics of soot-O2, soot-NO and soot-O2-NO reactions over spinel-type CuFe2O4 catalyst [J]. Applied Catalysis B:Environmental,1997,12(2-3): 237-247.
    [142]Deeba M, Lui Y K, Dettling J C. Four-way diesel exhaust catalyst and method of use:US, 08/852,458 [P].2000,7,25.
    [143]Liu J, Xu J, Zhao Z, et al. A novel four-way combining catalysts for simultaneous removal of exhaust pollutants from diesel engine [J]. Journal of Environmental Sciences,2010,22(7): 1104-1109.
    [144]牛晓巍.柴油车尾气四效催化剂的制备与表征[D].吉林:吉林大学,2010.
    [145]韩炜,牛晓魏,王婧姝,等.合金金属为载体的柴油车尾气四效催化剂制备方法:中国,200710193539.3[P].2008,5,14.
    [146]Nakatani K, Hirota S, Takeshima S, et al. Simultaneous PM and NOx reduction system for diesel engines [J]. SAE Technical Papers,2002,2002-01-0957
    [147]Ohki H, Ishiyama S, Asano A. Control technology for a passenger car diesel engine equipped with the DPNR system [J]. SAE Technical Papers,2003,2003-01-1880.
    [148]Suzuki J, Matsumoto S I. Development of Catalysts for Diesel Particulate NOx Reduction [J]. Topics in Catalysis,2004,28(1):171-176.
    [149]王仲鹏,张昭良.碳烟颗粒在NO,储存催化剂上的燃烧研究进展[J].工业催化,2009,17(4):1-5.
    [150]Castoldi L, Matarrese R, Lietti L, et al. Simultaneous removal of NOx and soot on Pt-Ba/AlO3 NSR catalysts [J]. Applied Catalysis B, Environmental,2006,64(1-2):25-34.
    [151]Krishna K, Makkee M. Soot oxidation over NOx storage catalysts:Activity and deactivation [J]. Catalysis Today,2006,114(1):48-56.
    [152]Matarrese R, Castoldi L, Lietti L, et al. Simultaneous Removal of NOx and Soot Over Pt-Ba/Al2O3 and Pt-K/Al2O3 DPNR Catalysts [J]. Topics in Catalysis,2009,52(13):2041-2046.
    [153]Milt V G, Peralta M A, Ulla M A, et al. Soot oxidation on a catalytic NOx trap:Beneficial effect of the Ba-K interaction on the sulfated Ba,K/CeO2 catalyst [J]. Catalysis Communications,2007, 8(5):765-769.
    [154]Ito K, Kishikawa K, Watajima A, et al. Soot combustion activity of NOx-sorbing Cs-MnOx-CeO2 catalysts [J]. Catalysis Communications,2007,8(12):2176-2180.
    [155]张昭良,牟宗刚,于鹏飞,等.柴油车尾气碳烟燃烧和NO,存储-还原的双功能催化剂及制备方法:中国,200510128436.X[P].2006,5,24.
    [156]Millet C-N, Chedotal R, Da Costa P. Synthetic gas bench study of a 4-way catalytic converter: Catalytic oxidation, NOx storage/reduction and impact of soot loading and regeneration [J]. Applied Catalysis B:Environmental,2009,90(3-4):339-346.
    [157]Castoldi L, Artioli N, Matarrese R, et al. Study of DPNR catalysts for combined soot oxidation and NOx reduction [J]. Catalysis Today,2010,157(1-4):384-389.
    [158]Lesage T, Saussey J, Malo S, et al. Operando FTIR study of NOx storage over a Pt/K/Mn/Al2O3-CeO2 catalyst [J]. Applied Catalysis B:Environmental,2007,72(1-2):166-177.
    [159]Salasc S, Skoglundh M, Fridell E. A comparison between Pt and Pd in NOx storage catalysts [J]. Applied Catalysis B:Environmental,2002,36(2):145-160.
    [160]Kim Y H, Park E D, Lee H C, et al. Preferential CO oxidation over supported noble metal catalysts [J]. Catalysis Today,2009,146(1-2):253-259.
    [161]Hegde M S, Madras G, Patil K C. Noble Metal Ionic Catalysts [J]. Accounts of Chemical Research,2009,42(6):704-712.
    [162]Abdulhamid H, Fridell E, Skoglundh M. The reduction phase in NOx storage catalysis:Effect of type of precious metal and reducing agent [J]. Applied Catalysis B:Environmental,2006,62(3-4): 319-328.
    [163]Khan A I, O'hare D. Intercalation chemistry of layered double hydroxides:recent developments and applications [J]. Journal of Materials Chemistry,2002,12:3191-3198.
    [164]Walspurger S, Boels L, Cobden P D, et al. The Crucial Role of the K--Aluminium Oxide Interaction in K--Promoted Alumina- and Hydrotalcite-Based Materials for CO2 Sorption at High Temperatures [J]. ChemSusChem,2008,1(7):643.
    [165]Wang Y, Wei Han X, Ji A, et al. Basicity of potassium-salt modified hydrotalcite studied by'H MAS NMR using pyrrole as a probe molecule [J]. Microporous and Mesoporous Materials,2005, 77(2-3):139.
    [166]Di Cosimo J I, Diez V K, Xu M, et al. Structure and Surface and Catalytic Properties of Mg-AI Basic Oxides [J]. Journal of Catalysis,1998,178(2):499.
    [167]Diez V K, Apesteguia C R, Di Cosimo J I. Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions [J]. Journal of Catalysis, 2003,215(2):220-233.
    [168]Liu H C, Yang X Y, Ran G P, et al. Structure and base properties of calcined hydrotalcites [J]. Chinese Journal of Chemistry,1999,17(4):319-330.
    [169]Kanezaki E. Direct Observation of a Metastable Solid Phase of Mg/Al/CO3-Layered Double Hydroxide by Means of High Temperature in Situ Powder XRD and DTA/TG [J]. Inorganic Chemistry,1998,37(10):2588-2590.
    [170]Iordan A, Zaki M I, Kappenstein C. Interfacial chemistry in the preparation of catalytic potassium-modified aluminas [J]. Journal of the Chemical Society, Faraday Transactions,1993, 89(14):2527-2536.
    [171]Lee S C, Chae H J, Lee S J, et al. Development of Regenerable MgO-Based Sorbent Promoted with K2CO3 for CO2 Capture at Low Temperatures [J]. Environmental Science & Technology, 2008,42(8):2736-2741.
    [172]Wang Y, Zhu J H, Huang W Y. Synthesis and characterization of potassium-modified alumina superbases [J]. Physical Chemistry Chemical Physics,2001,3(12):2537-2543.
    [173]Cantrell D G, Gillie L J, Lee A F, et al. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis [J]. Applied Catalysis A:General,2005,287(2):183-190.
    [174]Carja G, Nakamura R, Niiyama H. [36] Copper and iron substituted hydrotalcites:properties and catalyst precursors for methylamines synthesis [J]. Appl. Catal. A,2002,236(1-2):91-102.
    [175]Kantschewa M, Albano E V, Ertl G, et al. Infrared and X-ray photoelectron spectroscopy study of K2CO3/γ-Al2O3 [J]. Applied Catalysis,1983,8(1):71-84.
    [176]Busca G, Lorenzelli V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces [J]. Materials Chemistry,1982,7(1):89-126.
    [177]闻辂,梁婉雪,章正刚.矿物红外光谱学[M].重庆:重庆大学出版社,1988:55-61.
    [178]La valley J C. Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules [J]. Catalysis Today,1996,27(3-4):377-401.
    [179]Krupay B W, Amenomiya Y. Alkali-promoted alumina catalysts:I. Chemisorption and oxygen exchange of carbon monoxide and carbon dioxide on potassium-promoted alumina catalysts [J]. Journal of Catalysis,1981,67(2):362-370
    [180]沈俭一.吸附量热技术和金属氧化物催化剂的表面酸碱性[J].催化学报,2000,21(002):187-191.
    [181]Kanno T, Kobayashi M. Surface basicity of alkali metal-doped MgO by a new evaluation [J]. Reaction Kinetics and Catalysis Letters,1996,58(2):275-281.
    [182]Palmer S J, Frost R L, Nguyen T. Hydrotalcites and their role in coordination of anions in Bayer liquors:Anion binding in layered double hydroxides [J]. Coordination Chemistry Reviews,2009, 253(1-2):250.
    [183]Kagi H, Nagai T, Loveday J S, et al. Pressure-induced phase transformation of kalicinite (KHCO3) at 2.8 GPa and local structural changes around hydrogen atoms [J]. American Mineralogist,2003,88(10):1446-1451.
    [184]Zhu Z H, Lu G Q, Yang R T. New Insights into Alkali-Catalyzed Gasification Reactions of Carbon:Comparison of N2O Reduction with Carbon over Na and K Catalysts [J]. Journal of Catalysis,2000,192(1):77-87.
    [185]Illan-Gomez M J, Linares-Solano A, Radovic L R, et al. NO Reduction by Activated Carbons.2. Catalytic Effect of Potassium [J]. Energy Fuels,1995,9(1):97-103.
    [186]唐有祺,谢有畅,桂琳琳.氧化物和盐类在载体表面的自发单层分散及其应用[J].自然科学进展,1994,4(6):642-652.
    [187]Heidler R, Janssens G O A, Mortier W J, et al. Charge Sensitivity Analysis of Intrinsic Basicity of Faujasite-Type Zeolites Using the Electronegativity Equalization Method (EEM) [J]. Journal of Physical Chemistry,1996,100(50):19728-19734.
    [188]Diehl R D, Mcgrath R. Current progress in understanding alkali metal adsorption on metal surfaces [J]. Journal of Physics:Condensed Matter,1997,9(5):951-968.
    [189]Zavodinsky V G, Kiejna A. Density functional study of alkali metals adsorption on the MgO(111) surface [J]. Surface Science,2003,538(3):240-248.
    [190]An H, Mcginn P J. Catalytic behavior of potassium containing compounds for diesel soot combustion [J]. Applied Catalysis B, Environmental,2006,62(1-2):46-56.
    [191]Janiak C, Hoffmann R, Sjovall P, et al. The potassium promoter function in the oxidation of graphite:an experimental and theoretical study [J]. Langmuir,1993,9(12):3427-3440.
    [192]Aneggi E, De Leitenburg C, Dolcetti G, et al. Diesel soot combustion activity of ceria promoted with alkali metals [J]. Catalysis Today,2008,136(1-2):3-10.
    [193]Boudart M. Turnover Rates in Heterogeneous Catalysis [J]. Chemical Reviews,1995,95(3): 661-666.
    [194]Peralta M A, Milt V G, Cornaglia L M, et al. Stability of Ba,K/CeO2 catalyst during diesel soot combustion:Effect of temperature, water, and sulfur dioxide [J]. Journal of Catalysis,2006, 242(1):118-130.
    [195]Darcy P, Da Costa P, Mellottee H, et al. Kinetics of catalyzed and non-catalyzed oxidation of soot from a diesel engine [J]. Catalysis Today,2007,119(1-4):252-256.
    [196]Hadjiivanov K I, Vayssilov G N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule [J]. Advances in Catalysis,2002,47:307-511.
    [197]Collins S E, Baltanas M A, Bonivardi A L. Heats of adsorption and activation energies of surface processes measured by infrared spectroscopy [J]. Journal of Molecular Catalysis A: Chemical,2008,281(1-2):73-78.
    [198]Iordan A, Zaki M I, Kappenstein C. Formation of carboxy species at CO/Al2O3 interfaces. Impacts of surface hydroxylation, potassium alkalization and hydrogenation as assessed by in situ FTIR spectroscopy [J]. Physical Chemistry Chemical Physics,2004,6(9):2502-2512.
    [199]Wagner B D, Arnold B R, Brown G S, et al. Spectroscopy and Absolute Reactivity of Ketenes in Acetonitrile Studied by Laser Flash Photolysis with Time-Resolved Infrared Detection [J]. Journal of the American Chemical Society,1998,120(8):1827-1834.
    [200]Kobayashi K, Shinhara S, Moriyama M, et al. Generation of ketenes by photolysis of naphtho[1,8-de]-1,3-dichalcogeninylidene 1-oxides [J]. Tetrahedron Letters,1999,40(28): 5211-5214.
    [201]Panov G I, Dubkov K A, Starokon E V. Active oxygen in selective oxidation catalysis [J]. Catalysis Today,2006,117(1-3):148-155.
    [202]Mul G, Kapteijn F, Moulijn J A. Catalytic oxidation of model soot by metal chlorides [J]. Applied Catalysis B, Environmental,1997,12(1):33-47.
    [203]Mul G, Kapteijn F, Doornkamp C, et al. Transition Metal Oxide Catalyzed Carbon Black Oxidation:A Study with 18O2 [J]. Journal of Catalysis,1998,179(1):258-266.
    [204]Huang H Y, Yang R T. Catalyzed Carbon-NO Reaction Studied by Scanning Tunneling Microscopy and ab Initio Molecular Orbital Calculations [J]. Journal of Catalysis,1999,185(2): 286-296.
    [205]Liu J, Zhao Z, Liang P, et al. Study on the Reaction Mechanism for Soot Oxidation Over TiO2 or ZrO2-supported Vanadium Oxide Catalysts by Means of In-situ UV-Raman [J]. Catalysis Letters,2008,120(1):148-153.
    [206]Setiabudi A, Makkee M, Moulijn J A. The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases [J]. Applied Catalysis B, Environmental,2004,50(3):185-194.
    [207]Kandylas I P, Haralampous O A, Koltsakis G C. Diesel Soot Oxidation with NO2:Engine Experiments and Simulations [J]. Industrial & Engineering Chemistry Research,2002,41(22): 5372-5384.
    [208]Matarrese R, Castoldi L, Lietti L, et al. Soot combustion:Reactivity of alkaline and alkaline earth metal oxides in full contact with soot [J]. Catalysis Today,2008,136(1-2):11-17.
    [209]Teraoka Y, Shangguan W, Kagawa S. Reaction mechanism of simultaneous catalytic removal of NOx and diesel soot particulates [J]. Research on Chemical Intermediates,2000,26(2):201-206.
    [210]Yamashita H, Tomita A, Yamada H, et al. Influence of char surface chemistry on the reduction of nitric oxide with chars [J]. Energy Fuels,1993,7(1):85-89.
    [211]Fino D, Fino P, Saracco G, et al. Studies on kinetics and reactions mechanism of La2-xKxCu1-yVyO4 layered perovskites for the combined removal of diesel particulate and NOx [J]. Applied Catalysis B, Environmental,2003,43(3):243-259.
    [212]Zawadzki J, Wisniewski M, Skowronska K. Heterogeneous reactions of NO2 and NO-O2 on the surface of carbons [J]. Carbon,2003,41(2):235-246.
    [213]Wu X, Ran R, Weng D. NO2-aided Soot Oxidation on LaMn0.7Ni0.3O3 Perovkite-type Catalyst [J]. Catalysis Letters,2009,131(3):494-499.
    [214]Mul G, Neeft J P A, Kapteijn F, et al. The formation of carbon surface oxygen complexes by oxygen and ozone. The effect of transition metal oxides [J]. Carbon,1998,36(9):1269-1276.
    [215]Mul G, Kapteijn F, Moulijn J A. A DRIFTS study of the interaction of alkali metal oxides with carbonaceous surfaces [J]. Carbon,1999,37(3):401-410.
    [216]Sanchez Escribano V, Fernandez Lopez E, Gallardo-Amores J M, et al. A study of a ceria-zirconia-supported manganese oxide catalyst for combustion of Diesel soot particles [J]. Combustion and Flame,2008,153(1-2):97-104.
    [217]Li Y, Lin H, Shangguan W, et al. An in-situ DRIFTS study in the reaction between NOx and soot on BaAl2O4 [J]. Chinese Science Bulletin,2008,53(16):2462-2470.
    [218]Toops T J, Smith D B, Partridge W P. Quantification of the in situ DRIFT spectra of Pt/K/y-Al2O3 NOx adsorber catalysts [J]. Applied Catalysis B, Environmental,2005,58(3-4): 245-254.
    [219]Flores-Moreno J L, Delahay G, Figueras F, et al. DRIFTS study of the nature and reactivity of the surface compounds formed by co-adsorption of NO, O2 and propene on sulfated titania-supported rhodium catalysts [J]. Journal of Catalysis,2005,236(2):292-303.
    [220]Bion N, Saussey J, Haneda M, et al. Study by in situ FTIR spectroscopy of the SCR of NOx by ethanol on Ag/Al2O3--Evidence of the role of isocyanate species [J]. Journal of Catalysis,2003, 217(1):47-58.
    [221]Tamm S, Ingelsten H H, Palmqvist A E C. On the different roles of isocyanate and cyanide species in propene-SCR over silver/alumina [J]. Journal of Catalysis,2008,255(2):304-312.
    [222]Satsuma A, Enjoji T, Shimizu K, et al. Reactivity of surface nitrate species in the selective reduction of NO with propene over Na-H-mordenite as investigated by dynamic FTIR spectroscopy [J]. Journal of the Chemical Society, Faraday Transactions,1998,94(2):301-307.
    [223]Broqvist P, Panas I, Gronbeck H. The Nature of NOx Species on BaO(100):An Ab Initio Molecular Dynamics Study [J]. Journal of Physical Chemistry B,2005,109(32):15410-15416.
    [224]Liu J, Zhao Z, Xu C, et al. Simultaneous removal of soot and NOx over the (La1.7Rb0.3CuO4)x/nmCeO2 nanocomposite catalysts [J]. Industrial & Engineering Chemistry Research,2010,49(7):3112-3119.
    [225]Kameoka S, Chafik T, Ukisu Y, et al. Reactivity of surface isocyanate species with NO, O2 and NO+O2 in selective reduction of NO over Ag/AlO3 and Al2O3 catalysts [J]. Catalysis Letters, 1998,55:211-215.
    [226]Sumiya S, He H, Abe A, et al. Formation and reactivity of isocyanate (NCO) species on Ag/Al2O3 [J]. Journal of the Chemical Society, Faraday Transactions,1998,94(15):2217-2219.
    [227]Fino D, Specchia V. Open issues in oxidative catalysis for diesel particulate abatement [J]. Powder Technology,2008,180(1-2):64-73.
    [228]冯长根,王大祥,王亚军.车用三效催化剂的研究进展[J].安全与环境学报,2003,3(5):21-26.
    [229]Matolin V, Gillet E, Reed N M, et al. CO oxidation over small Pd particle model catalysts. A static secondary ion mass spectrometry study [J]. Journal of the Chemical Society, Faraday Transactions,1990,86(15):2749-2755.
    [230]Seshimo H, Kobayashi T, Ishikawa K, et al. Pd-Based twc catalyst for reduction of cold-start hydrocarbon emissions [J]. Studies in Surface Science and Catalysis,1999,121:367-370.
    [231]Haneda M, Kintaichi Y, Nakamura I, et al. Effect of surface structure of supported palladium catalysts on the activity for direct decomposition of nitrogen monoxide [J]. Journal of Catalysis, 2003,218(2):405-410.
    [232]Dettling J, Hu Z, Lui Y K, et al. Smart Pd TWC technology to meet stringent standards [J]. Studies in Surface Science and Catalysis,1995,96:461-472.
    [233]Cai L, Zhao M, Pi Z, et al. Preparation of Ce-Zr-La-Al2O3 and Supported Single Palladium Three-Way Catalyst [J]. Chinese Journal of Catalysis,2008,29(2):108-112.
    [234]Goncalves F, Figueiredo J L. Synergistic effect between Pt and K in the catalytic reduction of NO and N2O [J]. Applied Catalysis B, Environmental,2006,62(3-4):181-192.
    [235]Nakamura I, Hamada H, Fujitani T. Adsorption and decomposition of NO on K-deposited Pd(l 11) [J]. Surface Science,2003,544(1):45-50.
    [236]Benson J E, Hwang H S, Boudart M. Hydrogen-oxygen titration method for the measurement of supported palladium surface areas [J]. Journal of Catalysis,1973,30(1):146-153.
    [237]杨锡尧,裴站芬,白瑞琴,等.脉冲氢氧滴定法测定Pt/Al2O3催化剂的分散度[J].石油化工,1978(04):352-355,369.
    [238]Baylet A, Marecot P, Duprez D, et al. In situ Raman and in situ XRD analysis of PdO reduction and Pd oxidation supported on γ-Al2O3 catalyst under different atmospheres [J]. Physical Chemistry Chemical Physics,2011,13(10):4607-4613.
    [239]Buchel R, Strobel R, Baiker A, et al. Flame-Made Pt/K/Al2O3 for NOx Storage-Reduction (NSR) Catalysts [J]. Topics in Catalysis,2009,52(13):1799-1802.
    [240]Maciel A, Ryan J F, Walker P J. Structural phase transitions in K2CO3 (Raman scattering study) [J]. Journal of Physics C:Solid State Physics,1981,14(11):1611-1618.
    [241]Pellegrini R, Leofanti G, Agostini G, et al. Influence of K-doping on a Pd/SiO2-Al2O3 catalyst [J]. Journal of Catalysis,2009,267(1):40-49.
    [242]Sa J, Montero J, Duncan E, et al. Bi modified Pd/SnO2 catalysts for water denitration [J]. Applied Catalysis B, Environmental,2007,73(1-2):98-105.
    [243]Anderson J A, Khader M M. A high pressure, high temperature infrared study of CO hydrogenation over Rh/ZrO2 [J].Journal of Molecular Catalysis A:Chemical,1996,105(3): 175-183.
    [244]Zhang Z, Han D, Wei S, et al. Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides [J]. Journal of Catalysis,2010,276(1): 16-23.
    [245]Desikusumastuti A, Staudt T, Qin Z, et al. Interaction of NO2 with Model NSR Catalysts: Metal-Oxide Interaction Controls Initial NO, Storage Mechanism [J]. ChemPhysChem,2008, 9(15):2191-2197.
    [246]Forzatti P, Lietti L, Nova I. On board catalytic NO control:mechanistic aspects of the regeneration of Lean NO Traps with H2 [J]. Energy & Environmental Science,2008,1(2): 236-247.
    [247]Lietti L, Nova I, Forzatti P. Role of ammonia in the reduction by hydrogen of NO.r stored over Pt-Ba/Al2O3 lean NO, trap catalysts [J]. Journal of Catalysis,2008,257(2):270-282.
    [248]Bailey J M, Waldman D J, Waldman M F. Apparatus and method for filtering particulate and reducing NO, emissions:US,10/467,553 [P].2006,6,24.
    [249]Hu H, Radhamohan S, Bevan K E, et al. Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines:US,11/059.498 [P].2006,8,17.
    [250]刘忠长,张兆合,宋崇林,等.车用直喷柴油机变工况下的微粒排放特性[J].内燃机学报,1998,16(2):139-144.
    [251]Gene V E, Altay F E, Uner D. Testing molten metal oxide catalysts over structured ceramic substrates for diesel soot oxidation [J]. Catalysis Today,2005,105(3-4):537-543.
    [252]谭丕强,陆家祥,邓康耀,等.车用直喷式柴油机氮氧化物的排放特性[J].内燃机学报,2003,21(6):435-439.
    [253]Gill S S, Chatha G S, Tsolakis A. Analysis of reformed EGR on the performance of a diesel particulate filter [J]. International Journal of Hydrogen Energy,2011,36(16):10089-10099.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700